Single-exponential algorithms and linear kernels via protrusion decompositions

Eun Jung Kim ${ }^{1}$ Christophe Paul ${ }^{2}$ Ignasi Sau ${ }^{2}$

Alexander Langer ${ }^{3}$ Felix Reidl 3 Peter Rossmanith ${ }^{3}$ Somnath Sikdar ${ }^{3}$

arXiv/1207.0835, 2013

${ }^{1}$ CNRS, LAMSADE, Paris (France)
${ }^{2}$ CNRS, LIRMM, Montpellier (France)
${ }^{3}$ Department of Computer Science, RWTH Aachen University (Germany)

Outline of the talk

(1) Preliminaries
(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar- \mathcal{F}-Deletion
- Motivation and our result
- Sketch of proof
- Further research
(4) Linear kernels on graphs without topological minors
- Motivation and our result
- Idea of proof
- Further research

Next section is...

(1) Preliminaries
(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar- \mathcal{F}-Deletion
- Motivation and our result
- Sketch of proof
- Further research

4. Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Some words on parameterized complexity

- Idea given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more "tractable". Example: the size of a Vertex Cover.

Some words on parameterized complexity

- Idea given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more "tractable". Example: the size of a Vertex Cover.
- Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

$$
f(k) \cdot n^{O(1)}, \text { for some function } f .
$$

Examples: k-Vertex Cover, k-Longest Path.

Some words on parameterized complexity

- Idea given an NP-hard problem with input size n, fix one parameter k of the input to see whether the problem gets more "tractable".

Example: the size of a Vertex Cover.

- Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

$$
f(k) \cdot n^{O(1)}, \text { for some function } f
$$

Examples: k-Vertex Cover, k-Longest Path.

- A single-exponential parameterized algorithm is an FPT algo s.t.

$$
f(k)=2^{O(k)}
$$

The decomposition paradigm - "Divide et impera"

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

The decomposition paradigm - "Divide et impera"

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

- PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs.

The decomposition paradigm - "Divide et impera"

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

- PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs.
- Linear-time algorithms for problems expressible in MSOL on graphs of bounded treewidth.

The decomposition paradigm - "Divide et impera"

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

- PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs.
[Baker's approach]
- Linear-time algorithms for problems expressible in MSOL on graphs of bounded treewidth.
- FPT algorithms based on the structural decomposition result of H-minor-free graphs.

The decomposition paradigm - "Divide et impera"

Many hard algorithmic graph problems become easier if one is able to find a suitable decomposition of the input graph.

Some famous examples:

- PTAS and exact subexponential algorithms based on finding separators of size $O(\sqrt{n})$ on planar graphs.
[Baker's approach]
- Linear-time algorithms for problems expressible in MSOL on graphs of bounded treewidth.
- FPT algorithms based on the structural decomposition result of H-minor-free graphs.
- Linear-time algorithms based on modular decompositions.

Next section is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar-F-Deletion
- Motivation and our result
- Sketch of proof
- Further research

4. Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Next subsection is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar- \mathcal{F}-Deletion
- Motivation and our result
- Sketch of proof
- Further research
(4) Linear kernels on graphs without topological minors
- Motivation and our result
- Idea of proof
- Further research

Protrusions

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

- Given a graph G, a set $W \subseteq V(G)$ is a t-protrusion of G if

$$
\left|\partial_{G}(W)\right| \leqslant t \text { and } \operatorname{tw}(G[W]) \leqslant t
$$

Protrusions

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

- Given a graph G, a set $W \subseteq V(G)$ is a t-protrusion of G if

$$
\left|\partial_{G}(W)\right| \leqslant t \text { and } \operatorname{tw}(G[W]) \leqslant t
$$

- The vertex set $W^{\prime}=W \backslash \partial_{G}(W)$ is the restricted protrusion of W.
- We call $\partial_{G}(W)$ the boundary and $|W|$ the size of W.

Protrusion decompositions

An (α, t)-protrusion decomposition of a graph G is a partition $\mathcal{P}=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}$ of $V(G)$ such that:

- for every $1 \leqslant i \leqslant \ell, N\left(Y_{i}\right) \subseteq Y_{0}$;
- for every $1 \leqslant i \leqslant \ell, Y_{i} \cup N_{Y_{0}}\left(Y_{i}\right)$ is a t-protrusion of G;
- $\max \left\{\ell,\left|Y_{0}\right|\right\} \leqslant \alpha$.

The set Y_{0} is called the separating part of \mathcal{P}.

Next subsection is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar- \mathcal{F}-Deletion
- Motivation and our result
- Sketch of proof
- Further research
(4) Linear kernels on graphs without topological minors
- Motivation and our result
- Idea of proof
- Further research

Main (informal) ideas of our algorithm

- Protrusion decompositions have already been used in the literature.
[Bodlaender, Fomin, Lokshtanov, Saurabh, Thilikos '09-12]

Main (informal) ideas of our algorithm

- Here we present a new algorithm to compute protrusion decompositions for graphs G that come equipped with a set

$$
X \subseteq V(G) \text { s.t. } \operatorname{tw}(G-X) \leqslant t
$$

for some constant $t>0$.
The set X is called a t-treewidth-modulator.

Main (informal) ideas of our algorithm

- Our algorithm marks the bags of a tree-decomposition of G.

Main (informal) ideas of our algorithm

- Our algorithm marks the bags of a tree-decomposition of G.
- Let r be an integer that is also given to the algorithm.

Main (informal) ideas of our algorithm

- Our algorithm marks the bags of a tree-decomposition of G.
- Let r be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of $G-X$ with $\geqslant r$ neighbors in X, we identify a set of bags \mathcal{M} in a bottom-up manner.

Main (informal) ideas of our algorithm

- Our algorithm marks the bags of a tree-decomposition of G.
- Let r be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of $G-X$ with $\geqslant r$ neighbors in X, we identify a set of bags \mathcal{M} in a bottom-up manner.

- The set $V(\mathcal{M})$ of vertices contained in marked bags together with X will form the separating part Y_{0} of the protrusion decomposition.

Main (informal) ideas of our algorithm

- Our algorithm marks the bags of a tree-decomposition of G.
- Let r be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of $G-X$ with $\geqslant r$ neighbors in X, we identify a set of bags \mathcal{M} in a bottom-up manner.

- The set $V(\mathcal{M})$ of vertices contained in marked bags together with X will form the separating part Y_{0} of the protrusion decomposition.
- Some marked bags will be mapped bijectively into pairwise vertex-disjoint connected subgraphs of $G-X$, each of which has $\geqslant r$ neighbors in X.

Main (informal) ideas of our algorithm

- Our algorithm marks the bags of a tree-decomposition of G.
- Let r be an integer that is also given to the algorithm.
- Given tree-decompositions of the conn. comp. of $G-X$ with $\geqslant r$ neighbors in X, we identify a set of bags \mathcal{M} in a bottom-up manner.

- The set $V(\mathcal{M})$ of vertices contained in marked bags together with X will form the separating part Y_{0} of the protrusion decomposition.
- Some marked bags will be mapped bijectively into pairwise vertex-disjoint connected subgraphs of $G-X$, each of which has $\geqslant r$ neighbors in X.
- Finally, to guarantee that the conn. comp. of $G-(X \cup V(\mathcal{M}))$ form protrusions with small boundary, the set \mathcal{M} is closed under taking LCA.

Description of the bag marking algorithm

Input $G, X \subseteq V(G)$ s.t. $\operatorname{tw}(G-X) \leqslant t$, and an integer $r>0$.

Description of the bag marking algorithm

Input $G, X \subseteq V(G)$ s.t. $\operatorname{tw}(G-X) \leqslant t$, and an integer $r>0$.
\star Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.

Description of the bag marking algorithm

Input $G, X \subseteq V(G)$ s.t. $\operatorname{tw}(G-X) \leqslant t$, and an integer $r>0$.
\star Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.

* Compute an optimal rooted tree-decomposition $\mathcal{T}_{C}=\left(T_{C}, \mathcal{B}_{C}\right)$ of every connected component C of $G-X$ such that $\left|N_{X}(C)\right| \geqslant r$.

Description of the bag marking algorithm

Input $G, X \subseteq V(G)$ s.t. $\operatorname{tw}(G-X) \leqslant t$, and an integer $r>0$.
\star Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
\star Compute an optimal rooted tree-decomposition $\mathcal{T}_{C}=\left(T_{C}, \mathcal{B}_{C}\right)$ of every connected component C of $G-X$ such that $\left|N_{X}(C)\right| \geqslant r$.

* Repeat the following loop for every rooted tree-decomposition \mathcal{T}_{C} : while \mathcal{T}_{C} contains an unprocessed bag do:
\star Let B be an unprocess. bag at farthest distance from the root of \mathcal{T}_{C}.

Description of the bag marking algorithm

Input $G, X \subseteq V(G)$ s.t. $\operatorname{tw}(G-X) \leqslant t$, and an integer $r>0$.
\star Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
\star Compute an optimal rooted tree-decomposition $\mathcal{T}_{C}=\left(T_{C}, \mathcal{B}_{C}\right)$ of every connected component C of $G-X$ such that $\left|N_{X}(C)\right| \geqslant r$.
\star Repeat the following loop for every rooted tree-decomposition \mathcal{T}_{C} : while \mathcal{T}_{C} contains an unprocessed bag do:
\star Let B be an unprocess. bag at farthest distance from the root of \mathcal{T}_{C}.

* LCA marking step
if B is the LCA of two marked bags of \mathcal{M} : $\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices of B from every bag of \mathcal{T}_{C}.

Description of the bag marking algorithm

Input $G, X \subseteq V(G)$ s.t. $\operatorname{tw}(G-X) \leqslant t$, and an integer $r>0$.
\star Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
\star Compute an optimal rooted tree-decomposition $\mathcal{T}_{C}=\left(T_{C}, \mathcal{B}_{C}\right)$ of every connected component C of $G-X$ such that $\left|N_{X}(C)\right| \geqslant r$.

* Repeat the following loop for every rooted tree-decomposition \mathcal{T}_{C} : while \mathcal{T}_{C} contains an unprocessed bag do:
\star Let B be an unprocess. bag at farthest distance from the root of \mathcal{T}_{C}.
* LCA marking step
if B is the LCA of two marked bags of \mathcal{M} :
$\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices of B from every bag of \mathcal{T}_{c}.
* Bloom-subgraph marking step
else if G_{B} contains a connected component C_{B} s.t. $\left|N_{X}\left(C_{B}\right)\right| \geqslant r$: $\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices of B from every bag of \mathcal{T}_{C}.

Description of the bag marking algorithm

Input $G, X \subseteq V(G)$ s.t. $\operatorname{tw}(G-X) \leqslant t$, and an integer $r>0$.
\star Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
\star Compute an optimal rooted tree-decomposition $\mathcal{T}_{C}=\left(T_{C}, \mathcal{B}_{C}\right)$ of every connected component C of $G-X$ such that $\left|N_{X}(C)\right| \geqslant r$.

* Repeat the following loop for every rooted tree-decomposition \mathcal{T}_{C} : while \mathcal{T}_{C} contains an unprocessed bag do:
\star Let B be an unprocess. bag at farthest distance from the root of \mathcal{T}_{C}.
* LCA marking step
if B is the LCA of two marked bags of \mathcal{M} :
$\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices of B from every bag of \mathcal{T}_{c}.
* Bloom-subgraph marking step
else if G_{B} contains a connected component C_{B} s.t. $\left|N_{X}\left(C_{B}\right)\right| \geqslant r$: $\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices of B from every bag of \mathcal{T}_{C}.
* Bag B is now processed.

Description of the bag marking algorithm

Input $G, X \subseteq V(G)$ s.t. $\operatorname{tw}(G-X) \leqslant t$, and an integer $r>0$.
\star Set $\mathcal{M} \leftarrow \emptyset$ as the set of marked bags.
\star Compute an optimal rooted tree-decomposition $\mathcal{T}_{C}=\left(T_{C}, \mathcal{B}_{C}\right)$ of every connected component C of $G-X$ such that $\left|N_{X}(C)\right| \geqslant r$.
\star Repeat the following loop for every rooted tree-decomposition \mathcal{T}_{C} : while \mathcal{T}_{C} contains an unprocessed bag do:
\star Let B be an unprocess. bag at farthest distance from the root of \mathcal{T}_{C}.

* LCA marking step
if B is the LCA of two marked bags of \mathcal{M} :
$\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices of B from every bag of \mathcal{T}_{c}.
* Bloom-subgraph marking step
else if G_{B} contains a connected component C_{B} s.t. $\left|N_{X}\left(C_{B}\right)\right| \geqslant r$:
$\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices of B from every bag of \mathcal{T}_{C}.
* Bag B is now processed.

Return $Y_{0}=X \cup V(\mathcal{M})$.

Some properties of the bag marking algorithm

Lemma

The bag marking algorithm can be implemented to run in $O(n)$ time, where the hidden constant depends only on t and r.

Some properties of the bag marking algorithm

Given a graph G and a subset $S \subseteq V(G)$, a cluster of $G-S$ is a maximal collection of connected components of $G-S$ with the same neighborhood in S.

Some properties of the bag marking algorithm

Given a graph G and a subset $S \subseteq V(G)$, a cluster of $G-S$ is a maximal collection of connected components of $G-S$ with the same neighborhood in S.

Proposition

- Let r, t be two positive integers,
- let G be a graph and $X \subseteq V(G)$ such that $\operatorname{tw}(G-X) \leqslant t$,
- let $Y_{0} \subseteq V(G)$ be the output of the algorithm with input (G, X, r), and
- let Y_{1}, \ldots, Y_{ℓ} be the set of clusters of $G-Y_{0}$.

Some properties of the bag marking algorithm

Given a graph G and a subset $S \subseteq V(G)$, a cluster of $G-S$ is a maximal collection of connected components of $G-S$ with the same neighborhood in S.

Proposition

- Let r, t be two positive integers,
- let G be a graph and $X \subseteq V(G)$ such that $\operatorname{tw}(G-X) \leqslant t$,
- let $Y_{0} \subseteq V(G)$ be the output of the algorithm with input (G, X, r), and
- let Y_{1}, \ldots, Y_{ℓ} be the set of clusters of $G-Y_{0}$.

Then $\mathcal{P}:=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}$ is a $\left(\max \left\{\ell,\left|Y_{0}\right|\right\}, 2 t+r\right)$-protrusion decomp. of G.

Next section is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar- \mathcal{F}-Deletion
- Motivation and our result
- Sketch of proof
- Further research
(4) Linear kernels on graphs without topological minors
- Motivation and our result
- Idea of proof
- Further research

Next subsection is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar- \mathcal{F}-Deletion
- Motivation and our result
- Sketch of proof
- Further research
(4) Linear kernels on graphs without topological minors
- Motivation and our result
- Idea of proof
- Further research

The (parameterized) Planar- \mathcal{F}-Deletion problem

Let \mathcal{F} be a finite family of graphs containing at least one planar graph.

The (parameterized) Planar- \mathcal{F}-Deletion problem

Let \mathcal{F} be a finite family of graphs containing at least one planar graph.

Planar- \mathcal{F}-Deletion
Input: $\quad A$ graph G and a non-negative integer k.
Parameter: The integer k.
Question: Does G have a set $X \subseteq V(G)$ such that $|X| \leqslant k$ and $G-X$ is H-minor-free for every $H \in \mathcal{F}$?

The (parameterized) Planar- \mathcal{F}-Deletion problem

Let \mathcal{F} be a finite family of graphs containing at least one planar graph.

Planar- \mathcal{F}-Deletion
Input: $\quad A$ graph G and a non-negative integer k.
Parameter: The integer k.
Question: Does G have a set $X \subseteq V(G)$ such that $|X| \leqslant k$ and $G-X$ is H-minor-free for every $H \in \mathcal{F}$?

Some particular cases:
(1) $\mathcal{F}=\left\{K_{2}\right\}: \quad \equiv$ Vertex Cover
\equiv Treewidth-Zero Vertex Deletion
(2) $\mathcal{F}=\left\{K_{3}\right\}: \quad \equiv$ Feedback Vertex Set
\equiv Treewidth-one Vertex Deletion
(3) $\mathcal{F}=\left\{K_{4}\right\}: \quad \equiv$ Treewidth-two Vertex Deletion

How fast can Planar- \mathcal{F}-Deletion be solved?

How fast can Planar- \mathcal{F}-Deletion be solved?

Particular cases:

- $\mathcal{F}=\left\{K_{2}\right\}$
$O^{*}\left(1.2738^{k}\right)$
$O^{*}\left(3.83^{k}\right)$
[Cao, Chen, Liu '10]
- $\mathcal{F}=\left\{\theta_{r}\right\}$
$O^{*}\left(c^{k}\right)$
$O^{*}\left(c^{k}\right)$
[Chen, Fernau, Kanj, Xia '10]
- $\mathcal{F}=\left\{K_{3}\right\}$
- $\mathcal{F}=\left\{K_{4}\right\}$
[Kim, Paul, Philip '12]

How fast can Planar- \mathcal{F}-Deletion be solved?

Particular cases:

- $\mathcal{F}=\left\{K_{2}\right\}$
$O^{*}\left(1.2738^{k}\right)$
- $\mathcal{F}=\left\{K_{3}\right\}$
- $\mathcal{F}=\left\{\theta_{r}\right\}$
$O^{*}\left(3.83^{k}\right)$
- $\mathcal{F}=\left\{K_{4}\right\}$
$O^{*}\left(c^{k}\right)$
$O^{*}\left(c^{k}\right)$
[Cao, Chen, Liu '10]
[Joret, Paul, S., Saurabh, Thomassé '11]
[Chen, Fernau, Kanj, Xia '10]
[Kim, Paul, Philip '12]

General case:

- Planar- \mathcal{F}-Deletion is FPT.

How fast can Planar- \mathcal{F}-Deletion be solved?

Particular cases:

- $\mathcal{F}=\left\{K_{2}\right\}$
$O^{*}\left(1.2738^{k}\right)$
- $\mathcal{F}=\left\{K_{3}\right\}$
- $\mathcal{F}=\left\{\theta_{r}\right\}$
$O^{*}\left(3.83^{k}\right)$
- $\mathcal{F}=\left\{K_{4}\right\}$
$O^{*}\left(c^{k}\right)$
$O^{*}\left(c^{k}\right)$
[Cao, Chen, Liu '10]
[Chen, Fernau, Kanj, Xia '10]
[Joret, Paul, S., Saurabh, Thomassé '11]
[Kim, Paul, Philip '12]

General case:

- Planar- \mathcal{F}-Deletion is FPT.
- $2^{2^{O(k \log k)}} \cdot n^{O(1)}$-time algorithm based on standard DP.

How fast can Planar- \mathcal{F}-Deletion be solved?

Particular cases:

- $\mathcal{F}=\left\{K_{2}\right\}$
$O^{*}\left(1.2738^{k}\right)$
- $\mathcal{F}=\left\{K_{3}\right\}$
- $\mathcal{F}=\left\{\theta_{r}\right\}$
$O^{*}\left(3.83^{k}\right)$
- $\mathcal{F}=\left\{K_{4}\right\}$
$O^{*}\left(c^{k}\right)$
$O^{*}\left(c^{k}\right)$
[Cao, Chen, Liu '10]
[Chen, Fernau, Kanj, Xia '10]
[Joret, Paul, S., Saurabh, Thomassé '11]
[Kim, Paul, Philip '12]

General case:

- Planar- \mathcal{F}-Deletion is FPT.
- $2^{2^{O(k \log k)}} \cdot n^{O(1)}$-time algorithm based on standard DP.
- $2^{O(k \log k)} \cdot n^{2}$-time algorithm.

How fast can Planar- \mathcal{F}-Deletion be solved?

Particular cases:

- $\mathcal{F}=\left\{K_{2}\right\}$
$O^{*}\left(1.2738^{k}\right)$
- $\mathcal{F}=\left\{K_{3}\right\}$
$O^{*}\left(3.83^{k}\right)$
[Cao, Chen, Liu '10]
- $\mathcal{F}=\left\{\theta_{r}\right\}$
$O^{*}\left(c^{k}\right)$
[Joret, Paul, S., Saurabh, Thomassé '11]
- $\mathcal{F}=\left\{K_{4}\right\}$
$O^{*}\left(c^{k}\right)$
[Chen, Fernau, Kanj, Xia '10]

General case:

- Planar- \mathcal{F}-Deletion is FPT.
- $2^{2^{O(k \log k)}} \cdot n^{O(1)}$-time algorithm based on standard DP.
- $2^{O(k \log k)} \cdot n^{2}$-time algorithm.
[Fomin, Lokshtanov, Misra, Saurabh '11]
- $2^{O(k)} \cdot n \log ^{2} n$-time algorithm for PLANAR-CONNECTED- \mathcal{F}-DELETION. [Fomin, Lokshtanov, Misra, Saurabh '12]

Our result

Theorem

The Planar- \mathcal{F}-Deletion problem can be solved in time $2^{O(k)} \cdot n^{2}$.

- This result unifies a number of algorithms in the literature.

Our result

Theorem

The Planar- \mathcal{F}-Deletion problem can be solved in time $2^{O(k)} \cdot n^{2}$.

- This result unifies a number of algorithms in the literature.
- No hope for a $2^{o(k)} \cdot n^{O(1)}$-time algorithm (under ETH). [Chen et al. '05]

That is, the function $2^{O(k)}$ in our theorem is best possible.

Next subsection is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar- \mathcal{F}-Deletion
- Motivation and our result
- Sketch of proof
- Further research
(4) Linear kernels on graphs without topological minors
- Motivation and our result
- Idea of proof
- Further research

First step: use iterative compression

Using iterative compression the Planar- \mathcal{F}-Deletion problem can be reduced in single-exponential time to the following problem:

First step: use iterative compression

Using iterative compression the Planar- \mathcal{F}-Deletion problem can be reduced in single-exponential time to the following problem:

Disjoint Planar- \mathcal{F}-Deletion
Input: A graph G, a non-negative integer k, and a set $X \subseteq V(G)$ with $|X|=k$ s.t. $G-X$ is \mathcal{F}-minor-free.

First step: use iterative compression

Using iterative compression the Planar- \mathcal{F}-Deletion problem can be reduced in single-exponential time to the following problem:

Disjoint Planar- \mathcal{F}-Deletion
Input: \quad a graph G, a non-negative integer k, and a set $X \subseteq V(G)$ with $|X|=k$ s.t. $G-X$ is \mathcal{F}-minor-free.
Parameter: The integer k.
Question: Does G have a set $\tilde{X} \subseteq V(G) \backslash X$ such that $|\tilde{X}|<k$ and $G-\tilde{X}$ is H-minor-free for every $H \in \mathcal{F}$?

We call \tilde{X} an alternative solution.

First step: use iterative compression

Using iterative compression the Planar- \mathcal{F}-Deletion problem can be reduced in single-exponential time to the following problem:

Disjoint Planar- \mathcal{F}-Deletion
Input: \quad a graph G, a non-negative integer k, and a set $X \subseteq V(G)$ with $|X|=k$ s.t. $G-X$ is \mathcal{F}-minor-free.
Parameter: The integer k.
Question: Does G have a set $\tilde{X} \subseteq V(G) \backslash X$ such that $|\tilde{X}|<k$ and $G-\tilde{X}$ is H-minor-free for every $H \in \mathcal{F}$?

We call \tilde{X} an alternative solution.

Lemma (well-kwown)

If Disjoint Planar- \mathcal{F}-Deletion can be solved in time $O^{*}\left(c^{k}\right)$ for some $c \in \mathbb{N}^{+}$, then Planar- \mathcal{F}-Deletion can be solved in $O^{*}\left((c+1)^{k}\right)$.

Working hypothesis: an alternative solution \tilde{X} does exist in $G-X$.

Working hypothesis: an alternative solution \tilde{X} does exist in $G-X$.
Observation:
If (G, X, k) is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then

- $G[X]$ is \mathcal{F}-minor-free
- $G[V \backslash X]$ is \mathcal{F}-minor-free

Working hypothesis: an alternative solution \tilde{X} does exist in $G-X$.
Observation:
If (G, X, k) is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then

- $G[X]$ is \mathcal{F}-minor-free $\quad \Rightarrow G[X]$ has bounded tw!!
- $G[V \backslash X]$ is \mathcal{F}-minor-free $\Rightarrow G[V \backslash X]$ has bounded tw!!

Working hypothesis: an alternative solution \tilde{X} does exist in $G-X$.
Observation:
If (G, X, k) is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then

- $G[X]$ is \mathcal{F}-minor-free $\quad \Rightarrow G[X]$ has bounded tw!!
- $G[V \backslash X]$ is \mathcal{F}-minor-free $\Rightarrow G[V \backslash X]$ has bounded tw!!
* Let $r:=|V(H)|$ for H being some planar graph in the family \mathcal{F}.

Working hypothesis: an alternative solution \tilde{X} does exist in $G-X$.
Observation:
If (G, X, k) is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then

- $G[X]$ is \mathcal{F}-minor-free $\quad \Rightarrow G[X]$ has bounded tw!!
- $G[V \backslash X]$ is \mathcal{F}-minor-free $\Rightarrow G[V \backslash X]$ has bounded tw!!
* Let $r:=|V(H)|$ for H being some planar graph in the family \mathcal{F}.
* A connected component C of $G-X$ is called a bloom component if $\left|N_{X}(C)\right| \geqslant r$, and a bud component otherwise.

Linear protrusion decompositions

* Recall that a β-protrusion in a graph G is a subset $Y \subseteq V(G)$ such that $|\partial(Y)| \leqslant \beta$ and $\operatorname{tw}(G[Y]) \leqslant \beta$

Linear protrusion decompositions

* Recall that a β-protrusion in a graph G is a subset $Y \subseteq V(G)$ such that $|\partial(Y)| \leqslant \beta$ and $\operatorname{tw}(G[Y]) \leqslant \beta$

* A partition $\mathcal{P}=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}$ of $V(G)$ with $\max \left\{\ell,\left|Y_{0}\right|\right\} \leqslant \alpha$ is an (α, β)-protrusion decomposition if for every $1 \leqslant i \leqslant \ell$,

$$
N\left(Y_{i}\right) \subseteq Y_{0} \quad \text { and } \quad Y_{i} \cup N_{Y_{0}}\left(Y_{i}\right) \text { is a } \beta \text {-protrusion }
$$

Linear protrusion decompositions

* Recall that a β-protrusion in a graph G is a subset $Y \subseteq V(G)$ such that $|\partial(Y)| \leqslant \beta$ and $\operatorname{tw}(G[Y]) \leqslant \beta$

* A partition $\mathcal{P}=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}$ of $V(G)$ with $\max \left\{\ell,\left|Y_{0}\right|\right\} \leqslant \alpha$ is an (α, β)-protrusion decomposition if for every $1 \leqslant i \leqslant \ell$,

$$
N\left(Y_{i}\right) \subseteq Y_{0} \quad \text { and } \quad Y_{i} \cup N_{Y_{0}}\left(Y_{i}\right) \text { is a } \beta \text {-protrusion }
$$

$\star \mathcal{P}$ is linear with respect to a parameter k whenever $\alpha=O(k)$.

Algorithm to solve Disjoint Planar- \mathcal{F}-Deletion

* We will use our algorithm to compute protrusion decompositions.

Algorithm to solve Disjoint Planar- \mathcal{F}-Deletion

* Recall that $r=|V(H)|$,

Algorithm to solve Disjoint Planar- \mathcal{F}-Deletion

\star Recall that $r=|V(H)|$, and that $\operatorname{tw}(G[V \backslash X]) \leqslant t_{\mathcal{F}}$,

Algorithm to solve Disjoint Planar- \mathcal{F}-Deletion

* Recall that $r=|V(H)|$, and that $\operatorname{tw}(G[V \backslash X]) \leqslant t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.

Algorithm to solve Disjoint Planar- \mathcal{F}-Deletion

* Recall that $r=|V(H)|$, and that $\operatorname{tw}(G[V \backslash X]) \leqslant t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
* But it turns out that, with input (G, X, r), the set Y_{0} output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

Algorithm to solve Disjoint Planar- \mathcal{F}-Deletion

* Recall that $r=|V(H)|$, and that $\operatorname{tw}(G[V \backslash X]) \leqslant t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
* But it turns out that, with input (G, X, r), the set Y_{0} output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

1 Guess the intersection $I=\tilde{X} \cap Y_{0}$ of the alt. solution \tilde{X} with Y_{0} s.t.:

- $G-I$ has a linear protrusion decomposition

$$
\mathcal{P}=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}
$$

- with $X \subseteq Y_{0}$ and $\tilde{X} \backslash I \subseteq V(G) \backslash Y_{0}$.

Algorithm to solve Disjoint Planar- \mathcal{F}-Deletion

* Recall that $r=|V(H)|$, and that $\operatorname{tw}(G[V \backslash X]) \leqslant t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
* But it turns out that, with input (G, X, r), the set Y_{0} output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

1 Guess the intersection $I=\tilde{X} \cap Y_{0}$ of the alt. solution \tilde{X} with Y_{0} s.t.:

- $G-I$ has a linear protrusion decomposition

$$
\mathcal{P}=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}
$$

- with $X \subseteq Y_{0}$ and $\tilde{X} \backslash I \subseteq V(G) \backslash Y_{0}$.

By carefully analyzing the output of our bag marking algorithm

Algorithm to solve Disjoint Planar- \mathcal{F}-Deletion

* Recall that $r=|V(H)|$, and that $\operatorname{tw}(G[V \backslash X]) \leqslant t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
* But it turns out that, with input (G, X, r), the set Y_{0} output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

1 Guess the intersection $I=\tilde{X} \cap Y_{0}$ of the alt. solution \tilde{X} with Y_{0} s.t.:

- $G-I$ has a linear protrusion decomposition

$$
\mathcal{P}=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}
$$

- with $X \subseteq Y_{0}$ and $\tilde{X} \backslash I \subseteq V(G) \backslash Y_{0}$.

By carefully analyzing the output of our bag marking algorithm
2 Finally, compute $\tilde{X} \backslash I$, given a linear protrusion decomposition.

Algorithm to solve Disjoint Planar- \mathcal{F}-Deletion

* Recall that $r=|V(H)|$, and that $\operatorname{tw}(G[V \backslash X]) \leqslant t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
* But it turns out that, with input (G, X, r), the set Y_{0} output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

1 Guess the intersection $I=\tilde{X} \cap Y_{0}$ of the alt. solution \tilde{X} with Y_{0} s.t.:

- $G-I$ has a linear protrusion decomposition

$$
\mathcal{P}=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}
$$

- with $X \subseteq Y_{0}$ and $\tilde{X} \backslash I \subseteq V(G) \backslash Y_{0}$.

By carefully analyzing the output of our bag marking algorithm
2 Finally, compute $\tilde{X} \backslash I$, given a linear protrusion decomposition.
Based on the finite index of MSO-definable properties (automaton theory)

Algorithm to solve Disjoint Planar- \mathcal{F}-Deletion

* Recall that $r=|V(H)|$, and that $\operatorname{tw}(G[V \backslash X]) \leqslant t_{\mathcal{F}}$, so the set $X \subseteq V(G)$ will be the treewidth-bounding set which is given to the algorithm.
* But it turns out that, with input (G, X, r), the set Y_{0} output by our algorithm does not define a linear protrusion decomposition of G, which is crucial for us...

1 Guess the intersection $I=\tilde{X} \cap Y_{0}$ of the alt. solution \tilde{X} with Y_{0} s.t.:

- $G-I$ has a linear protrusion decomposition

$$
\mathcal{P}=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}
$$

- with $X \subseteq Y_{0}$ and $\tilde{X} \backslash I \subseteq V(G) \backslash Y_{0}$.

By carefully analyzing the output of our bag marking algorithm
2 Finally, compute $\tilde{X} \backslash I$, given a linear protrusion decomposition.
Based on the finite index of MSO-definable properties (automaton theory)

* Both steps can be done in single-exponential time.

First step: analysis of the bag marking algorithm

Lemma (edge simulation to chop bloom components)
If C_{1}, \ldots, C_{ℓ} is a collection of connected pairwise vertex-disjoint subgraphs of $G-X$ such that $\left|N_{X}\left(C_{i}\right)\right| \geqslant r$ for $1 \leqslant i \leqslant \ell$, then $\ell \leqslant\left(1+\alpha_{r}\right) \cdot k$.

First step: analysis of the bag marking algorithm

Lemma (edge simulation to chop bloom components)

If C_{1}, \ldots, C_{ℓ} is a collection of connected pairwise vertex-disjoint subgraphs of $G-X$ such that $\left|N_{X}\left(C_{i}\right)\right| \geqslant r$ for $1 \leqslant i \leqslant \ell$, then $\ell \leqslant\left(1+\alpha_{r}\right) \cdot k$.

Proposition (Thomason '01)

There exists a constant $\alpha<0.320$ such that any n-vertex graph with no K_{r}-minor has at most $\alpha_{r} \cdot n=(\alpha \cdot r \sqrt{\log r}) \cdot n$ edges.
(Recall that $r=|V(H)|$, for H being any planar graph in \mathcal{F})

First step: analysis of the bag marking algorithm

Lemma (edge simulation to chop bloom components)

If C_{1}, \ldots, C_{ℓ} is a collection of connected pairwise vertex-disjoint subgraphs of $G-X$ such that $\left|N_{X}\left(C_{i}\right)\right| \geqslant r$ for $1 \leqslant i \leqslant \ell$, then $\ell \leqslant\left(1+\alpha_{r}\right) \cdot k$.

Proposition (Thomason '01)

There exists a constant $\alpha<0.320$ such that any n-vertex graph with no K_{r}-minor has at most $\alpha_{r} \cdot n=(\alpha \cdot r \sqrt{\log r}) \cdot n$ edges.
(Recall that $r=|V(H)|$, for H being any planar graph in \mathcal{F})

First step: analysis of the bag marking algorithm

Lemma (edge simulation to chop bloom components)

If C_{1}, \ldots, C_{ℓ} is a collection of connected pairwise vertex-disjoint subgraphs of $G-X$ such that $\left|N_{X}\left(C_{i}\right)\right| \geqslant r$ for $1 \leqslant i \leqslant \ell$, then $\ell \leqslant\left(1+\alpha_{r}\right) \cdot k$.

Proposition (Thomason '01)

There exists a constant $\alpha<0.320$ such that any n-vertex graph with no K_{r}-minor has at most $\alpha_{r} \cdot n=(\alpha \cdot r \sqrt{\log r}) \cdot n$ edges.
(Recall that $r=|V(H)|$, for H being any planar graph in \mathcal{F})

Chopping bloom components (2)

Consider an optimal tree-decomposition $\mathcal{T}=(T, \mathcal{B})$ of a "bloom" connected component C of $G-X$ (i.e., $\left|N_{X}(C)\right| \geqslant r$)

Chopping bloom components (2)

Consider an optimal tree-decomposition $\mathcal{T}=(T, \mathcal{B})$ of a "bloom" connected component C of $G-X$ (i.e., $\left|N_{X}(C)\right| \geqslant r$)

Recall our bottom-up Bag Marking algorithm: if a bag B is the LCA of two marked bags of \mathcal{M}, or G_{B} contains a connected bloom component, then - $\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices in B from the bags of \mathcal{T}

Chopping bloom components (2)

Consider an optimal tree-decomposition $\mathcal{T}=(T, \mathcal{B})$ of a "bloom" connected component C of $G-X$ (i.e., $\left|N_{X}(C)\right| \geqslant r$)

Recall our bottom-up Bag Marking algorithm: if a bag B is the LCA of two marked bags of \mathcal{M}, or G_{B} contains a connected bloom component, then - $\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices in B from the bags of \mathcal{T}

Chopping bloom components (2)

Consider an optimal tree-decomposition $\mathcal{T}=(T, \mathcal{B})$ of a "bloom" connected component C of $G-X$ (i.e., $\left|N_{X}(C)\right| \geqslant r$)

Recall our bottom-up Bag Marking algorithm: if a bag B is the LCA of two marked bags of \mathcal{M}, or G_{B} contains a connected bloom component, then

- $\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices in B from the bags of \mathcal{T}

Chopping bloom components (2)

Consider an optimal tree-decomposition $\mathcal{T}=(T, \mathcal{B})$ of a "bloom" connected component C of $G-X$ (i.e., $\left|N_{X}(C)\right| \geqslant r$)

Recall our bottom-up Bag Marking algorithm: if a bag B is the LCA of two marked bags of \mathcal{M}, or G_{B} contains a connected bloom component, then - $\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices in B from the bags of \mathcal{T}

Chopping bloom components (2)

Consider an optimal tree-decomposition $\mathcal{T}=(T, \mathcal{B})$ of a "bloom" connected component C of $G-X$ (i.e., $\left|N_{X}(C)\right| \geqslant r$)

Recall our bottom-up Bag Marking algorithm: if a bag B is the LCA of two marked bags of \mathcal{M}, or G_{B} contains a connected bloom component, then

- $\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices in B from the bags of \mathcal{T}

Chopping bloom components (2)

Consider an optimal tree-decomposition $\mathcal{T}=(T, \mathcal{B})$ of a "bloom" connected component C of $G-X$ (i.e., $\left|N_{X}(C)\right| \geqslant r$)

Recall our bottom-up Bag Marking algorithm: if a bag B is the LCA of two marked bags of \mathcal{M}, or G_{B} contains a connected bloom component, then - $\mathcal{M} \leftarrow \mathcal{M} \cup\{B\}$ and remove the vertices in B from the bags of \mathcal{T}

Chopping bloom components (3)

Lemma ($\left|Y_{0}\right|=O(k)$ and every component is a protrusion)
If (G, X, k) is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then

- $Y_{0}=X \cup V(\mathcal{M})$ has size at most $k+2 t_{\mathcal{F}} \cdot\left(1+\alpha_{r}\right) \cdot k$.
- Every connected component C of $G-Y_{0}$ satisfies

$$
\left|N_{X}(C)\right| \leqslant r \text { and }\left|N_{Y_{0}}(C)\right| \leqslant r+2 t_{\mathcal{F}} .
$$

Chopping bloom components (3)

Lemma ($\left|Y_{0}\right|=O(k)$ and every component is a protrusion)
If (G, X, k) is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then

- $Y_{0}=X \cup V(\mathcal{M})$ has size at most $k+2 t_{\mathcal{F}} \cdot\left(1+\alpha_{r}\right) \cdot k$.
- Every connected component C of $G-Y_{0}$ satisfies

$$
\left|N_{X}(C)\right| \leqslant r \text { and }\left|N_{Y_{0}}(C)\right| \leqslant r+2 t_{\mathcal{F}} .
$$

- Note that $k=|X|$,

Chopping bloom components (3)

Lemma ($\left|Y_{0}\right|=O(k)$ and every component is a protrusion)
If (G, X, k) is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then

- $Y_{0}=X \cup V(\mathcal{M})$ has size at most $k+2 t_{\mathcal{F}} \cdot\left(1+\alpha_{r}\right) \cdot k$.
- Every connected component C of $G-Y_{0}$ satisfies

$$
\left|N_{X}(C)\right| \leqslant r \text { and }\left|N_{Y_{0}}(C)\right| \leqslant r+2 t_{\mathcal{F}} .
$$

- Note that $k=|X|$,
- $\operatorname{tw}(G-X) \leqslant t_{F}$, and

Chopping bloom components (3)

Lemma ($\left|Y_{0}\right|=O(k)$ and every component is a protrusion)
If (G, X, k) is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then

- $Y_{0}=X \cup V(\mathcal{M})$ has size at most $k+2 t_{\mathcal{F}} \cdot\left(1+\alpha_{r}\right) \cdot k$.
- Every connected component C of $G-Y_{0}$ satisfies

$$
\left|N_{X}(C)\right| \leqslant r \text { and }\left|N_{Y_{0}}(C)\right| \leqslant r+2 t_{\mathcal{F}} .
$$

- Note that $k=|X|$,
- $\operatorname{tw}(G-X) \leqslant t_{\mathcal{F}}$, and
- $|\mathcal{M}| \leqslant\left(1+\alpha_{r}\right) \cdot k$ (by the "edge simulation" Lemma)

Computing a linear protrusion decomposition

Remark: Therefore, Y_{0} and the connected components of $G-Y_{0}$ form a protrusion decomposition of G... but not a linear one!

Computing a linear protrusion decomposition

Remark: Therefore, Y_{0} and the connected components of $G-Y_{0}$ form a protrusion decomposition of $G \ldots$ but not a linear one!

We need that \#protrusions $=O(k)$.

Computing a linear protrusion decomposition

Remark: Therefore, Y_{0} and the connected components of $G-Y_{0}$ form a protrusion decomposition of $G \ldots$ but not a linear one!

We need that \#protrusions $=O(k)$.
Branching step:
Guess $I=\tilde{X} \cap Y_{0}$ among the $2^{O(k)}$ subsets of $V(\mathcal{M})$

Computing a linear protrusion decomposition

Remark: Therefore, Y_{0} and the connected components of $G-Y_{0}$ form a protrusion decomposition of $G \ldots$ but not a linear one!

We need that \#protrusions $=O(k)$.

Branching step:

$$
\text { Guess } I=\tilde{X} \cap Y_{0} \text { among the } 2^{O(k)} \text { subsets of } V(\mathcal{M})
$$

Let $G_{I}:=G-I$. Recall that a cluster of $G_{I}-Y_{0}$ is a maximal set of connected components of $G_{l}-Y_{0}$ with the same neighborhood in Y_{0}.

Linear protrusion decomposition (2)

> Lemma (For some choice of $I, \quad \#$ clusters $=O(k)$)
> If $\left(G_{l}, Y_{0} \backslash I, k-|I|\right)$ is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then the number ℓ of clusters of of $G_{l}-Y_{0}$ is at most $\left(5 t_{\mathcal{F}} \alpha_{r} \mu_{r}\right) \cdot k$.

Linear protrusion decomposition (2)

0

Lemma (For some choice of $I, \quad \#$ clusters $=O(k)$)
If $\left(G_{l}, Y_{0} \backslash I, k-|I|\right)$ is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then the number ℓ of clusters of of $G_{l}-Y_{0}$ is at most $\left(5 t_{\mathcal{F}} \alpha_{r} \mu_{r}\right) \cdot k$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu<11.355$ such that for all $r>2$, every n-vertex graph with no K_{r}-minor has at most $\mu_{r} \cdot n=2^{\mu \cdot r \log \log r} \cdot n$ cliques.

Linear protrusion decomposition (2)

givio

Lemma (For some choice of $I, \quad \#$ clusters $=O(k)$)

If $\left(G_{I}, Y_{0} \backslash I, k-|I|\right)$ is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then the number ℓ of clusters of of $G_{I}-Y_{0}$ is at most $\left(5 t_{\mathcal{F}} \alpha_{r} \mu_{r}\right) \cdot k$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu<11.355$ such that for all $r>2$, every n-vertex graph with no K_{r}-minor has at most $\mu_{r} \cdot n=2^{\mu \cdot r \log \log r} \cdot n$ cliques.
\star At most $\ell^{\prime}=k-\mid \|$ clusters $C_{1}, \ldots, C_{\ell^{\prime}}$ intersect the alternative solution \tilde{X}.

Linear protrusion decomposition (2)

O

Lemma (For some choice of $I, \quad \#$ clusters $=O(k)$)
If $\left(G_{l}, Y_{0} \backslash I, k-|I|\right)$ is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then the number ℓ of clusters of of $G_{l}-Y_{0}$ is at most $\left(5 t_{\mathcal{F}} \alpha_{r} \mu_{r}\right) \cdot k$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu<11.355$ such that for all $r>2$, every n-vertex graph with no K_{r}-minor has at most $\mu_{r} \cdot n=2^{\mu \cdot r \log \log r} \cdot n$ cliques.

We have that $G^{\prime}=G_{I}-\cup_{i=1}^{\ell^{\prime}} C_{i}$ is \mathcal{F}-minor-free.

Linear protrusion decomposition (2)

O

Lemma (For some choice of $I, \quad \#$ clusters $=O(k)$)
If $\left(G_{l}, Y_{0} \backslash I, k-|I|\right)$ is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then the number ℓ of clusters of of $G_{l}-Y_{0}$ is at most $\left(5 t_{\mathcal{F}} \alpha_{r} \mu_{r}\right) \cdot k$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu<11.355$ such that for all $r>2$, every n-vertex graph with no K_{r}-minor has at most $\mu_{r} \cdot n=2^{\mu \cdot r \log \log r} \cdot n$ cliques.
\star Using edge simulation we construct a minor of G^{\prime} on vertices of Y_{0}.

Linear protrusion decomposition (2)

O

Lemma (For some choice of $I, \quad \#$ clusters $=O(k)$)
If $\left(G_{l}, Y_{0} \backslash I, k-|I|\right)$ is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then the number ℓ of clusters of of $G_{l}-Y_{0}$ is at most $\left(5 t_{\mathcal{F}} \alpha_{r} \mu_{r}\right) \cdot k$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu<11.355$ such that for all $r>2$, every n-vertex graph with no K_{r}-minor has at most $\mu_{r} \cdot n=2^{\mu \cdot r \log \log r} \cdot n$ cliques.
\star As before, the number of clusters used so far is at most $\alpha_{r} \cdot k$.

Linear protrusion decomposition (2)

O

Lemma (For some choice of $I, \quad \#$ clusters $=O(k)$)
If $\left(G_{l}, Y_{0} \backslash I, k-|I|\right)$ is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then the number ℓ of clusters of of $G_{l}-Y_{0}$ is at most $\left(5 t_{\mathcal{F}} \alpha_{r} \mu_{r}\right) \cdot k$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu<11.355$ such that for all $r>2$, every n-vertex graph with no K_{r}-minor has at most $\mu_{r} \cdot n=2^{\mu \cdot r \log \log r} \cdot n$ cliques.

* When we cannot add more edges, all neighborhoods of clusters are cliques!

Linear protrusion decomposition (2)

O

Lemma (For some choice of $I, \quad \#$ clusters $=O(k)$)
If $\left(G_{l}, Y_{0} \backslash I, k-|I|\right)$ is a Yes-instance of Disjoint Planar- \mathcal{F}-Deletion, then the number ℓ of clusters of of $G_{l}-Y_{0}$ is at most $\left(5 t_{\mathcal{F}} \alpha_{r} \mu_{r}\right) \cdot k$.

Proposition (Fomin, Oum, Thilikos '10)

There exists a constant $\mu<11.355$ such that for all $r>2$, every n-vertex graph with no K_{r}-minor has at most $\mu_{r} \cdot n=2^{\mu \cdot r \log \log r} \cdot n$ cliques.

* Now we use the Proposition: the number of remaining clusters is $\mu_{r} \cdot k$.

Back to the road map of the algorithm

Therefore, the partition $\mathcal{P}=Y_{0} \uplus C_{1} \uplus \cdots \uplus C_{\ell}$ is a
$\left(O(k), r+2 t_{\mathcal{F}}\right)$-protrusion decomposition of $G_{I}=G-I$

Back to the road map of the algorithm

Therefore, the partition $\mathcal{P}=Y_{0} \uplus C_{1} \uplus \cdots \uplus C_{\ell}$ is a

$$
\left(O(k), r+2 t_{\mathcal{F}}\right) \text {-protrusion decomposition of } G_{l}=G-I
$$

Recall the two main steps of our algorithm:
1 Guess the intersection $I=\tilde{X} \cap Y_{0}$ of the alt. solution \tilde{X} with Y_{0} s.t.:

- $G-I$ has a linear protrusion decomposition

$$
\mathcal{P}=Y_{0} \uplus C_{1} \uplus \cdots \uplus C_{\ell}
$$

- with $X \subseteq Y_{0}$ and $\tilde{X} \backslash I \subseteq V(G) \backslash Y_{0}$.

Back to the road map of the algorithm

Therefore, the partition $\mathcal{P}=Y_{0} \uplus C_{1} \uplus \cdots \uplus C_{\ell}$ is a

$$
\left(O(k), r+2 t_{\mathcal{F}}\right) \text {-protrusion decomposition of } G_{I}=G-I
$$

Recall the two main steps of our algorithm:
1 Guess the intersection $I=\tilde{X} \cap Y_{0}$ of the alt. solution \tilde{X} with Y_{0} s.t.:

- $G-I$ has a linear protrusion decomposition

$$
\mathcal{P}=Y_{0} \uplus C_{1} \uplus \cdots \uplus C_{\ell}
$$

- with $X \subseteq Y_{0}$ and $\tilde{X} \backslash I \subseteq V(G) \backslash Y_{0}$.

2 Finally, compute $\tilde{X} \backslash I$, given a linear protrusion decomposition.
Based on the finite index of MSO-definable properties (automaton theory)

$$
5 \pi+\pi
$$

Solving the problem when given a linear protrusion decomposition

Main ingredients of our approach:

* We define an equivalence relation on subsets of vertices of each restricted protrusion Y_{i} (roughly, same class if they behave in the same way).

Solving the problem when given a linear protrusion decomposition

Main ingredients of our approach:

* We define an equivalence relation on subsets of vertices of each restricted protrusion Y_{i} (roughly, same class if they behave in the same way).
* Each of these equiv. relations defines finitely many equivalence classes s.t. any partial solution on Y_{i} can be replaced with one of the representatives. (by the finite index of MSO-definable properties)

Solving the problem when given a linear protrusion decomposition

Main ingredients of our approach:

* We define an equivalence relation on subsets of vertices of each restricted protrusion Y_{i} (roughly, same class if they behave in the same way).
* Each of these equiv. relations defines finitely many equivalence classes s.t. any partial solution on Y_{i} can be replaced with one of the representatives. (by the finite index of MSO-definable properties)
[Bodlaender, de Fluiter '01]
* We use a decomposability property of the solution: there exists a solution which is formed by the union of one representative per restricted protrusion.

Solving the problem when given a linear protrusion decomposition

Main ingredients of our approach:

* We define an equivalence relation on subsets of vertices of each restricted protrusion Y_{i} (roughly, same class if they behave in the same way).
* Each of these equiv. relations defines finitely many equivalence classes s.t. any partial solution on Y_{i} can be replaced with one of the representatives. (by the finite index of MSO-definable properties) [Bodlaender, de Fluiter '01]
* We use a decomposability property of the solution: there exists a solution which is formed by the union of one representative per restricted protrusion.
* To make the algorithm constructive and uniform on the family \mathcal{F}, we use classic arguments from tree automaton theory (like method of test sets).

Next subsection is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar- \mathcal{F}-Deletion
- Motivation and our result
- Sketch of proof
- Further research
(4) Linear kernels on graphs without topological minors
- Motivation and our result
- Idea of proof
- Further research

Conclusions and further research

Theorem

The Planar- \mathcal{F}-Deletion problem can be solved in time $2^{O(k)} \cdot n^{2}$.

Conclusions and further research

Theorem

The Planar- \mathcal{F}-Deletion problem can be solved in time $2^{O(k)} \cdot n^{2}$.
\star Can a single-exponential algorithm exist when the family \mathcal{F} does not contain any planar graph?

For $\mathcal{F}=\left\{K_{5}, K_{3,3}\right\}$, an explicit FPT algorithm is known.
It runs in time $2^{O(k \log k)} \cdot n$.

Conclusions and further research

Theorem

The Planar- \mathcal{F}-Deletion problem can be solved in time $2^{O(k)} \cdot n^{2}$.

Can a single-exponential algorithm exist when the family \mathcal{F} does not contain any planar graph?

For $\mathcal{F}=\left\{K_{5}, K_{3,3}\right\}$, an explicit FPT algorithm is known. It runs in time $2^{O(k \log k)} \cdot n$.

* There exists a randomized constant-factor approximation algorithm for Planar- \mathcal{F}-Deletion.
[Fomin, Lokshtanov, Misra, Saurabh '12]
Finding a deterministic constant-factor approximation remains open.

Conclusions and further research

Theorem

The Planar- \mathcal{F}-Deletion problem can be solved in time $2^{O(k)} \cdot n^{2}$.

Can a single-exponential algorithm exist when the family \mathcal{F} does not contain any planar graph?

For $\mathcal{F}=\left\{K_{5}, K_{3,3}\right\}$, an explicit FPT algorithm is known. It runs in time $2^{O(k \log k)} \cdot n$.

* There exists a randomized constant-factor approximation algorithm for Planar- \mathcal{F}-Deletion.
[Fomin, Lokshtanov, Misra, Saurabh '12]
Finding a deterministic constant-factor approximation remains open.
\star We could forbid the family of graphs \mathcal{F} according to another containment relation, like topological minor.

Next section is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar-F-Deletion
- Motivation and our result
- Sketch of proof
- Further research

4 Linear kernels on graphs without topological minors

- Motivation and our result
- Idea of proof
- Further research

Next subsection is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar-F-Deletion
- Motivation and our result
- Sketch of proof
- Further research
(4) Linear kernels on graphs without topological minors
- Motivation and our result
- Idea of proof
- Further research

Kernels

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in $|x|+k$, an instance $\left(x^{\prime}, k^{\prime}\right)$ s.t.:

$$
\star(x, k) \in \Pi \text { if and only if }\left(x^{\prime}, k^{\prime}\right) \in \Pi \text {, and }
$$

Kernels

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in $|x|+k$, an instance $\left(x^{\prime}, k^{\prime}\right)$ s.t.:
$\star(x, k) \in \Pi$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in \Pi$, and
\star Both $\left|x^{\prime}\right|, k^{\prime} \leqslant g(k)$, where g is some computable function.

Kernels

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in $|x|+k$, an instance $\left(x^{\prime}, k^{\prime}\right)$ s.t.:
$\star(x, k) \in \Pi$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in \Pi$, and
\star Both $\left|x^{\prime}\right|, k^{\prime} \leqslant g(k)$, where g is some computable function.
- The function g is called the size of the kernel.
* If $g(k)=k^{O(1)}: \Pi$ admits a polynomial kernel.
* If $g(k)=O(k): \Pi$ admits a linear kernel.

Kernels

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in $|x|+k$, an instance $\left(x^{\prime}, k^{\prime}\right)$ s.t.:
$\star(x, k) \in \Pi$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in \Pi$, and
\star Both $\left|x^{\prime}\right|, k^{\prime} \leqslant g(k)$, where g is some computable function.
- The function g is called the size of the kernel.
\star If $g(k)=k^{O(1)}: \Pi$ admits a polynomial kernel.
\star If $g(k)=O(k): \Pi$ admits a linear kernel.
- Folklore result: for a parameterized problem Π,

$$
\Pi \text { is FPT } \Leftrightarrow \Pi \text { admits a kernel }
$$

Kernels

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in $|x|+k$, an instance $\left(x^{\prime}, k^{\prime}\right)$ s.t.:
$\star(x, k) \in \Pi$ if and only if $\left(x^{\prime}, k^{\prime}\right) \in \Pi$, and
\star Both $\left|x^{\prime}\right|, k^{\prime} \leqslant g(k)$, where g is some computable function.
- The function g is called the size of the kernel.
\star If $g(k)=k^{O(1)}: \Pi$ admits a polynomial kernel.
\star If $g(k)=O(k): \Pi$ admits a linear kernel.
- Folklore result: for a parameterized problem Π,

$$
\Pi \text { is FPT } \Leftrightarrow \Pi \text { admits a kernel }
$$

- Question: which FPT problems admit linear or polynomial kernels?

Minors and topological minors

- H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.

Minors and topological minors

G

- H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.
- H is a topological minor of G if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of deg $\leqslant 2$.

Minors and topological minors

G

- H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.
- H is a topological minor of G if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of deg $\leqslant 2$.
- Therefore: H minor of $G \Rightarrow H$ topological minor of G.

Minors and topological minors

G

- H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.
- H is a topological minor of G if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of deg $\leqslant 2$.
- Therefore: H minor of $G \nLeftarrow H$ topological minor of G.

Minors and topological minors

- H is a minor of a graph G if H can be obtained from a subgraph of G by contracting edges.
- H is a topological minor of G if H can be obtained from a subgraph of G by contracting edges with at least one endpoint of deg $\leqslant 2$.
- Therefore: H minor of $G \nLeftarrow H$ topological minor of G.
- Fixed $H: H$-minor-free graphs $\subseteq H$-topological-minor-free graphs.

Linear kernels on sparse graphs - an overview

- Dominating Set on planar graphs.

Linear kernels on sparse graphs - an overview

- Dominating Set on planar graphs.
[Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs.
[Guo, Niedermeier '04]

Linear kernels on sparse graphs - an overview

- Dominating Set on planar graphs.
[Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs.
[Guo, Niedermeier '04]
- Meta-result for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

Linear kernels on sparse graphs - an overview

- Dominating Set on planar graphs.
[Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs.
[Guo, Niedermeier '04]
- Meta-result for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]
- Meta-result for H -minor-free graphs.

Linear kernels on sparse graphs - an overview

- Dominating Set on planar graphs.
[Alber, Fellows, Niedermeier '04]
- Framework for several problems on planar graphs.
[Guo, Niedermeier '04]
- Meta-result for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]
- Meta-result for H -minor-free graphs.
- Meta-result for H-topological-minor-free graphs.

Our result

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then П admits a linear kernel.

Our result

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

- A parameterized graph problem Π is treewidth-bounding if \exists constants c, t such that if $(G, k) \in \Pi$ then

$$
\exists X \subseteq V(G) \text { s.t. }|X| \leqslant c \cdot k \text { and } \operatorname{tw}(G-X) \leqslant t
$$

Our result

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then $П$ admits a linear kernel.

- A parameterized graph problem Π is treewidth-bounding if \exists constants c, t such that if $(G, k) \in \Pi$ then

$$
\exists X \subseteq V(G) \text { s.t. }|X| \leqslant c \cdot k \text { and } \operatorname{tw}(G-X) \leqslant t
$$

- FII allows us to replace large protrusions by smaller gadgets...

Our result

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

- A parameterized graph problem Π is treewidth-bounding if \exists constants c, t such that if $(G, k) \in \Pi$ then

$$
\exists X \subseteq V(G) \text { s.t. }|X| \leqslant c \cdot k \text { and } \operatorname{tw}(G-X) \leqslant t
$$

- FII allows us to replace large protrusions by smaller gadgets...
\star We assume that the gadgets are given. Our algorithm is non-uniform.

Our result

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of H-topological-minor-free graphs that is treewidth-bounding and has finite integer index (FII). Then Π admits a linear kernel.

- A parameterized graph problem Π is treewidth-bounding if \exists constants c, t such that if $(G, k) \in \Pi$ then

$$
\exists X \subseteq V(G) \text { s.t. }|X| \leqslant c \cdot k \text { and } \operatorname{tw}(G-X) \leqslant t
$$

- FII allows us to replace large protrusions by smaller gadgets...
\star We assume that the gadgets are given. Our algorithm is non-uniform.
Problems affected by our result:
Treewidth- t Vertex Deletion, Chordal Vertex Deletion, Interval Vertex Deletion, Edge Dominating Set, Feedback Vertex Set, Connected Vertex Cover, ...

Linear kernels on sparse graphs - the conditions

Are our conditions very restrictive?

We require FII + treewidth-bounding

Are our conditions very restrictive?

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.

Are our conditions very restrictive?

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?

Are our conditions very restrictive?

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?

Conditions on H -minor-free graphs: bidimensional + separation property.

Are our conditions very restrictive?

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?

Conditions on H -minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos '10]
But it holds that

$$
\text { bidimensional + separation property } \Rightarrow \text { treewidth-bounding }
$$

Are our conditions very restrictive?

We require FII + treewidth-bounding

- FII is necessary when using protrusion replacement rules.
- What about requiring the problems to be treewidth-bounding?

Conditions on H -minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos '10]
But it holds that

$$
\text { bidimensional + separation property } \Rightarrow \text { treewidth-bounding }
$$

- Thus, our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos '10]

Next subsection is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for PLANAR-F-Deletion
- Motivation and our result
- Sketch of proof
- Further research
(4) Linear kernels on graphs without topological minors
- Motivation and our result
- Idea of proof
- Further research

Finite Integer Index (FII)

Finite Integer Index (FII)

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_{1}, G_{2} be two t-boundaried graphs in \mathcal{G}_{t}.

Finite Integer Index (FII)

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_{1}, G_{2} be two t-boundaried graphs in \mathcal{G}_{t}.
- We say that $G_{1} \equiv_{\Pi, t} G_{2}$ if there exists a constant $\Delta_{\Pi, t}\left(G_{1}, G_{2}\right)$ such that for all t-boundaried graphs H and for all k :
(1) $G_{1} \oplus H \in \mathcal{G}$ iff $G_{2} \oplus H \in \mathcal{G}$;
(2) $\left(G_{1} \oplus H, k\right) \in \Pi$ iff $\left(G_{2} \oplus H, k+\Delta_{\Pi, t}\left(G_{1}, G_{2}\right)\right) \in \Pi$.

Finite Integer Index (FII)

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_{1}, G_{2} be two t-boundaried graphs in \mathcal{G}_{t}.
- We say that $G_{1} \equiv_{\Pi, t} G_{2}$ if there exists a constant $\Delta_{\Pi, t}\left(G_{1}, G_{2}\right)$ such that for all t-boundaried graphs H and for all k :
(1) $G_{1} \oplus H \in \mathcal{G}$ iff $G_{2} \oplus H \in \mathcal{G}$;
(2) $\left(G_{1} \oplus H, k\right) \in \Pi$ iff $\left(G_{2} \oplus H, k+\Delta_{\Pi, t}\left(G_{1}, G_{2}\right)\right) \in \Pi$.
- Problem Π has FII in the class \mathcal{G} if for every integer t, the equivalence relation $\equiv_{\Pi, t}$ has a finite number of equivalence classes.

Finite Integer Index (FII)

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_{1}, G_{2} be two t-boundaried graphs in \mathcal{G}_{t}.
- We say that $G_{1} \equiv \Pi_{, t} G_{2}$ if there exists a constant $\Delta_{\Pi, t}\left(G_{1}, G_{2}\right)$ such that for all t-boundaried graphs H and for all k :
(1) $G_{1} \oplus H \in \mathcal{G}$ iff $G_{2} \oplus H \in \mathcal{G}$;
(2) $\left(G_{1} \oplus H, k\right) \in \Pi$ iff $\left(G_{2} \oplus H, k+\Delta_{\Pi, t}\left(G_{1}, G_{2}\right)\right) \in \Pi$.
- Problem Π has FII in the class \mathcal{G} if for every integer t, the equivalence relation $\equiv_{n, t}$ has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_{t}) from the same equivalence class.

Finite Integer Index (FII)

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_{1}, G_{2} be two t-boundaried graphs in \mathcal{G}_{t}.
- We say that $G_{1} \equiv_{\Pi, t} G_{2}$ if there exists a constant $\Delta_{\Pi, t}\left(G_{1}, G_{2}\right)$ such that for all t-boundaried graphs H and for all k :
(1) $G_{1} \oplus H \in \mathcal{G}$ iff $G_{2} \oplus H \in \mathcal{G}$;
(2) $\left(G_{1} \oplus H, k\right) \in \Pi$ iff $\left(G_{2} \oplus H, k+\Delta_{\Pi, t}\left(G_{1}, G_{2}\right)\right) \in \Pi$.
- Problem Π has FII in the class \mathcal{G} if for every integer t, the equivalence relation $\equiv_{n, t}$ has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_{t}) from the same equivalence class.
- The protrusion limit of Π is a function $\rho_{\Pi}: \mathbb{N} \rightarrow \mathbb{N}$ defined as $\rho_{\Pi}(t)=\max _{G \in \mathcal{R}_{t}}|V(G)|$.

Finite Integer Index (FII)

- Let Π be a parameterized graph problem restricted to a graph class \mathcal{G} and let G_{1}, G_{2} be two t-boundaried graphs in \mathcal{G}_{t}.
- We say that $G_{1} \equiv_{\Pi, t} G_{2}$ if there exists a constant $\Delta_{\Pi, t}\left(G_{1}, G_{2}\right)$ such that for all t-boundaried graphs H and for all k :
(1) $G_{1} \oplus H \in \mathcal{G}$ iff $G_{2} \oplus H \in \mathcal{G}$;
(2) $\left(G_{1} \oplus H, k\right) \in \Pi$ iff $\left(G_{2} \oplus H, k+\Delta_{\Pi, t}\left(G_{1}, G_{2}\right)\right) \in \Pi$.
- Problem Π has FII in the class \mathcal{G} if for every integer t, the equivalence relation $\equiv_{n, t}$ has a finite number of equivalence classes.
- Main idea If a parameterized problem has FII then its instances can be reduced by replacing any "large" protrusion by a "small" gadget (representative in a set \mathcal{R}_{t}) from the same equivalence class.
- The protrusion limit of Π is a function $\rho_{\Pi}: \mathbb{N} \rightarrow \mathbb{N}$ defined as $\rho_{\Pi}(t)=\max _{G \in \mathcal{R}_{t}}|V(G)|$. We also define $\rho_{\Pi}^{\prime}(t)=\rho_{\Pi}(2 t)$.

Disconnected Planar- \mathcal{F}-Deletion has not FII

- We prove: if \mathcal{F} is a family of graphs containing some disconnected graph H, then Planar- \mathcal{F}-Deletion has not FII (in general).

Disconnected Planar- \mathcal{F}-Deletion has not FII

- Let o- Π be the non-parameterized version of Planar- \mathcal{F}-Deletion. Let G_{1} and G_{2} be two t-boundaried graphs.

Disconnected Planar- \mathcal{F}-Deletion has not FII

- Let o-П be the non-parameterized version of Planar- \mathcal{F}-Deletion. Let G_{1} and G_{2} be two t-boundaried graphs. We define $G_{1} \sim_{\Pi, t} G_{2}$ iff \exists integer i such that $\forall t$-boundaried graph H, it holds

$$
\pi\left(G_{1} \oplus H\right)=\pi\left(G_{2} \oplus H\right)+i
$$

where $\pi(G)$ denotes the optimal value of problem o-П on graph G.

Disconnected Planar- \mathcal{F}-Deletion has not FII

- Let $o-\Pi$ be the non-parameterized version of Planar- \mathcal{F}-Deletion. Let G_{1} and G_{2} be two t-boundaried graphs. We define $G_{1} \sim_{\Pi, t} G_{2}$ iff \exists integer i such that $\forall t$-boundaried graph H, it holds

$$
\pi\left(G_{1} \oplus H\right)=\pi\left(G_{2} \oplus H\right)+i
$$

where $\pi(G)$ denotes the optimal value of problem o-П on graph G.

- We let $F_{1}=K_{4}, F_{2}=K_{2,3}, F:=F_{1} \uplus F_{2}$, and $\mathcal{F}=\{F\}$.

Disconnected Planar- \mathcal{F}-Deletion has not FII

- Let $o-\Pi$ be the non-parameterized version of Planar- \mathcal{F}-Deletion. Let G_{1} and G_{2} be two t-boundaried graphs. We define $G_{1} \sim_{\Pi, t} G_{2}$ iff \exists integer i such that $\forall t$-boundaried graph H, it holds

$$
\pi\left(G_{1} \oplus H\right)=\pi\left(G_{2} \oplus H\right)+i
$$

where $\pi(G)$ denotes the optimal value of problem o-П on graph G.

- We let $F_{1}=K_{4}, F_{2}=K_{2,3}, F:=F_{1} \uplus F_{2}$, and $\mathcal{F}=\{F\}$.
- For $i \geqslant 1$, let $G_{i}\left(\right.$ resp. $\left.H_{i}\right)$ be the 1 -boundaried graph consisting of a boundary vertex $v($ resp. $u)$ together with i disjoint copies of F_{1} (resp. F_{2}) joined to v (resp. u) by an edge.

Disconnected Planar- \mathcal{F}-Deletion has not FII

- Let $o-\Pi$ be the non-parameterized version of Planar- \mathcal{F}-Deletion. Let G_{1} and G_{2} be two t-boundaried graphs. We define $G_{1} \sim_{\Pi, t} G_{2}$ iff \exists integer i such that $\forall t$-boundaried graph H, it holds

$$
\pi\left(G_{1} \oplus H\right)=\pi\left(G_{2} \oplus H\right)+i
$$

where $\pi(G)$ denotes the optimal value of problem o-П on graph G.

- We let $F_{1}=K_{4}, F_{2}=K_{2,3}, F:=F_{1} \uplus F_{2}$, and $\mathcal{F}=\{F\}$.
- For $i \geqslant 1$, let $G_{i}\left(\right.$ resp. $\left.H_{i}\right)$ be the 1 -boundaried graph consisting of a boundary vertex $v($ resp. $u)$ together with i disjoint copies of F_{1} (resp. F_{2}) joined to v (resp. u) by an edge.
- By construction, if $i, j \geqslant 1$, it holds $\pi\left(G_{i} \oplus H_{j}\right)=\min \{i, j\}$.

Disconnected Planar- \mathcal{F}-Deletion has not FII

- Let o- Π be the non-parameterized version of Planar- \mathcal{F}-Deletion. Let G_{1} and G_{2} be two t-boundaried graphs. We define $G_{1} \sim_{\Pi, t} G_{2}$ iff \exists integer i such that $\forall t$-boundaried graph H, it holds

$$
\pi\left(G_{1} \oplus H\right)=\pi\left(G_{2} \oplus H\right)+i
$$

where $\pi(G)$ denotes the optimal value of problem o-П on graph G.

- We let $F_{1}=K_{4}, F_{2}=K_{2,3}, F:=F_{1} \uplus F_{2}$, and $\mathcal{F}=\{F\}$.
- For $i \geqslant 1$, let G_{i} (resp. H_{i}) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F_{1} (resp. F_{2}) joined to v (resp. u) by an edge.
- By construction, if $i, j \geqslant 1$, it holds $\pi\left(G_{i} \oplus H_{j}\right)=\min \{i, j\}$.
- Then, if we take $1 \leqslant n<m$,

$$
\begin{aligned}
\pi\left(G_{n} \oplus H_{n-1}\right)-\pi\left(G_{m} \oplus H_{n-1}\right) & =(n-1)-(n-1)=0 \\
\pi\left(G_{n} \oplus H_{m}\right)-\pi\left(G_{m} \oplus H_{m}\right) & =n-m<0 .
\end{aligned}
$$

Disconnected Planar- \mathcal{F}-Deletion has not FII

- Let $o-\Pi$ be the non-parameterized version of Planar- \mathcal{F}-Deletion. Let G_{1} and G_{2} be two t-boundaried graphs. We define $G_{1} \sim_{\Pi, t} G_{2}$ iff \exists integer i such that $\forall t$-boundaried graph H, it holds

$$
\pi\left(G_{1} \oplus H\right)=\pi\left(G_{2} \oplus H\right)+i
$$

where $\pi(G)$ denotes the optimal value of problem o-П on graph G.

- We let $F_{1}=K_{4}, F_{2}=K_{2,3}, F:=F_{1} \uplus F_{2}$, and $\mathcal{F}=\{F\}$.
- For $i \geqslant 1$, let G_{i} (resp. H_{i}) be the 1-boundaried graph consisting of a boundary vertex v (resp. u) together with i disjoint copies of F_{1} (resp. F_{2}) joined to v (resp. u) by an edge.
- By construction, if $i, j \geqslant 1$, it holds $\pi\left(G_{i} \oplus H_{j}\right)=\min \{i, j\}$.
- Then, if we take $1 \leqslant n<m$,

$$
\begin{aligned}
\pi\left(G_{n} \oplus H_{n-1}\right)-\pi\left(G_{m} \oplus H_{n-1}\right) & =(n-1)-(n-1)=0 \\
\pi\left(G_{n} \oplus H_{m}\right)-\pi\left(G_{m} \oplus H_{m}\right) & =n-m<0 .
\end{aligned}
$$

- Thus, $G_{n}, G_{m} \notin$ same equiv. class of $\sim \pi, 1$ whenever $1 \leqslant n \leqslant m$.

Some important ingredients

Some important ingredients
 (suppose problem Π has FII)

Lemma (The parameter does not increase)
\forall fixed t, \exists finite set \mathcal{R}_{t} of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_{t} \exists G^{\prime} \in \mathcal{R}_{t}$ s.t. $G \equiv_{\Pi, t} G^{\prime}$ and $\Delta_{\Pi, t}\left(G, G^{\prime}\right) \geqslant 0$.

Some important ingredients

Lemma (The parameter does not increase)

\forall fixed t, \exists finite set \mathcal{R}_{t} of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_{t} \exists G^{\prime} \in \mathcal{R}_{t}$ s.t. $G \equiv_{\Pi, t} G^{\prime}$ and $\Delta_{\Pi, t}\left(G, G^{\prime}\right) \geqslant 0$.

Lemma (Finding maximum sized protrusions)
Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O\left(n^{t+1}\right)$.

Some important ingredients

Lemma (The parameter does not increase)

\forall fixed t, \exists finite set \mathcal{R}_{t} of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_{t} \exists G^{\prime} \in \mathcal{R}_{t}$ s.t. $G \equiv_{\Pi, t} G^{\prime}$ and $\Delta_{\Pi, t}\left(G, G^{\prime}\right) \geqslant 0$.

Lemma (Finding maximum sized protrusions)
Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O\left(n^{t+1}\right)$.

Lemma (Big... but not too big!)

If one is given a t-protrusion $X \subseteq V(G)$ s.t. $\rho_{\Pi}^{\prime}(t)<|X|$, then one can, in time $O(|X|)$, find an equiv. 2t-protrusion W s.t. $\rho_{\Pi}^{\prime}(t)<|W| \leqslant 2 \cdot \rho_{\Pi}^{\prime}(t)$.

Some important ingredients

Lemma (The parameter does not increase)

\forall fixed t, \exists finite set \mathcal{R}_{t} of t-boundaried graphs s.t. for each t-boundaried graph $G \in \mathcal{G}_{t} \exists G^{\prime} \in \mathcal{R}_{t}$ s.t. $G \equiv \equiv_{\Pi, t} G^{\prime}$ and $\Delta_{\Pi, t}\left(G, G^{\prime}\right) \geqslant 0$.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G, a t-protrusion of G with the maximum number of vertices can be found in time $O\left(n^{t+1}\right)$.

Lemma (Big... but not too big!)

If one is given a t-protrusion $X \subseteq V(G)$ s.t. $\rho_{\Pi}^{\prime}(t)<|X|$, then one can, in time $O(|X|)$, find an equiv. 2t-protrusion W s.t. $\rho_{\Pi}^{\prime}(t)<|W| \leqslant 2 \cdot \rho_{\Pi}^{\prime}(t)$.

Lemma (Replacing protrusions of constant size)

For $t \in \mathbb{N}$, suppose that the set \mathcal{R}_{t} of representatives of $\equiv_{\Pi, t}$ is given. If W is a t-protrusion of size at most a fixed constant c, then one can decide in constant time which $G^{\prime} \in \mathcal{R}_{t}$ satisfies $G^{\prime} \equiv \equiv_{\Pi, t} G[W]$.

Protrusion replacement

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).

Protrusion replacement

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W^{\prime} \subseteq V(G)$ s.t. $\left|W^{\prime}\right|>\rho_{\Pi}^{\prime}(t)$.

Protrusion replacement

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W^{\prime} \subseteq V(G)$ s.t. $\left|W^{\prime}\right|>\rho_{\Pi}^{\prime}(t)$.
- Let $W \subseteq V(G)$ be a $2 t$-protrusion of G s.t. $\rho_{\Pi}^{\prime}(t)<|W| \leqslant 2 \cdot \rho_{\Pi}^{\prime}(t)$.

Protrusion replacement

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W^{\prime} \subseteq V(G)$ s.t. $\left|W^{\prime}\right|>\rho_{\Pi}^{\prime}(t)$.
- Let $W \subseteq V(G)$ be a $2 t$-protrusion of G s.t. $\rho_{\Pi}^{\prime}(t)<|W| \leqslant 2 \cdot \rho_{\Pi}^{\prime}(t)$.
- We let G_{W} denote the $2 t$-boundaried graph $G[W]$ with boundary $\mathbf{b d}\left(G_{W}\right)=\partial_{G}(W)$.

Protrusion replacement

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W^{\prime} \subseteq V(G)$ s.t. $\left|W^{\prime}\right|>\rho_{\Pi}^{\prime}(t)$.
- Let $W \subseteq V(G)$ be a $2 t$-protrusion of G s.t. $\rho_{\Pi}^{\prime}(t)<|W| \leqslant 2 \cdot \rho_{\Pi}^{\prime}(t)$.
- We let G_{W} denote the $2 t$-boundaried graph $G[W]$ with boundary $\mathbf{b d}\left(G_{W}\right)=\partial_{G}(W)$.
- Let further $G_{1} \in \mathcal{R}_{2 t}$ be the representative of G_{W} for the equivalence relation $\equiv п,|\partial(W)|$.

Protrusion replacement

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W^{\prime} \subseteq V(G)$ s.t. $\left|W^{\prime}\right|>\rho_{\Pi}^{\prime}(t)$.
- Let $W \subseteq V(G)$ be a $2 t$-protrusion of G s.t. $\rho_{\Pi}^{\prime}(t)<|W| \leqslant 2 \cdot \rho_{\Pi}^{\prime}(t)$.
- We let G_{W} denote the $2 t$-boundaried graph $G[W]$ with boundary $\mathbf{b d}\left(G_{W}\right)=\partial_{G}(W)$.
- Let further $G_{1} \in \mathcal{R}_{2 t}$ be the representative of G_{W} for the equivalence relation $\equiv п,|\partial(W)|$.
- The protrusion reduction rule (for boundary size t) is the following:

$$
\begin{aligned}
& \text { Reduce }(G, k) \\
& \text { to }\left(G^{\prime}, k^{\prime}\right)=\left(G[V \backslash W] \oplus G_{1}, k-\Delta_{\Pi, 2 t}\left(G_{1}, G_{W}\right)\right)
\end{aligned}
$$

Protrusion replacement

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W^{\prime} \subseteq V(G)$ s.t. $\left|W^{\prime}\right|>\rho_{\Pi}^{\prime}(t)$.
- Let $W \subseteq V(G)$ be a $2 t$-protrusion of G s.t. $\rho_{\Pi}^{\prime}(t)<|W| \leqslant 2 \cdot \rho_{\Pi}^{\prime}(t)$.
- We let G_{W} denote the $2 t$-boundaried graph $G[W]$ with boundary $\mathbf{b d}\left(G_{W}\right)=\partial_{G}(W)$.
- Let further $G_{1} \in \mathcal{R}_{2 t}$ be the representative of G_{W} for the equivalence relation $\equiv п,|\partial(W)|$.
- The protrusion reduction rule (for boundary size t) is the following:

$$
\begin{aligned}
& \text { Reduce }(G, k) \\
& \text { to }\left(G^{\prime}, k^{\prime}\right)=\left(G[V \backslash W] \oplus G_{1}, k-\Delta_{\Pi, 2 t}\left(G_{1}, G_{W}\right)\right)
\end{aligned}
$$

It runs in polynomial time...

Protrusion replacement

Protrusion reduction rule

- Let $(G, k) \in \Pi$ and let $t \in \mathbb{N}$ be a constant (to be fixed later).
- Suppose that G has a t-protrusion $W^{\prime} \subseteq V(G)$ s.t. $\left|W^{\prime}\right|>\rho_{\Pi}^{\prime}(t)$.
- Let $W \subseteq V(G)$ be a $2 t$-protrusion of G s.t. $\rho_{\Pi}^{\prime}(t)<|W| \leqslant 2 \cdot \rho_{\Pi}^{\prime}(t)$.
- We let G_{W} denote the $2 t$-boundaried graph $G[W]$ with boundary $\mathbf{b d}\left(G_{W}\right)=\partial_{G}(W)$.
- Let further $G_{1} \in \mathcal{R}_{2 t}$ be the representative of G_{W} for the equivalence relation $\equiv п,|\partial(W)|$.
- The protrusion reduction rule (for boundary size t) is the following:

$$
\begin{aligned}
& \text { Reduce }(G, k) \\
& \text { to }\left(G^{\prime}, k^{\prime}\right)=\left(G[V \backslash W] \oplus G_{1}, k-\Delta_{\Pi, 2 t}\left(G_{1}, G_{W}\right)\right) .
\end{aligned}
$$

It runs in polynomial time... given the sets of representatives!

Protrusion decompositions (in case someone forgot!)

An (α, t)-protrusion decomposition of a graph G is a partition $\mathcal{P}=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}$ of $V(G)$ such that:

- for every $1 \leqslant i \leqslant \ell, N\left(Y_{i}\right) \subseteq Y_{0}$;
- for every $1 \leqslant i \leqslant \ell, Y_{i} \cup N_{Y_{0}}\left(Y_{i}\right)$ is a t-protrusion of G;
- $\max \left\{\ell,\left|Y_{0}\right|\right\} \leqslant \alpha$.

Kernelization algorithm

(1) We apply exhaustively the protrusion replacement rule.

Kernelization algorithm

(1) We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leqslant \beta$, every t-protrusion W of G has size $\leqslant \rho_{\Pi}^{\prime}(t)$.

Kernelization algorithm

(1) We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leqslant \beta$, every t-protrusion W of G has size $\leqslant \rho_{\Pi}^{\prime}(t)$.
We can choose $\beta:=2 t+\omega(H)$, where t comes from the treewidth-bounding property of Π.

Kernelization algorithm

(1) We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leqslant \beta$, every t-protrusion W of G has size $\leqslant \rho_{\Pi}^{\prime}(t)$.
We can choose $\beta:=2 t+\omega(H)$, where t comes from the treewidth-bounding property of Π.
(2) We use protrusion decompositions to analyze the kernel size.

Kernelization algorithm

(1) We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leqslant \beta$, every t-protrusion W of G has size $\leqslant \rho_{\Pi}^{\prime}(t)$.
We can choose $\beta:=2 t+\omega(H)$, where t comes from the treewidth-bounding property of Π.
(2) We use protrusion decompositions to analyze the kernel size.

Using what we explained before, we can easily prove that:
Let Π be a parameterized graph problem that has FII and is t-treewidth-bounding, both on the class of H -topological-minor-free graphs.

Kernelization algorithm

(1) We apply exhaustively the protrusion replacement rule.

If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary size β (this can be done in polynomial time), $\forall t \leqslant \beta$, every t-protrusion W of G has size $\leqslant \rho_{\Pi}^{\prime}(t)$.
We can choose $\beta:=2 t+\omega(H)$, where t comes from the treewidth-bounding property of Π.
(2) We use protrusion decompositions to analyze the kernel size.

Using what we explained before, we can easily prove that:
Let Π be a parameterized graph problem that has FII and is t-treewidth-bounding, both on the class of H -topological-minor-free graphs. Then any reduced Yes-instance (G, k) has a protrusion decomposition $V(G)=Y_{0} \uplus Y_{1} \uplus \cdots \uplus Y_{\ell}$ s.t.:
(1) $\left|Y_{0}\right|=O(k)$;
(2) $\left|Y_{i}\right| \leqslant \rho_{\Pi}^{\prime}\left(2 t+\omega_{\mathcal{H}}\right)$ for $1 \leqslant i \leqslant \ell$; and
(3) $\ell=O(k)$.

Next subsection is...

(1) Preliminaries

(2) Protrusion decompositions

- Definitions
- A simple algorithm to compute them
(3) Single-exponential algorithm for Planar-F-Deletion
- Motivation and our result
- Sketch of proof
- Further research
(4) Linear kernels on graphs without topological minors
- Motivation and our result
- Idea of proof
- Further research

Limits of our approach and further research

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?

Limits of our approach and further research

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
(1) A class \mathcal{G} of graphs locally excludes a minor if $\forall r \in \mathbb{N}, \exists H_{r}$ s.t. the r-neighborhood of a vertex of any graph of \mathcal{G} excludes H_{r} as a minor. (includes H -minor-free but incomparable with H -topological-minor-free)

Limits of our approach and further research

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
(1) A class \mathcal{G} of graphs locally excludes a minor if $\forall r \in \mathbb{N}, \exists H_{r}$ s.t. the r-neighborhood of a vertex of any graph of \mathcal{G} excludes H_{r} as a minor. (includes H -minor-free but incomparable with H -topological-minor-free)

Except for a very restricted case, our technique fails.

Limits of our approach and further research

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
(1) A class \mathcal{G} of graphs locally excludes a minor if $\forall r \in \mathbb{N}, \exists H_{r}$ s.t. the r-neighborhood of a vertex of any graph of \mathcal{G} excludes H_{r} as a minor. (includes H -minor-free but incomparable with H -topological-minor-free)
Except for a very restricted case, our technique fails.
(2) Graphs of bounded expansion (contains H -topological-minor-free)?

Limits of our approach and further research

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
(1) A class \mathcal{G} of graphs locally excludes a minor if $\forall r \in \mathbb{N}, \exists H_{r}$ s.t. the r-neighborhood of a vertex of any graph of \mathcal{G} excludes H_{r} as a minor. (includes H -minor-free but incomparable with H -topological-minor-free)
Except for a very restricted case, our technique fails.
(2) Graphs of bounded expansion (contains H-topological-minor-free)?

Obtaining a kernel for Treewidth- t Vertex Deletion on graphs of bounded expansion is as hard as on general graphs.

Limits of our approach and further research

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
(1) A class \mathcal{G} of graphs locally excludes a minor if $\forall r \in \mathbb{N}, \exists H_{r}$ s.t. the r-neighborhood of a vertex of any graph of \mathcal{G} excludes H_{r} as a minor. (includes H -minor-free but incomparable with H -topological-minor-free)
Except for a very restricted case, our technique fails.
(2) Graphs of bounded expansion (contains H-topological-minor-free)?

Obtaining a kernel for Treewidth- t Vertex Deletion on graphs of bounded expansion is as hard as on general graphs.
Best known kernel: $k^{O(t)}$.

Limits of our approach and further research

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
(1) A class \mathcal{G} of graphs locally excludes a minor if $\forall r \in \mathbb{N}, \exists H_{r}$ s.t. the r-neighborhood of a vertex of any graph of \mathcal{G} excludes H_{r} as a minor. (includes H -minor-free but incomparable with H -topological-minor-free)
Except for a very restricted case, our technique fails.
(2) Graphs of bounded expansion (contains H-topological-minor-free)?

Obtaining a kernel for Treewidth- t Vertex Deletion on graphs of bounded expansion is as hard as on general graphs.
Best known kernel: $k^{O(t)}$.

- Constructing the kernels? Finding the sets of representatives!!

Limits of our approach and further research

- For which notions of sparseness (beyond H-topological-minor-free graphs) can we use our technique to obtain polynomial kernels?
(1) A class \mathcal{G} of graphs locally excludes a minor if $\forall r \in \mathbb{N}, \exists H_{r}$ s.t. the r-neighborhood of a vertex of any graph of \mathcal{G} excludes H_{r} as a minor. (includes H -minor-free but incomparable with H -topological-minor-free)
Except for a very restricted case, our technique fails.
(2) Graphs of bounded expansion (contains H-topological-minor-free)?

Obtaining a kernel for Treewidth- t Vertex Deletion on graphs of bounded expansion is as hard as on general graphs.
Best known kernel: $k^{O(t)}$.

- Constructing the kernels? Finding the sets of representatives!!
- Explicit constants? Lower bounds on their size?

Gràcies!

