Single-exponential algorithms and linear kernels via protrusion decompositions

Eun Jung Kim¹ Christophe Paul² Ignasi Sau² Alexander Langer³ Felix Reidl³ Peter Rossmanith³ Somnath Sikdar³

arXiv/1207.0835, 2013

- ¹ CNRS, LAMSADE, Paris (France)
- ² CNRS, LIRMM, Montpellier (France)
- ³ Department of Computer Science, RWTH Aachen University (Germany)

Outline of the talk

Preliminaries

2 Protrusion decompositions

- Definitions
- A simple algorithm to compute them
- **3** Single-exponential algorithm for PLANAR-*F*-DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research

Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Preliminaries

Protrusion decompositions

- Definitions
- A simple algorithm to compute them
- 3) Single-exponential algorithm for PLANAR- \mathcal{F} -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research

4 Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Some words on parameterized complexity

• Idea given an NP-hard problem with input size *n*, fix one parameter *k* of the input to see whether the problem gets more "tractable".

Example: the size of a VERTEX COVER.

Some words on parameterized complexity

• Idea given an NP-hard problem with input size *n*, fix one parameter *k* of the input to see whether the problem gets more "tractable".

Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size *n* and a parameter *k*, a fixed-parameter tractable (FPT) algorithm runs in time

 $f(k) \cdot n^{O(1)}$, for some function f.

Examples: *k*-VERTEX COVER, *k*-LONGEST PATH.

Some words on parameterized complexity

• Idea given an NP-hard problem with input size *n*, fix one parameter *k* of the input to see whether the problem gets more "tractable".

Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size *n* and a parameter *k*, a fixed-parameter tractable (FPT) algorithm runs in time

 $f(k) \cdot n^{O(1)}$, for some function f.

Examples: *k*-VERTEX COVER, *k*-LONGEST PATH.

• A single-exponential parameterized algorithm is an FPT algo s.t.

$$f(\mathbf{k}) = 2^{O(\mathbf{k})}.$$

・ロト ・日 ・ ・ ヨ ・ ・ ヨ

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

• PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs. [Baker's approach]

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

- PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs. [Baker's approach]
- Linear-time algorithms for problems expressible in MSOL on graphs of bounded treewidth. [Coucelle's theorem]

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

- PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs. [Baker's approach]
- Linear-time algorithms for problems expressible in MSOL on graphs of bounded treewidth. [Coucelle's theorem]
- FPT algorithms based on the structural decomposition result of *H*-minor-free graphs. [Graph Minors theory by Robertson and Seymour]

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

- PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs. [Baker's approach]
- Linear-time algorithms for problems expressible in MSOL on graphs of bounded treewidth. [Coucelle's theorem]
- FPT algorithms based on the structural decomposition result of *H*-minor-free graphs. [Graph Minors theory by Robertson and Seymour]
- Linear-time algorithms based on modular decompositions.

Preliminaries

2 Protrusion decompositions

- Definitions
- A simple algorithm to compute them
- 3) Single-exponential algorithm for PLANAR- \mathcal{F} -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research

4 Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Preliminaries

2 Protrusion decompositions

- Definitions
- A simple algorithm to compute them
- 3 Single-exponential algorithm for $\operatorname{PLANAR}-\mathcal{F} ext{-}\operatorname{DELETION}$
 - Motivation and our result
 - Sketch of proof
 - Further research

4 Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Protrusions

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

• Given a graph G, a set $W \subseteq V(G)$ is a *t*-protrusion of G if

$|\partial_G(W)| \leqslant t$ and $\operatorname{tw}(G[W]) \leqslant t$

Protrusions

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

• Given a graph G, a set $W \subseteq V(G)$ is a *t*-protrusion of G if

$|\partial_G(W)| \leqslant t$ and $\operatorname{tw}(G[W]) \leqslant t$

- The vertex set $W' = W \setminus \partial_G(W)$ is the restricted protrusion of W.
- We call $\partial_G(W)$ the boundary and |W| the size of W.

Protrusion decompositions

An (α, t) -protrusion decomposition of a graph G is a partition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ of V(G) such that:

- for every $1 \leq i \leq \ell$, $N(Y_i) \subseteq Y_0$;
- for every $1 \leq i \leq \ell$, $Y_i \cup N_{Y_0}(Y_i)$ is a *t*-protrusion of *G*;
- $\max\{\ell, |Y_0|\} \leq \alpha$.

The set Y_0 is called the separating part of \mathcal{P} .

(Figure by Felix Reidl) ৰ □ > ৰালি > ৰা≣ > ৰা≣ > পিওও

Preliminaries

2 Protrusion decompositions

Definitions

• A simple algorithm to compute them

- Single-exponential algorithm for PLANAR-*F*-DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research

4 Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

• Protrusion decompositions have already been used in the literature.

[Bodlaender, Fomin, Lokshtanov, Saurabh, Thilikos '09-12]

• Here we present a new algorithm to compute protrusion decompositions for graphs *G* that come equipped with a set

$$X \subseteq V(G)$$
 s.t. $\operatorname{tw}(G - X) \leqslant t$

for some constant t > 0.

The set X is called a *t*-treewidth-modulator.

• Our algorithm marks the bags of a tree-decomposition of G.

- Our algorithm marks the bags of a tree-decomposition of G.
- Let *r* be an integer that is also given to the algorithm.

- Our algorithm marks the bags of a tree-decomposition of G.
- Let *r* be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of G X with ≥ r neighbors in X, we identify a set of bags M in a bottom-up manner.

- Our algorithm marks the bags of a tree-decomposition of G.
- Let *r* be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of G − X with ≥ r neighbors in X, we identify a set of bags M in a bottom-up manner.

• The set $V(\mathcal{M})$ of vertices contained in marked bags together with X will form the separating part Y_0 of the protrusion decomposition.

- Our algorithm marks the bags of a tree-decomposition of G.
- Let *r* be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of G X with ≥ r neighbors in X, we identify a set of bags M in a bottom-up manner.

- The set $V(\mathcal{M})$ of vertices contained in marked bags together with X will form the separating part Y_0 of the protrusion decomposition.
- Some marked bags will be mapped bijectively into pairwise vertex-disjoint connected subgraphs of G X, each of which has $\ge r$ neighbors in X.

- Our algorithm marks the bags of a tree-decomposition of G.
- Let *r* be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of G − X with ≥ r neighbors in X, we identify a set of bags M in a bottom-up manner.

- The set $V(\mathcal{M})$ of vertices contained in marked bags together with X will form the separating part Y_0 of the protrusion decomposition.
- Some marked bags will be mapped bijectively into pairwise vertex-disjoint connected subgraphs of G X, each of which has $\ge r$ neighbors in X.
- Finally, to guarantee that the conn. comp. of $G (X \cup V(\mathcal{M}))$ form protrusions with small boundary, the set \mathcal{M} is closed under taking LCA.

Input G, $X \subseteq V(G)$ s.t. $tw(G - X) \leq t$, and an integer r > 0.

Input $G, X \subseteq V(G)$ s.t. $tw(G - X) \leq t$, and an integer r > 0.

 \star Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.

Input $G, X \subseteq V(G)$ s.t. $tw(G - X) \leq t$, and an integer r > 0.

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- ★ Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component *C* of G X such that $|N_X(C)| \ge r$.

Input $G, X \subseteq V(G)$ s.t. $tw(G - X) \leq t$, and an integer r > 0.

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- ★ Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component *C* of G X such that $|N_X(C)| \ge r$.
- * Repeat the following loop for every rooted tree-decomposition \mathcal{T}_C : while \mathcal{T}_C contains an unprocessed bag **do**:
 - * Let *B* be an unprocess. bag at farthest distance from the root of \mathcal{T}_C .

Input $G, X \subseteq V(G)$ s.t. $tw(G - X) \leq t$, and an integer r > 0.

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- ★ Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component *C* of G X such that $|N_X(C)| \ge r$.
- * Repeat the following loop for every rooted tree-decomposition \mathcal{T}_C : while \mathcal{T}_C contains an unprocessed bag **do**:
 - * Let *B* be an unprocess. bag at farthest distance from the root of \mathcal{T}_C .
 - ★ LCA marking step

if *B* is the LCA of two marked bags of \mathcal{M} :

 $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of \mathcal{T}_C .

Input G, $X \subseteq V(G)$ s.t. $tw(G - X) \leq t$, and an integer r > 0.

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- ★ Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component *C* of G X such that $|N_X(C)| \ge r$.
- * Repeat the following loop for every rooted tree-decomposition \mathcal{T}_C : while \mathcal{T}_C contains an unprocessed bag **do**:
 - * Let *B* be an unprocess. bag at farthest distance from the root of \mathcal{T}_C .
 - ★ LCA marking step

if *B* is the LCA of two marked bags of \mathcal{M} :

 $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of *B* from every bag of \mathcal{T}_C .

★ Bloom-subgraph marking step

else if G_B contains a connected component C_B s.t. $|N_X(C_B)| \ge r$: $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of \mathcal{T}_C .

Input G, $X \subseteq V(G)$ s.t. $tw(G - X) \leq t$, and an integer r > 0.

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- ★ Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component *C* of G X such that $|N_X(C)| \ge r$.
- * Repeat the following loop for every rooted tree-decomposition \mathcal{T}_C : while \mathcal{T}_C contains an unprocessed bag **do**:
 - * Let *B* be an unprocess. bag at farthest distance from the root of \mathcal{T}_C .
 - ★ LCA marking step

if *B* is the LCA of two marked bags of \mathcal{M} :

 $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of *B* from every bag of \mathcal{T}_C .

★ Bloom-subgraph marking step

else if G_B contains a connected component C_B s.t. $|N_X(C_B)| \ge r$: $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of \mathcal{T}_C . * Bag B is now processed.

Input G, $X \subseteq V(G)$ s.t. $tw(G - X) \leq t$, and an integer r > 0.

- ★ Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
- ★ Compute an optimal rooted tree-decomposition $\mathcal{T}_C = (\mathcal{T}_C, \mathcal{B}_C)$ of every connected component *C* of G X such that $|N_X(C)| \ge r$.
- * Repeat the following loop for every rooted tree-decomposition \mathcal{T}_C : while \mathcal{T}_C contains an unprocessed bag **do**:
 - * Let *B* be an unprocess. bag at farthest distance from the root of \mathcal{T}_C .
 - ★ LCA marking step

if *B* is the LCA of two marked bags of \mathcal{M} :

 $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of \mathcal{T}_C .

★ Bloom-subgraph marking step

else if G_B contains a connected component C_B s.t. $|N_X(C_B)| \ge r$: $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices of B from every bag of \mathcal{T}_C . * Bag B is now processed.

Return $Y_0 = X \cup V(\mathcal{M}).$

Some properties of the bag marking algorithm

Lemma

The bag marking algorithm can be implemented to run in O(n) time, where the hidden constant depends only on t and r.

Some properties of the bag marking algorithm

Given a graph G and a subset $S \subseteq V(G)$, a cluster of G - S is a maximal collection of connected components of G - S with the same neighborhood in S.

Some properties of the bag marking algorithm

Given a graph G and a subset $S \subseteq V(G)$, a cluster of G - S is a maximal collection of connected components of G - S with the same neighborhood in S.

Proposition

- Let r, t be two positive integers,
- let G be a graph and $X \subseteq V(G)$ such that $tw(G X) \leq t$,
- let $Y_0 \subseteq V(G)$ be the output of the algorithm with input (G, X, r), and
- let Y_1, \ldots, Y_ℓ be the set of clusters of $G Y_0$.
Some properties of the bag marking algorithm

Given a graph G and a subset $S \subseteq V(G)$, a cluster of G - S is a maximal collection of connected components of G - S with the same neighborhood in S.

Proposition

- Let r, t be two positive integers,
- let G be a graph and $X \subseteq V(G)$ such that $tw(G X) \leq t$,
- let $Y_0 \subseteq V(G)$ be the output of the algorithm with input (G, X, r), and
- let Y_1, \ldots, Y_ℓ be the set of clusters of $G Y_0$.

Then $\mathcal{P} := Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ is a $(\max\{\ell, |Y_0|\}, 2t+r)$ -protrusion decomp. of G.

Preliminaries

Protrusion decompositions

- Definitions
- A simple algorithm to compute them

3 Single-exponential algorithm for PLANAR-*F*-DELETION

- Motivation and our result
- Sketch of proof
- Further research

4 Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Next subsection is...

Preliminaries

Protrusion decompositions

- Definitions
- A simple algorithm to compute them

3 Single-exponential algorithm for PLANAR-*F*-DELETION

- Motivation and our result
- Sketch of proof
- Further research

4 Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

The (parameterized) PLANAR- \mathcal{F} -DELETION problem

Let \mathcal{F} be a finite family of graphs containing at least one planar graph.

The (parameterized) PLANAR- \mathcal{F} -DELETION problem

Let \mathcal{F} be a finite family of graphs containing at least one planar graph.

$\operatorname{Planar}{\mathcal{F}}{\operatorname{-Deletion}}$

Input: A graph G and a non-negative integer k.

Parameter: The integer k.

Question: Does G have a set $X \subseteq V(G)$ such that $|X| \leq k$ and

G - X is *H*-minor-free for every $H \in \mathcal{F}$?

The (parameterized) PLANAR- \mathcal{F} -DELETION problem

Let \mathcal{F} be a finite family of graphs containing at least one planar graph.

$PLANAR-\mathcal{F}-DELETION$

Input:A graph G and a non-negative integer k.Parameter:The integer k.Question:Does G have a set $X \subseteq V(G)$ such that $|X| \leq k$ andG - X is H-minor-free for every $H \in \mathcal{F}$?

Some particular cases:

- $\mathcal{F} = \{K_2\}$: \equiv VERTEX COVER
 - \equiv Treewidth-zero Vertex Deletion

② $\mathcal{F} = \{K_3\}$: ≡ FEEDBACK VERTEX SET ≡ TREEWIDTH-ONE VERTEX DELETION

• $\mathcal{F} = \{K_4\}$: \equiv Treewidth-two Vertex Deletion

< □ > < □ > < ≧ > < ≧ > < ≧ > 差 ● ○ Q (~ 17/50

Particular cases:

- $\mathcal{F} = \{K_2\}$
- $\mathcal{F} = \{K_3\}$
- $\mathcal{F} = \{\theta_r\}$
- $\mathcal{F} = \{K_4\}$

 $O^*(1.2738^k)$ $O^*(3.83^k)$ $O^*(c^k)$ $O^*(c^k)$

[Chen, Fernau, Kanj, Xia '10]

[Cao, Chen, Liu '10]

[Joret, Paul, S., Saurabh, Thomassé '11]

[Kim, Paul, Philip '12]

Particular cases:

[Chen, Fernau, Kanj, Xia '10]	$O^*(1.2738^k)$	• $\mathcal{F} = \{K_2\}$
[Cao, Chen, Liu '10]	<i>O</i> *(3.83 ^{<i>k</i>})	• $\mathcal{F} = \{K_3\}$
[Joret, Paul, S., Saurabh, Thomassé '11]	$O^*(c^k)$	• $\mathcal{F} = \{\theta_r\}$
[Kim, Paul, Philip '12]	$O^*(c^k)$	• $\mathcal{F} = \{K_4\}$

General case:

• PLANAR- \mathcal{F} -DELETION is FPT.

[Roberston and Seymour's Graph Minors theory]

Particular cases:

[Chen, Fernau, Kanj, Xia '10]	$O^*(1.2738^k)$	• $\mathcal{F} = \{K_2\}$
[Cao, Chen, Liu '10]	$O^{*}(3.83^{k})$	• $\mathcal{F} = \{K_3\}$
[Joret, Paul, S., Saurabh, Thomassé '11]	$O^*(c^k)$	• $\mathcal{F} = \{\theta_r\}$
[Kim, Paul, Philip '12]	$O^*(c^k)$	• $\mathcal{F} = \{K_4\}$

General case:

PLANAR-*F*-DELETION is FPT. [Roberston and Seymour's Graph Minors theory]
2^{2^{O(k log k)}} · n^{O(1)} -time algorithm based on standard DP.

Particular cases:

[Chen, Fernau, Kanj, Xia '10]	$O^*(1.2738^k)$	• $\mathcal{F} = \{K_2\}$
[Cao, Chen, Liu '10]	$O^{*}(3.83^{k})$	• $\mathcal{F} = \{K_3\}$
[Joret, Paul, S., Saurabh, Thomassé '11]	$O^*(c^k)$	• $\mathcal{F} = \{\theta_r\}$
[Kim, Paul, Philip '12]	$O^*(c^k)$	• $\mathcal{F} = \{K_4\}$

General case:

PLANAR-*F*-DELETION is FPT. [Roberston and Seymour's Graph Minors theory]
2^{2^O(k log k)} · n^O(1) -time algorithm based on standard DP.
2^O(k log k) · n² -time algorithm. [Fomin, Lokshtanov, Misra, Saurabh '11]

Particular cases:

[Chen, Fernau, Kanj, Xia '10]	$O^*(1.2738^k)$	• $\mathcal{F} = \{K_2\}$
[Cao, Chen, Liu '10]	<i>O</i> *(3.83 ^{<i>k</i>})	• $\mathcal{F} = \{K_3\}$
[Joret, Paul, S., Saurabh, Thomassé '11]	$O^*(c^k)$	• $\mathcal{F} = \{\theta_r\}$
[Kim, Paul, Philip '12]	$O^*(c^k)$	• $\mathcal{F} = \{K_4\}$

General case:

PLANAR-F-DELETION is FPT. [Roberston and Seymour's Graph Minors theory]
2^{2^{O(k log k)}} · n^{O(1)} - time algorithm based on standard DP.
2^{O(k log k)} · n² - time algorithm. [Fomin, Lokshtanov, Misra, Saurabh '11]
2^{O(k)} · n log² n - time algorithm for PLANAR-CONNECTED-F-DELETION. [Fomin, Lokshtanov, Misra, Saurabh '12]

Theorem

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

• This result unifies a number of algorithms in the literature.

Theorem

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

- This result unifies a number of algorithms in the literature.
- No hope for a $2^{o(k)} \cdot n^{O(1)}$ -time algorithm (under ETH). [Chen et al. '05]

That is, the function $2^{O(k)}$ in our theorem is best possible.

Next subsection is...

Preliminaries

Protrusion decompositions

- Definitions
- A simple algorithm to compute them

3 Single-exponential algorithm for PLANAR-*F*-DELETION

- Motivation and our result
- Sketch of proof
- Further research

4 Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Using iterative compression the $PLANAR-\mathcal{F}-DELETION$ problem can be reduced in single-exponential time to the following problem:

Using iterative compression the $PLANAR-\mathcal{F}-DELETION$ problem can be reduced in single-exponential time to the following problem:

DISJOINT PLANAR- \mathcal{F} -DELETION Input: A graph G, a non-negative integer k, and a set $X \subseteq V(G)$ with |X| = k s.t. G - X is \mathcal{F} -minor-free. Using iterative compression the $PLANAR-\mathcal{F}-DELETION$ problem can be reduced in single-exponential time to the following problem:

DISJOINT PLANAR- \mathcal{F} -DELETIONInput:A graph G, a non-negative integer k, and a set
 $X \subseteq V(G)$ with |X| = k s.t. G - X is \mathcal{F} -minor-free.Parameter:The integer k.Question:Does G have a set $\tilde{X} \subseteq V(G) \setminus X$ such that $|\tilde{X}| < k$ and
 $G - \tilde{X}$ is H-minor-free for every $H \in \mathcal{F}$?

We call \tilde{X} an alternative solution.

Using iterative compression the PLANAR-*F*-DELETION problem can be reduced in single-exponential time to the following problem:

DISJOINT PLANAR- \mathcal{F} -DELETIONInput:A graph G, a non-negative integer k, and a set
 $X \subseteq V(G)$ with |X| = k s.t. G - X is \mathcal{F} -minor-free.Parameter:The integer k.Question:Does G have a set $\tilde{X} \subseteq V(G) \setminus X$ such that $|\tilde{X}| < k$ and
 $G - \tilde{X}$ is H-minor-free for every $H \in \mathcal{F}$?

We call \tilde{X} an alternative solution.

Lemma (well-kwown)

If DISJOINT PLANAR- \mathcal{F} -DELETION can be solved in time $O^*(c^k)$ for some $c \in \mathbb{N}^+$, then PLANAR- \mathcal{F} -DELETION can be solved in $O^*((c+1)^k)$.

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > 差 > < ≧ > 21/50

- If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then
 - G[X] is \mathcal{F} -minor-free
 - $G[V \setminus X]$ is \mathcal{F} -minor-free

- If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then
 - G[X] is \mathcal{F} -minor-free $\Rightarrow G[X]$ has bounded tw!!
 - $G[V \setminus X]$ is \mathcal{F} -minor-free $\Rightarrow G[V \setminus X]$ has bounded tw!!

- If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then
 - G[X] is \mathcal{F} -minor-free $\Rightarrow G[X]$ has bounded tw!!
 - $G[V \setminus X]$ is \mathcal{F} -minor-free $\Rightarrow G[V \setminus X]$ has bounded tw!!
- * Let r := |V(H)| for H being some planar graph in the family \mathcal{F} .

- If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then
 - G[X] is \mathcal{F} -minor-free $\Rightarrow G[X]$ has bounded tw!!
 - $G[V \setminus X]$ is \mathcal{F} -minor-free $\Rightarrow G[V \setminus X]$ has bounded tw!!
- * Let r := |V(H)| for H being some planar graph in the family \mathcal{F} .
- * A connected component C of G X is called a bloom component if $|N_X(C)| \ge r$, and a bud component otherwise.

Linear protrusion decompositions

* Recall that a β -protrusion in a graph G is a subset $Y \subseteq V(G)$ such that $|\partial(Y)| \leq \beta$ and $\operatorname{tw}(G[Y]) \leq \beta$

Linear protrusion decompositions

* Recall that a β -protrusion in a graph G is a subset $Y \subseteq V(G)$ such that $|\partial(Y)| \leq \beta$ and $tw(G[Y]) \leq \beta$

* A partition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ of V(G) with $\max\{\ell, |Y_0|\} \leq \alpha$ is an (α, β) -protrusion decomposition if for every $1 \leq i \leq \ell$,

 $N(Y_i) \subseteq Y_0$ and $Y_i \cup N_{Y_0}(Y_i)$ is a β -protrusion

Linear protrusion decompositions

* Recall that a β -protrusion in a graph G is a subset $Y \subseteq V(G)$ such that $|\partial(Y)| \leq \beta$ and $\operatorname{tw}(G[Y]) \leq \beta$

* A partition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ of V(G) with $\max\{\ell, |Y_0|\} \leq \alpha$ is an (α, β) -protrusion decomposition if for every $1 \leq i \leq \ell$,

 $N(Y_i) \subseteq Y_0$ and $Y_i \cup N_{Y_0}(Y_i)$ is a β -protrusion

* \mathcal{P} is linear with respect to a parameter k whenever $\alpha = O(k)$.

 \star We will use our algorithm to compute protrusion decompositions.

* Recall that r = |V(H)|,

* Recall that r = |V(H)|, and that $tw(G[V \setminus X]) \leq t_F$,

* Recall that r = |V(H)|, and that $tw(G[V \setminus X]) \leq t_F$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.

* Recall that r = |V(H)|, and that $tw(G[V \setminus X]) \leq t_F$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.

* But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

* Recall that r = |V(H)|, and that $tw(G[V \setminus X]) \leq t_F$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.

* But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.: • G - I has a linear protrusion decomposition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ • with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

* Recall that r = |V(H)|, and that $tw(G[V \setminus X]) \leq t_F$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.

* But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.: • G - I has a linear protrusion decomposition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ • with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

By carefully analyzing the output of our bag marking algorithm

* Recall that r = |V(H)|, and that $tw(G[V \setminus X]) \leq t_F$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.

* But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.: • G - I has a linear protrusion decomposition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ • with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

By carefully analyzing the output of our bag marking algorithm

2 Finally, compute $\tilde{X} \setminus I$, given a linear protrusion decomposition.

* Recall that r = |V(H)|, and that $tw(G[V \setminus X]) \leq t_F$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.

* But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.:

• G - I has a linear protrusion decomposition

 $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$

• with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

By carefully analyzing the output of our bag marking algorithm

2 Finally, compute $\tilde{X} \setminus I$, given a linear protrusion decomposition.

Based on the finite index of MSO-definable properties (automaton theory)
Algorithm to solve DISJOINT PLANAR- \mathcal{F} -DELETION

* Recall that r = |V(H)|, and that $tw(G[V \setminus X]) \leq t_F$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.

* But it turns out that, with input (G, X, r), the set Y_0 output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.:

• G - I has a linear protrusion decomposition

 $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$

• with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

By carefully analyzing the output of our bag marking algorithm

2 Finally, compute $\tilde{X} \setminus I$, given a linear protrusion decomposition.

Based on the finite index of MSO-definable properties (automaton theory)

* Both steps can be done in single-exponential time.

Lemma (edge simulation to chop bloom components)

If C_1, \ldots, C_{ℓ} is a collection of connected pairwise vertex-disjoint subgraphs of G - X such that $|N_X(C_i)| \ge r$ for $1 \le i \le \ell$, then $\ell \le (1 + \alpha_r) \cdot k$.

Lemma (edge simulation to chop bloom components)

If C_1, \ldots, C_{ℓ} is a collection of connected pairwise vertex-disjoint subgraphs of G - X such that $|N_X(C_i)| \ge r$ for $1 \le i \le \ell$, then $\ell \le (1 + \alpha_r) \cdot k$.

Proposition (Thomason '01)

There exists a constant $\alpha < 0.320$ such that any *n*-vertex graph with no K_r -minor has at most $\alpha_r \cdot n = (\alpha \cdot r \sqrt{\log r}) \cdot n$ edges.

(Recall that r = |V(H)|, for H being any planar graph in \mathcal{F}) \mathcal{F}

Lemma (edge simulation to chop bloom components)

If C_1, \ldots, C_{ℓ} is a collection of connected pairwise vertex-disjoint subgraphs of G - X such that $|N_X(C_i)| \ge r$ for $1 \le i \le \ell$, then $\ell \le (1 + \alpha_r) \cdot k$.

Proposition (Thomason '01)

There exists a constant $\alpha < 0.320$ such that any *n*-vertex graph with no K_r -minor has at most $\alpha_r \cdot n = (\alpha \cdot r \sqrt{\log r}) \cdot n$ edges.

(Recall that r = |V(H)|, for H being any planar graph in \mathcal{F}) \mathcal{F}

Lemma (edge simulation to chop bloom components)

If C_1, \ldots, C_{ℓ} is a collection of connected pairwise vertex-disjoint subgraphs of G - X such that $|N_X(C_i)| \ge r$ for $1 \le i \le \ell$, then $\ell \le (1 + \alpha_r) \cdot k$.

Proposition (Thomason '01)

There exists a constant $\alpha < 0.320$ such that any *n*-vertex graph with no K_r -minor has at most $\alpha_r \cdot n = (\alpha \cdot r \sqrt{\log r}) \cdot n$ edges.

(Recall that r = |V(H)|, for H being any planar graph in \mathcal{F}) \mathcal{F}

Consider an optimal tree-decomposition $\mathcal{T} = (\mathcal{T}, \mathcal{B})$ of a "bloom" connected component C of G - X (i.e., $|N_X(C)| \ge r$)

Consider an optimal tree-decomposition $\mathcal{T} = (\mathcal{T}, \mathcal{B})$ of a "bloom" connected component C of G - X (i.e., $|N_X(C)| \ge r$)

Recall our bottom-up BAG MARKING algorithm: if a bag *B* is the LCA of two marked bags of \mathcal{M} , or G_B contains a connected bloom component, then • $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices in *B* from the bags of $\mathcal{I}_{\mathcal{M}}$

Consider an optimal tree-decomposition $\mathcal{T} = (\mathcal{T}, \mathcal{B})$ of a "bloom" connected component C of G - X (i.e., $|N_X(C)| \ge r$)

Recall our bottom-up BAG MARKING algorithm: if a bag *B* is the LCA of two marked bags of \mathcal{M} , or G_B contains a connected bloom component, then • $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices in *B* from the bags of $\mathcal{I}_{\mathcal{M}}$

Consider an optimal tree-decomposition $\mathcal{T} = (\mathcal{T}, \mathcal{B})$ of a "bloom" connected component C of G - X (i.e., $|N_X(C)| \ge r$)

Recall our bottom-up BAG MARKING algorithm: if a bag *B* is the LCA of two marked bags of \mathcal{M} , or G_B contains a connected bloom component, then • $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices in *B* from the bags of \mathcal{T}

Consider an optimal tree-decomposition $\mathcal{T} = (\mathcal{T}, \mathcal{B})$ of a "bloom" connected component C of G - X (i.e., $|N_X(C)| \ge r$)

Recall our bottom-up BAG MARKING algorithm: if a bag *B* is the LCA of two marked bags of \mathcal{M} , or G_B contains a connected bloom component, then • $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices in *B* from the bags of \mathcal{T}

Consider an optimal tree-decomposition $\mathcal{T} = (\mathcal{T}, \mathcal{B})$ of a "bloom" connected component C of G - X (i.e., $|N_X(C)| \ge r$)

Recall our bottom-up BAG MARKING algorithm: if a bag *B* is the LCA of two marked bags of \mathcal{M} , or G_B contains a connected bloom component, then • $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices in *B* from the bags of \mathcal{T}

Consider an optimal tree-decomposition $\mathcal{T} = (\mathcal{T}, \mathcal{B})$ of a "bloom" connected component C of G - X (i.e., $|N_X(C)| \ge r$)

Recall our bottom-up BAG MARKING algorithm: if a bag *B* is the LCA of two marked bags of \mathcal{M} , or G_B contains a connected bloom component, then • $\mathcal{M} \leftarrow \mathcal{M} \cup \{B\}$ and remove the vertices in *B* from the bags of \mathcal{T}

25/50

Lemma $(|Y_0| = O(k)$ and every component is a protrusion)

If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then

- $Y_0 = X \cup V(\mathcal{M})$ has size at most $|k + 2t_{\mathcal{F}} \cdot (1 + \alpha_r) \cdot k|$.
- Every connected component C of $G Y_0$ satisfies $|N_X(C)| \leq r$ and $|N_{Y_0}(C)| \leq r + 2t_F$.

Lemma $(|Y_0| = O(k)$ and every component is a protrusion)

If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then

- $Y_0 = X \cup V(\mathcal{M})$ has size at most $|k + 2t_{\mathcal{F}} \cdot (1 + \alpha_r) \cdot k|$.
- Every connected component C of $G Y_0$ satisfies $|N_X(C)| \leq r$ and $|N_{Y_0}(C)| \leq r + 2t_F$.

• Note that k = |X|,

Lemma $(|Y_0| = O(k)$ and every component is a protrusion)

If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then

- $Y_0 = X \cup V(\mathcal{M})$ has size at most $|k + 2t_{\mathcal{F}} \cdot (1 + \alpha_r) \cdot k|$.
- Every connected component C of $G Y_0$ satisfies $|N_X(C)| \leq r$ and $|N_{Y_0}(C)| \leq r + 2t_F$.
- Note that k = |X|,
- $tw(G X) \leq t_F$, and

Lemma $(|Y_0| = O(k)$ and every component is a protrusion)

If (G, X, k) is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then

- $Y_0 = X \cup V(\mathcal{M})$ has size at most $|k + 2t_{\mathcal{F}} \cdot (1 + \alpha_r) \cdot k|$.
- Every connected component C of $G Y_0$ satisfies $|N_X(C)| \leq r$ and $|N_{Y_0}(C)| \leq r + 2t_F$.
- Note that k = |X|,
- $tw(G X) \leq t_F$, and
- $|\mathcal{M}| \leq (1 + \alpha_r) \cdot k$ (by the "edge simulation" Lemma) , is a set of the set of th

Remark: Therefore, Y_0 and the connected components of $G - Y_0$ form a protrusion decomposition of G... but not a linear one!

Remark: Therefore, Y_0 and the connected components of $G - Y_0$ form a protrusion decomposition of G... but not a linear one!

We need that #protrusions = O(k).

Remark: Therefore, Y_0 and the connected components of $G - Y_0$ form a protrusion decomposition of G... but not a linear one!

We need that #protrusions = O(k).

27/50

Branching step:

Guess $I = \tilde{X} \cap Y_0$ among the $2^{O(k)}$ subsets of $V(\mathcal{M})$

Remark: Therefore, Y_0 and the connected components of $G - Y_0$ form a protrusion decomposition of G... but not a linear one!

We need that #protrusions = O(k).

Branching step:

Guess $I = \tilde{X} \cap Y_0$ among the $2^{O(k)}$ subsets of $V(\mathcal{M})$

Let $G_I := G - I$. Recall that a cluster of $G_I - Y_0$ is a maximal set of connected components of $G_I - Y_0$ with the same neighborhood in Y_0 .

Lemma (For some choice of *I*, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every *n*-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every *n*-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

* At most $\ell' = k - |I|$ clusters $C_1, \ldots, C_{\ell'}$ intersect the alternative solution \tilde{X} .

Lemma (For some choice of *I*, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every *n*-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

We have that $G' = G_I - \bigcup_{i=1}^{\ell'} C_i$ is \mathcal{F} -minor-free.

Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every *n*-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

* Using edge simulation we construct a minor of G' on vertices of Y_0 .

Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every *n*-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

* As before, the number of clusters used so far is at most $\alpha_r \cdot k$.

Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every *n*-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

* When we cannot add more edges, all neighborhoods of clusters are cliques!

Lemma (For some choice of I, #clusters = O(k))

If $(G_I, Y_0 \setminus I, k - |I|)$ is a YES-instance of DISJOINT PLANAR- \mathcal{F} -DELETION, then the number ℓ of clusters of of $G_I - Y_0$ is at most $\boxed{(5t_{\mathcal{F}}\alpha_r\mu_r) \cdot k}$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu < 11.355$ such that for all r > 2, every *n*-vertex graph with no K_r -minor has at most $\mu_r \cdot n = 2^{\mu \cdot r \log \log r} \cdot n$ cliques.

* Now we use the Proposition: the number of remaining clusters is $\mu_r \cdot k$.

Back to the road map of the algorithm

Therefore, the partition $\mathcal{P} = Y_0 \uplus C_1 \uplus \cdots \uplus C_\ell$ is a

 $|(O(k), r + 2t_{\mathcal{F}})$ -protrusion decomposition of $G_I = G - I$

Back to the road map of the algorithm

Therefore, the partition $\mathcal{P} = Y_0 \uplus C_1 \uplus \cdots \uplus C_\ell$ is a

 $|(O(k), r + 2t_{\mathcal{F}})$ -protrusion decomposition of $G_I = G - I$

Recall the two main steps of our algorithm:

1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.: • G - I has a linear protrusion decomposition $\mathcal{P} = Y_0 \uplus C_1 \uplus \cdots \uplus C_\ell$ • with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

Back to the road map of the algorithm

Therefore, the partition $\mathcal{P} = Y_0 \uplus C_1 \uplus \cdots \uplus C_\ell$ is a

 $|(O(k), r + 2t_{\mathcal{F}})$ -protrusion decomposition of $G_I = G - I|$

Recall the two main steps of our algorithm:

1 Guess the intersection $I = \tilde{X} \cap Y_0$ of the alt. solution \tilde{X} with Y_0 s.t.: • G - I has a linear protrusion decomposition $\mathcal{P} = Y_0 \uplus C_1 \uplus \cdots \uplus C_\ell$ • with $X \subseteq Y_0$ and $\tilde{X} \setminus I \subseteq V(G) \setminus Y_0$.

P Finally, compute $ilde{X} \setminus I$, given a linear protrusion decomposition.

Based on the finite index of MSO-definable properties (automaton theory)

Solving the problem when given a linear protrusion decomposition

Solving the problem when given a linear protrusion decomposition

Main ingredients of our approach:

★ We define an equivalence relation on subsets of vertices of each restricted protrusion Y_i (roughly, same class if they behave in the same way).

Main ingredients of our approach:

- ★ We define an equivalence relation on subsets of vertices of each restricted protrusion Y_i (roughly, same class if they behave in the same way).
- * Each of these equiv. relations defines finitely many equivalence classes s.t. any partial solution on Y_i can be replaced with one of the representatives.
 (by the finite index of MSO-definable properties) [Bodlaender, de Fluiter '01]

Main ingredients of our approach:

- ★ We define an equivalence relation on subsets of vertices of each restricted protrusion Y_i (roughly, same class if they behave in the same way).
- * Each of these equiv. relations defines finitely many equivalence classes s.t. any partial solution on Y_i can be replaced with one of the representatives.
 (by the finite index of MSO-definable properties) [Bodlaender, de Fluiter '01]
- * We use a decomposability property of the solution: there exists a solution which is formed by the union of one representative per restricted protrusion.

Main ingredients of our approach:

- ★ We define an equivalence relation on subsets of vertices of each restricted protrusion Y_i (roughly, same class if they behave in the same way).
- * Each of these equiv. relations defines finitely many equivalence classes s.t. any partial solution on Y_i can be replaced with one of the representatives.
 (by the finite index of MSO-definable properties) [Bodlaender, de Fluiter '01]
- We use a decomposability property of the solution: there exists a solution which is formed by the union of one representative per restricted protrusion.
- * To make the algorithm constructive and uniform on the family \mathcal{F} , we use classic arguments from tree automaton theory (like method of test sets).
Next subsection is...

Preliminaries

Protrusion decompositions

- Definitions
- A simple algorithm to compute them

3 Single-exponential algorithm for PLANAR-*F*-DELETION

- Motivation and our result
- Sketch of proof
- Further research

Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

★ Can a single-exponential algorithm exist when the family *F* does not contain any planar graph?

For $\mathcal{F} = \{K_5, K_{3,3}\}$, an explicit FPT algorithm is known. It runs in time $2^{O(k \log k)} \cdot n$. [Jansen, Lokshtanov, Saurabh '14]

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

★ Can a single-exponential algorithm exist when the family *F* does not contain any planar graph?

For $\mathcal{F} = \{K_5, K_{3,3}\}$, an explicit FPT algorithm is known. It runs in time $2^{O(k \log k)} \cdot n$. [Jansen, Lokshtanov, Saurabh '14]

★ There exists a randomized constant-factor approximation algorithm for PLANAR-*F*-DELETION. [Fomin, Lokshtanov, Misra, Saurabh '12]

Finding a deterministic constant-factor approximation remains open.

The PLANAR- \mathcal{F} -DELETION problem can be solved in time $2^{O(k)} \cdot n^2$.

★ Can a single-exponential algorithm exist when the family *F* does not contain any planar graph?

For $\mathcal{F} = \{K_5, K_{3,3}\}$, an explicit FPT algorithm is known. It runs in time $2^{O(k \log k)} \cdot n$. [Jansen, Lokshtanov, Saurabh '14]

★ There exists a randomized constant-factor approximation algorithm for PLANAR-*F*-DELETION. [Fomin, Lokshtanov, Misra, Saurabh '12]

Finding a deterministic constant-factor approximation remains open.

★ We could forbid the family of graphs *F* according to another containment relation, like topological minor.

Preliminaries

Protrusion decompositions

- Definitions
- A simple algorithm to compute them
- 3) Single-exponential algorithm for PLANAR- \mathcal{F} -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research

Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Next subsection is...

Preliminaries

Protrusion decompositions

- Definitions
- A simple algorithm to compute them
- 3) Single-exponential algorithm for PLANAR - \mathcal{F} - $\operatorname{DeLETION}$
 - Motivation and our result
 - Sketch of proof
 - Further research

Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

A kernel for a parameterized problem Π is an algorithm that given
 (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:

```
★ (x, k) \in \Pi if and only if (x', k') \in \Pi, and
```

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.
- The function g is called the size of the kernel.
 - * If $g(k) = k^{O(1)}$: Π admits a polynomial kernel.
 - * If g(k) = O(k): Π admits a linear kernel.

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.
- The function g is called the size of the kernel.
 - * If $g(k) = k^{O(1)}$: Π admits a polynomial kernel.
 - * If g(k) = O(k): Π admits a linear kernel.
- Folklore result: for a parameterized problem Π ,

 $\Pi \text{ is } \mathrm{FPT} \ \Leftrightarrow \ \Pi \text{ admits a kernel}$

35/50

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.
- The function g is called the size of the kernel.
 - * If $g(k) = k^{O(1)}$: Π admits a polynomial kernel.
 - * If g(k) = O(k): Π admits a linear kernel.
- Folklore result: for a parameterized problem Π ,

 $\Pi \text{ is } \mathrm{FPT} \ \Leftrightarrow \ \Pi \text{ admits a kernel}$

• Question: which FPT problems admit linear or polynomial kernels?

• *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.

- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- *H* is a topological minor of *G* if *H* can be obtained from a subgraph of *G* by contracting edges with at least one endpoint of deg ≤ 2 .

- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- *H* is a topological minor of *G* if *H* can be obtained from a subgraph of *G* by contracting edges with at least one endpoint of deg ≤ 2 .
- Therefore:

H minor of $G \Rightarrow H$ topological minor of G.

- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- *H* is a topological minor of *G* if *H* can be obtained from a subgraph of *G* by contracting edges with at least one endpoint of deg ≤ 2 .
- Therefore:

H minor of $G \notin H$ topological minor of G.

- *H* is a minor of a graph *G* if *H* can be obtained from a subgraph of *G* by contracting edges.
- *H* is a topological minor of *G* if *H* can be obtained from a subgraph of *G* by contracting edges with at least one endpoint of deg ≤ 2 .
- Therefore:

H minor of $G \not\leftarrow H$ topological minor of G.

• Fixed *H*: *H*-minor-free graphs \subseteq *H*-topological-minor-free graphs.

 $\bullet \ \mbox{Dominating Set}$ on planar graphs.

[Alber, Fellows, Niedermeier '04]

• DOMINATING SET on planar graphs.

[Alber, Fellows, Niedermeier '04]

• Framework for several problems on planar graphs. [Guo, Niedermeier '04]

- DOMINATING SET on planar graphs. [Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs. [Guo, Niedermeier '04]
- Meta-result for graphs of bounded genus.

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

- DOMINATING SET on planar graphs. [Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs. [Guo, Niedermeier '04]
- Meta-result for graphs of bounded genus.

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

• Meta-result for *H*-minor-free graphs.

[Fomin, Lokshtanov, Saurabh, Thilikos '10]

- DOMINATING SET on planar graphs. [Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs. [Guo, Niedermeier '04]
- Meta-result for graphs of bounded genus.

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

- Meta-result for H-minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos '10]
- Meta-result for *H*-topological-minor-free graphs. [Our result]

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

A parameterized graph problem ∏ is treewidth-bounding if ∃ constants c, t such that if (G, k) ∈ ∏ then

 $\exists X \subseteq V(G) \text{ s.t. } |X| \leq c \cdot k \text{ and } \operatorname{tw}(G - X) \leq t.$

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

A parameterized graph problem ∏ is treewidth-bounding if ∃ constants c, t such that if (G, k) ∈ ∏ then

 $\exists X \subseteq V(G) \text{ s.t. } |X| \leq c \cdot k \text{ and } \operatorname{tw}(G - X) \leq t.$

• FII allows us to replace large protrusions by smaller gadgets...

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

A parameterized graph problem ∏ is treewidth-bounding if ∃ constants c, t such that if (G, k) ∈ ∏ then

 $\exists X \subseteq V(G) \text{ s.t. } |X| \leq c \cdot k \text{ and } \operatorname{tw}(G - X) \leq t.$

• FII allows us to replace large protrusions by smaller gadgets...

 \star We assume that the gadgets are given . Our algorithm is non-uniform.

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

A parameterized graph problem ∏ is treewidth-bounding if ∃ constants c, t such that if (G, k) ∈ ∏ then

 $\exists X \subseteq V(G) \text{ s.t. } |X| \leq c \cdot k \text{ and } \operatorname{tw}(G - X) \leq t.$

• FII allows us to replace large protrusions by smaller gadgets...

 \star We assume that the gadgets are given . Our algorithm is non-uniform.

Problems affected by our result:

Linear kernels on sparse graphs – the conditions

(Figure by Felix Reid)

We require **FII** + treewidth-bounding

We require FII + treewidth-bounding

• FII is necessary when using protrusion replacement rules.

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?
 Conditions on *H*-minor-free graphs:
 bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos '10]

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?
 Conditions on *H*-minor-free graphs:
 bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos '10]

But it holds that

bidimensional + separation property $| \Rightarrow | t$

 \Rightarrow treewidth-bounding

<□ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 < つ < ペ 40/50

We require **FII** + treewidth-bounding

FII is necessary when using protrusion replacement rules.

• What about requiring the problems to be treewidth-bounding? Conditions on *H*-minor-free graphs: bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos '10]

But it holds that

bidimensional + separation property $| \Rightarrow |$ treewidth-bounding

• Thus, our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos '10]

Next subsection is...

Preliminaries

Protrusion decompositions

- Definitions
- A simple algorithm to compute them
- 3) Single-exponential algorithm for PLANAR- \mathcal{F} -DELETION
 - Motivation and our result
 - Sketch of proof
 - Further research

Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Finite Integer Index (FII)

[Bodlaender, de Fluiter '01]
[Bodlaender, de Fluiter '01]

• Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_1, G_2 be two *t*-boundaried graphs in \mathcal{G}_t .

- Let Π be a parameterized graph problem restricted to a graph class G and let G₁, G₂ be two *t*-boundaried graphs in G_t.
- We say that G₁ ≡_{Π,t} G₂ if there exists a constant Δ_{Π,t}(G₁, G₂) such that for all t-boundaried graphs H and for all k:

• $G_1 \oplus H \in \mathcal{G}$ iff $G_2 \oplus H \in \mathcal{G}$; • $(G_1 \oplus H, k) \in \Pi$ iff $(G_2 \oplus H, k + \Delta_{\Pi, t}(G_1, G_2)) \in \Pi$.

- Let Π be a parameterized graph problem restricted to a graph class G and let G₁, G₂ be two *t*-boundaried graphs in G_t.
- We say that G₁ ≡_{Π,t} G₂ if there exists a constant Δ_{Π,t}(G₁, G₂) such that for all t-boundaried graphs H and for all k:
 G₁ ⊕ H ∈ G iff G₂ ⊕ H ∈ G;
 (G₁ ⊕ H, k) ∈ Π iff (G₂ ⊕ H, k + Δ_{Π,t}(G₁, G₂)) ∈ Π.
- Problem Π has FII in the class G if for every integer t, the equivalence relation ≡_{Π,t} has a finite number of equivalence classes.

- Let Π be a parameterized graph problem restricted to a graph class G and let G₁, G₂ be two *t*-boundaried graphs in G_t.
- We say that G₁ ≡_{Π,t} G₂ if there exists a constant Δ_{Π,t}(G₁, G₂) such that for all t-boundaried graphs H and for all k:
 G₁ ⊕ H ∈ G iff G₂ ⊕ H ∈ G;
 (G₁ ⊕ H, k) ∈ Π iff (G₂ ⊕ H, k + Δ_{Π,t}(G₁, G₂)) ∈ Π.
- Problem Π has FII in the class G if for every integer t, the equivalence relation ≡_{Π,t} has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_t) from the same equivalence class.

- Let Π be a parameterized graph problem restricted to a graph class G and let G₁, G₂ be two *t*-boundaried graphs in G_t.
- We say that G₁ ≡_{Π,t} G₂ if there exists a constant Δ_{Π,t}(G₁, G₂) such that for all t-boundaried graphs H and for all k:
 G₁ ⊕ H ∈ G iff G₂ ⊕ H ∈ G;
 (G₁ ⊕ H, k) ∈ Π iff (G₂ ⊕ H, k + Δ_{Π,t}(G₁, G₂)) ∈ Π.
- Problem Π has FII in the class G if for every integer t, the equivalence relation ≡_{Π,t} has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_t) from the same equivalence class.
- The protrusion limit of Π is a function $\rho_{\Pi} \colon \mathbb{N} \to \mathbb{N}$ defined as $\rho_{\Pi}(t) = \max_{G \in \mathcal{R}_t} |V(G)|.$

- Let Π be a parameterized graph problem restricted to a graph class G and let G₁, G₂ be two *t*-boundaried graphs in G_t.
- We say that G₁ ≡_{Π,t} G₂ if there exists a constant Δ_{Π,t}(G₁, G₂) such that for all t-boundaried graphs H and for all k:
 G₁ ⊕ H ∈ G iff G₂ ⊕ H ∈ G;
 (G₁ ⊕ H, k) ∈ Π iff (G₂ ⊕ H, k + Δ_{Π,t}(G₁, G₂)) ∈ Π.
- Problem Π has FII in the class G if for every integer t, the equivalence relation ≡_{Π,t} has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_t) from the same equivalence class.
- The protrusion limit of Π is a function $\rho_{\Pi} \colon \mathbb{N} \to \mathbb{N}$ defined as $\rho_{\Pi}(t) = \max_{G \in \mathcal{R}_t} |V(G)|$. We also define $\rho'_{\Pi}(t) = \rho_{\Pi}(2t)$.

• We prove: if \mathcal{F} is a family of graphs containing some disconnected graph H, then PLANAR- \mathcal{F} -DELETION has not FII (in general).

• Let *o*-Π be the non-parameterized version of PLANAR-*F*-DELETION. Let *G*₁ and *G*₂ be two *t*-boundaried graphs.

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi, t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

where $\pi(G)$ denotes the optimal value of problem $o-\Pi$ on graph G.

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi, t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

where $\pi(G)$ denotes the optimal value of problem $o-\Pi$ on graph G. • We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi,t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

where $\pi(G)$ denotes the optimal value of problem o- Π on graph G.

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For i ≥ 1, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F₁ (resp. F₂) joined to v (resp. u) by an edge.

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi, t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

where $\pi(G)$ denotes the optimal value of problem o- Π on graph G.

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For i ≥ 1, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F₁ (resp. F₂) joined to v (resp. u) by an edge.
- By construction, if $i, j \ge 1$, it holds $\pi(G_i \oplus H_j) = \min\{i, j\}$.

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi,t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

where $\pi(G)$ denotes the optimal value of problem $o-\Pi$ on graph G.

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For i ≥ 1, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F₁ (resp. F₂) joined to v (resp. u) by an edge.
- By construction, if $i, j \ge 1$, it holds $\pi(G_i \oplus H_j) = \min\{i, j\}$.
- Then, if we take $1 \leq n < m$,

$$\pi(G_n \oplus H_{n-1}) - \pi(G_m \oplus H_{n-1}) = (n-1) - (n-1) = 0, \pi(G_n \oplus H_m) - \pi(G_m \oplus H_m) = n - m < 0.$$

• Let $o-\Pi$ be the non-parameterized version of PLANAR- \mathcal{F} -DELETION. Let G_1 and G_2 be two *t*-boundaried graphs. We define $G_1 \sim_{\Pi, t} G_2$ iff \exists integer *i* such that \forall *t*-boundaried graph *H*, it holds

 $\pi(G_1\oplus H)=\pi(G_2\oplus H)+i,$

where $\pi(G)$ denotes the optimal value of problem $o-\Pi$ on graph G.

- We let $F_1 = K_4$, $F_2 = K_{2,3}$, $F := F_1 \uplus F_2$, and $\mathcal{F} = \{F\}$.
- For i ≥ 1, let G_i (resp. H_i) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F₁ (resp. F₂) joined to v (resp. u) by an edge.
- By construction, if $i, j \ge 1$, it holds $\pi(G_i \oplus H_j) = \min\{i, j\}$.
- Then, if we take $1 \leq n < m$,

$$\pi(G_n \oplus H_{n-1}) - \pi(G_m \oplus H_{n-1}) = (n-1) - (n-1) = 0,$$

$$\pi(G_n \oplus H_m) - \pi(G_m \oplus H_m) = n - m < 0.$$

• Thus, $G_n, G_m \notin \text{same equiv. class of } \sim_{\Pi,1} \text{ whenever } 1 \leq n < m_{\mathbb{R}}$

<ロト < 部 > < 言 > < 言 > 差 の < で 44/50

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \ge 0$.

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \ge 0$.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O(n^{t+1})$.

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \ge 0$.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O(n^{t+1})$.

Lemma (Big... but not too big!)

If one is given a t-protrusion $X \subseteq V(G)$ s.t. $\rho'_{\Pi}(t) < |X|$, then one can, in time O(|X|), find an equiv. 2t-protrusion W s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.

 \forall fixed t, \exists finite set \mathcal{R}_t of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_t \exists G' \in \mathcal{R}_t$ s.t. $G \equiv_{\Pi,t} G'$ and $\Delta_{\Pi,t}(G,G') \ge 0$.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O(n^{t+1})$.

Lemma (Big... but not too big!)

If one is given a t-protrusion $X \subseteq V(G)$ s.t. $\rho'_{\Pi}(t) < |X|$, then one can, in time O(|X|), find an equiv. 2t-protrusion W s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.

Lemma (Replacing protrusions of constant size)

For $t \in \mathbb{N}$, suppose that the set \mathcal{R}_t of representatives of $\equiv_{\Pi,t}$ is given. If W is a t-protrusion of size at most a fixed constant c, then one can decide in constant time which $G' \in \mathcal{R}_t$ satisfies $G' \equiv_{\Pi,t} G[W]$.

Protrusion reduction rule

• Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\prod, |\partial(W)|}$.

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\prod, |\partial(W)|}$.
- The protrusion reduction rule (for boundary size t) is the following: *Reduce* (G, k) to (G', k') = (G[V \ W] ⊕ G₁, k − Δ_{Π,2t}(G₁, G_W)).

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\prod, |\partial(W)|}$.
- The protrusion reduction rule (for boundary size t) is the following: *Reduce* (G, k) to (G', k') = (G[V \ W] ⊕ G₁, k − Δ_{Π,2t}(G₁, G_W)).

It runs in polynomial time ...

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a *t*-protrusion $W' \subseteq V(G)$ s.t. $|W'| > \rho'_{\Pi}(t)$.
- Let $W \subseteq V(G)$ be a 2t-protrusion of G s.t. $\rho'_{\Pi}(t) < |W| \leq 2 \cdot \rho'_{\Pi}(t)$.
- We let G_W denote the 2*t*-boundaried graph G[W] with boundary $\mathbf{bd}(G_W) = \partial_G(W)$.
- Let further $G_1 \in \mathcal{R}_{2t}$ be the representative of G_W for the equivalence relation $\equiv_{\prod, |\partial(W)|}$.
- The protrusion reduction rule (for boundary size t) is the following: *Reduce* (G, k) to (G', k') = (G[V \ W] ⊕ G₁, k − Δ_{Π,2t}(G₁, G_W)).

It runs in polynomial time ... given the sets of representatives!

Protrusion decompositions (in case someone forgot!)

An (α, t) -protrusion decomposition of a graph G is a partition $\mathcal{P} = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ of V(G) such that:

- for every $1 \leq i \leq \ell$, $N(Y_i) \subseteq Y_0$;
- for every $1 \leq i \leq \ell$, $Y_i \cup N_{Y_0}(Y_i)$ is a *t*-protrusion of *G*;
- $\max\{\ell, |Y_0|\} \leq \alpha$.

(Figure by Felix Reidl) < □ ▶ < 콜 ▶ < 콜 ▶ < 콜 ▶ 콜 ∽ < २ 46/50

We apply exhaustively the protrusion replacement rule.

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leq \beta$, every *t*-protrusion *W* of *G* has size $\leq \rho'_{\Pi}(t)$.

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leq \beta$, every *t*-protrusion W of G has size $\leq \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where *t* comes from the treewidth-bounding property of Π .

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leq \beta$, every *t*-protrusion W of G has size $\leq \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where *t* comes from the treewidth-bounding property of Π .

We use protrusion decompositions to analyze the kernel size.

2

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leq \beta$, every *t*-protrusion W of G has size $\leq \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where *t* comes from the treewidth-bounding property of Π .

We use protrusion decompositions to analyze the kernel size.

Using what we explained before, we can easily prove that:

Let Π be a parameterized graph problem that has FII and is *t*-treewidth-bounding, both on the class of *H*-topological-minor-free graphs.

We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leq \beta$, every *t*-protrusion W of G has size $\leq \rho'_{\Pi}(t)$.

We can choose $\beta := 2t + \omega(H)$, where *t* comes from the treewidth-bounding property of Π .

We use protrusion decompositions to analyze the kernel size.

Using what we explained before, we can easily prove that:

Let Π be a parameterized graph problem that has FII and is *t*-treewidth-bounding, both on the class of *H*-topological-minor-free graphs. Then any reduced YES-instance (G, k) has a protrusion decomposition $V(G) = Y_0 \uplus Y_1 \uplus \cdots \uplus Y_\ell$ s.t.:

•
$$|Y_0| = O(k);$$

• $|Y_i| \leq \rho'_{\Pi}(2t + \omega_{\mathcal{H}})$ for $1 \leq i \leq \ell$; and
• $\ell = O(k).$

Next subsection is...

Preliminaries

Protrusion decompositions

- Definitions
- A simple algorithm to compute them
- 3) Single-exponential algorithm for PLANAR - \mathcal{F} - $\operatorname{DeLETION}$
 - Motivation and our result
 - Sketch of proof
 - Further research

Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Limits of our approach and further research

• For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free) Except for a very restricted case, our technique fails.

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free) Except for a very restricted case, our technique fails.
 - **②** Graphs of **bounded expansion** (contains *H*-topological-minor-free)?

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

② Graphs of **bounded expansion** (contains *H*-topological-minor-free)?

Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

② Graphs of **bounded expansion** (contains *H*-topological-minor-free)?

Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

Best known kernel: $k^{O(t)}$.

[Fomin, Lokshtanov, Misra, Saurabh '12]

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

② Graphs of bounded expansion (contains *H*-topological-minor-free)?

Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

Best known kernel: *k^{0(t)}*.

[Fomin, Lokshtanov, Misra, Saurabh '12]

• Constructing the kernels? Finding the sets of representatives!!

- For which notions of sparseness (beyond *H*-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
 - A class G of graphs locally excludes a minor if ∀r ∈ N, ∃H_r s.t. the r-neighborhood of a vertex of any graph of G excludes H_r as a minor. (includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

② Graphs of **bounded expansion** (contains *H*-topological-minor-free)?

Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs of bounded expansion is as hard as on general graphs.

Best known kernel: $k^{O(t)}$.

[Fomin, Lokshtanov, Misra, Saurabh '12]

- Constructing the kernels? Finding the sets of representatives!!
- Explicit constants? Lower bounds on their size?

Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <