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Some words on parameterized complexity

Idea given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable”.

Example: the size of a Vertex Cover.

Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time

f (k) · nO(1), for some function f .

Examples: k-Vertex Cover, k-Longest Path.

A single-exponential parameterized algorithm is an FPT algo s.t.

f (k) = 2O(k).
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The decomposition paradigm — “Divide et impera”

Many hard algorithmic graph problems become easier if one
is able to find a suitable decomposition of the input graph.

Some famous examples:

PTAS and exact subexponential algorithms based on finding
separators of size O(

√
n) on planar graphs. [Baker’s approach]

Linear-time algorithms for problems expressible in MSOL on
graphs of bounded treewidth. [Coucelle’s theorem]

FPT algorithms based on the structural decomposition result of
H-minor-free graphs. [Graph Minors theory by Robertson and Seymour]

Linear-time algorithms based on modular decompositions.
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Protrusions
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos ’09]

Given a graph G , a set W ⊆ V (G ) is a t-protrusion of G if

|∂G (W )| 6 t and tw(G [W ]) 6 t

(Figure by Felix Reidl)

The vertex set W ′ = W \ ∂G (W ) is the restricted protrusion of W .

We call ∂G (W ) the boundary and |W | the size of W .
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Protrusion decompositions

An (α, t)-protrusion decomposition of a graph G is a partition
P = Y0 ] Y1 ] · · · ] Y` of V (G ) such that:

for every 1 6 i 6 `, N(Yi ) ⊆ Y0;

for every 1 6 i 6 `, Yi ∪ NY0(Yi ) is a t-protrusion of G ;

max{`, |Y0|} 6 α.

(Figure by Felix Reidl)The set Y0 is called the separating part of P.
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Main (informal) ideas of our algorithm

Protrusion decompositions have already been used in the literature.
[Bodlaender, Fomin, Lokshtanov, Saurabh, Thilikos ’09-12]

Our algorithm marks the bags of a tree-decomposition of G .

Let r be an integer that is also given to the algorithm.

Given tree-decompositions of the conn. comp. of G − X with > r neighbors
in X , we identify a set of bags M in a bottom-up manner.

Bloom components Bud components

The set V (M) of vertices contained in marked bags together with X will
form the separating part Y0 of the protrusion decomposition.

Some marked bags will be mapped bijectively into pairwise vertex-disjoint
connected subgraphs of G − X , each of which has > r neighbors in X .

Finally, to guarantee that the conn. comp. of G − (X ∪ V (M)) form

protrusions with small boundary, the set M is closed under taking LCA.
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Description of the bag marking algorithm

Input G , X ⊆ V (G ) s.t. tw(G − X ) 6 t, and an integer r > 0.

? Set M← ∅ as the set of marked bags.

? Compute an optimal rooted tree-decomposition TC = (TC ,BC ) of
every connected component C of G − X such that |NX (C )| > r .

? Repeat the following loop for every rooted tree-decomposition TC :

while TC contains an unprocessed bag do:
? Let B be an unprocess. bag at farthest distance from the root of TC .

? LCA marking step

if B is the LCA of two marked bags ofM:
M←M∪ {B} and remove the vertices of B from every bag of TC .

? Bloom-subgraph marking step

else if GB contains a connected component CB s.t. |NX (CB)| > r :
M←M∪ {B} and remove the vertices of B from every bag of TC .

? Bag B is now processed.

Return Y0 = X ∪ V (M).
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Some properties of the bag marking algorithm

Lemma

The bag marking algorithm can be implemented to run in O(n) time,
where the hidden constant depends only on t and r .

Given a graph G and a subset S ⊆ V (G ), a cluster of G − S is a maximal

collection of connected components of G − S with the same neighborhood in S .

Proposition

Let r , t be two positive integers,

let G be a graph and X ⊆ V (G ) such that tw(G − X ) 6 t,

let Y0 ⊆ V (G ) be the output of the algorithm with input (G ,X , r), and

let Y1, . . . ,Y` be the set of clusters of G − Y0.

Then P := Y0 ]Y1 ] · · · ]Y` is a (max{`, |Y0|}, 2t + r)-protrusion decomp. of G .

(Figure by Felix Reidl)
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The (parameterized) Planar-F-Deletion problem

Let F be a finite family of graphs containing at least one planar graph.

Planar-F-Deletion
Input: A graph G and a non-negative integer k .
Parameter: The integer k .
Question: Does G have a set X ⊆ V (G ) such that |X | 6 k and

G − X is H-minor-free for every H ∈ F?

Some particular cases:

1 F = {K2} : ≡ Vertex Cover
≡ Treewidth-zero Vertex Deletion

2 F = {K3} : ≡ Feedback Vertex Set
≡ Treewidth-one Vertex Deletion

3 F = {K4} : ≡ Treewidth-two Vertex Deletion

16/50



The (parameterized) Planar-F-Deletion problem

Let F be a finite family of graphs containing at least one planar graph.

Planar-F-Deletion
Input: A graph G and a non-negative integer k .
Parameter: The integer k .
Question: Does G have a set X ⊆ V (G ) such that |X | 6 k and

G − X is H-minor-free for every H ∈ F?

Some particular cases:

1 F = {K2} : ≡ Vertex Cover
≡ Treewidth-zero Vertex Deletion

2 F = {K3} : ≡ Feedback Vertex Set
≡ Treewidth-one Vertex Deletion

3 F = {K4} : ≡ Treewidth-two Vertex Deletion

16/50



The (parameterized) Planar-F-Deletion problem

Let F be a finite family of graphs containing at least one planar graph.

Planar-F-Deletion
Input: A graph G and a non-negative integer k .
Parameter: The integer k .
Question: Does G have a set X ⊆ V (G ) such that |X | 6 k and

G − X is H-minor-free for every H ∈ F?

Some particular cases:

1 F = {K2} : ≡ Vertex Cover
≡ Treewidth-zero Vertex Deletion

2 F = {K3} : ≡ Feedback Vertex Set
≡ Treewidth-one Vertex Deletion

3 F = {K4} : ≡ Treewidth-two Vertex Deletion

16/50



How fast can Planar-F-Deletion be solved?

Particular cases:

F = {K2} O∗(1.2738k) [Chen, Fernau, Kanj, Xia ’10]

F = {K3} O∗(3.83k) [Cao, Chen, Liu ’10]

F = {θr} O∗(ck) [Joret, Paul, S., Saurabh, Thomassé ’11]

F = {K4} O∗(ck) [Kim, Paul, Philip ’12]

General case:

Planar-F-Deletion is FPT. [Roberston and Seymour’s Graph Minors theory]

22O(k log k) · nO(1) -time algorithm based on standard DP.

2O(k log k) · n2 -time algorithm. [Fomin, Lokshtanov, Misra, Saurabh ’11]

2O(k) · n log2 n -time algorithm for
Planar-Connected-F-Deletion. [Fomin, Lokshtanov, Misra, Saurabh ’12]
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Our result

Theorem

The Planar-F-Deletion problem can be solved in time 2O(k) · n2.

This result unifies a number of algorithms in the literature.

No hope for a 2o(k) · nO(1)-time algorithm (under ETH). [Chen et al. ’05]

That is, the function 2O(k) in our theorem is best possible.
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Next subsection is...

1 Preliminaries

2 Protrusion decompositions
Definitions
A simple algorithm to compute them

3 Single-exponential algorithm for Planar-F-Deletion
Motivation and our result
Sketch of proof
Further research

4 Linear kernels on graphs without topological minors
Motivation and our result
Idea of proof
Further research
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First step: use iterative compression

Using iterative compression the Planar-F-Deletion problem can be
reduced in single-exponential time to the following problem:

Disjoint Planar-F-Deletion
Input: A graph G , a non-negative integer k , and a set

X ⊆ V (G ) with |X | = k s.t. G − X is F-minor-free.
Parameter: The integer k.

Question: Does G have a set X̃ ⊆ V (G ) \ X such that |X̃ | < k and

G − X̃ is H-minor-free for every H ∈ F?

We call X̃ an alternative solution.

Lemma (well-kwown)

If Disjoint Planar-F-Deletion can be solved in time O∗(ck) for
some c ∈ N+, then Planar-F-Deletion can be solved in O∗((c + 1)k).
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Working hypothesis: an alternative solution X̃ does exist in G − X .

Observation:
If (G ,X , k) is a Yes-instance of Disjoint Planar-F-Deletion, then

G [X ] is F-minor-free

G [V \ X ] is F-minor-free

? Let r := |V (H)| for H being some planar graph in the family F .

? A connected component C of G − X is called a bloom component if
|NX (C )| > r , and a bud component otherwise.

Bloom components Bud components
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Linear protrusion decompositions

? Recall that a β-protrusion in a graph G is a subset Y ⊆ V (G ) such that

|∂(Y )| 6 β and tw(G [Y ]) 6 β

X

? P is linear with respect to a parameter k whenever α = O(k).
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Algorithm to solve Disjoint Planar-F-Deletion

? We will use our algorithm to compute protrusion decompositions.

?
Recall that r = |V (H)|, and that tw(G [V \ X ]) 6 tF , so the set X ⊆ V (G ) will
be the treewidth-bounding set which is given to the algorithm.

? But it turns out that, with input (G ,X , r), the set Y0 output by our algorithm

does not define a linear protrusion decomposition of G , which is crucial for us...

1 Guess the intersection I = X̃ ∩ Y0 of the alt. solution X̃ with Y0 s.t.:

G − I has a linear protrusion decomposition

P = Y0 ] Y1 ] · · · ] Y`

with X ⊆ Y0 and X̃ \ I ⊆ V (G ) \ Y0.

By carefully analyzing the output of our bag marking algorithm

2 Finally, compute X̃ \ I , given a linear protrusion decomposition.

Based on the finite index of MSO-definable properties (automaton theory)

? Both steps can be done in single-exponential time.
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First step: analysis of the bag marking algorithm

Lemma (edge simulation to chop bloom components)

If C1, . . . ,C` is a collection of connected pairwise vertex-disjoint subgraphs

of G − X such that |NX (Ci )| > r for 1 6 i 6 `, then ` 6 (1 + αr ) · k .
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of G − X such that |NX (Ci )| > r for 1 6 i 6 `, then ` 6 (1 + αr ) · k .

Proposition (Thomason ’01)

There exists a constant α < 0.320 such that any n-vertex graph with no
Kr -minor has at most αr · n = (α · r

√
log r) · n edges.

(Recall that r = |V (H)|, for H being any planar graph in F)
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Chopping bloom components (2)

Consider an optimal tree-decomposition T = (T ,B) of a “bloom”
connected component C of G − X (i.e., |NX (C )| > r)
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Recall our bottom-up Bag Marking algorithm:

if a bag B is the lca of two marked bags of M, or
GB contains a connected bloom component, then

M←M∪ {B} and remove the vertices in B from the bags of T
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Chopping bloom components (3)

Lemma (|Y0| = O(k) and every component is a protrusion)

If (G ,X , k) is a Yes-instance of Disjoint Planar-F-Deletion, then

Y0 = X ∪ V (M) has size at most k + 2tF · (1 + αr ) · k .

Every connected component C of G − Y0 satisfies

|NX (C )| 6 r and |NY0(C )| 6 r + 2tF .

Note that k = |X |,
tw(G − X ) 6 tF , and
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Computing a linear protrusion decomposition

Remark: Therefore, Y0 and the connected components of G − Y0 form a
protrusion decomposition of G ... but not a linear one!

We need that #protrusions = O(k).

Branching step:

Guess I = X̃ ∩ Y0 among the 2O(k) subsets of V (M)

Let GI := G − I . Recall that a cluster of GI − Y0 is a maximal set of
connected components of GI − Y0 with the same neighborhood in Y0.

27/50



Computing a linear protrusion decomposition

Remark: Therefore, Y0 and the connected components of G − Y0 form a
protrusion decomposition of G ... but not a linear one!

We need that #protrusions = O(k).

Branching step:

Guess I = X̃ ∩ Y0 among the 2O(k) subsets of V (M)

Let GI := G − I . Recall that a cluster of GI − Y0 is a maximal set of
connected components of GI − Y0 with the same neighborhood in Y0.

27/50



Computing a linear protrusion decomposition

Remark: Therefore, Y0 and the connected components of G − Y0 form a
protrusion decomposition of G ... but not a linear one!

We need that #protrusions = O(k).

Branching step:

Guess I = X̃ ∩ Y0 among the 2O(k) subsets of V (M)

Let GI := G − I . Recall that a cluster of GI − Y0 is a maximal set of
connected components of GI − Y0 with the same neighborhood in Y0.

27/50



Computing a linear protrusion decomposition

Remark: Therefore, Y0 and the connected components of G − Y0 form a
protrusion decomposition of G ... but not a linear one!

We need that #protrusions = O(k).

Branching step:

Guess I = X̃ ∩ Y0 among the 2O(k) subsets of V (M)

Let GI := G − I . Recall that a cluster of GI − Y0 is a maximal set of
connected components of GI − Y0 with the same neighborhood in Y0.

27/50



Linear protrusion decomposition (2)

Lemma (For some choice of I , #clusters = O(k))

If (GI ,Y0 \ I , k − |I |) is a Yes-instance of Disjoint Planar-F-Deletion,

then the number ` of clusters of of GI − Y0 is at most (5tFαrµr ) · k .

Proposition (Fomin, Oum, Thilikos ’10)

There exists a constant µ < 11.355 such that for all r > 2, every n-vertex
graph with no Kr -minor has at most µr · n = 2µ·r log log r · n cliques.

? At most `′ = k − |I | clusters C1, . . . ,C`′ intersect the alternative solution X̃
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Proposition (Fomin, Oum, Thilikos ’10)

There exists a constant µ < 11.355 such that for all r > 2, every n-vertex
graph with no Kr -minor has at most µr · n = 2µ·r log log r · n cliques.

We have that G ′ = GI − ∪`
′

i=1Ci is F-minor-free.
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Lemma (For some choice of I , #clusters = O(k))

If (GI ,Y0 \ I , k − |I |) is a Yes-instance of Disjoint Planar-F-Deletion,

then the number ` of clusters of of GI − Y0 is at most (5tFαrµr ) · k .

Proposition (Fomin, Oum, Thilikos ’10)

There exists a constant µ < 11.355 such that for all r > 2, every n-vertex
graph with no Kr -minor has at most µr · n = 2µ·r log log r · n cliques.

? Using edge simulation we construct a minor of G ′ on vertices of Y0.
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If (GI ,Y0 \ I , k − |I |) is a Yes-instance of Disjoint Planar-F-Deletion,

then the number ` of clusters of of GI − Y0 is at most (5tFαrµr ) · k .

Proposition (Fomin, Oum, Thilikos ’10)

There exists a constant µ < 11.355 such that for all r > 2, every n-vertex
graph with no Kr -minor has at most µr · n = 2µ·r log log r · n cliques.

? As before, the number of clusters used so far is at most αr · k.
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Linear protrusion decomposition (2)

Lemma (For some choice of I , #clusters = O(k))

If (GI ,Y0 \ I , k − |I |) is a Yes-instance of Disjoint Planar-F-Deletion,

then the number ` of clusters of of GI − Y0 is at most (5tFαrµr ) · k .

Proposition (Fomin, Oum, Thilikos ’10)

There exists a constant µ < 11.355 such that for all r > 2, every n-vertex
graph with no Kr -minor has at most µr · n = 2µ·r log log r · n cliques.

? When we cannot add more edges, all neighborhoods of clusters are cliques!
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Linear protrusion decomposition (2)

Lemma (For some choice of I , #clusters = O(k))

If (GI ,Y0 \ I , k − |I |) is a Yes-instance of Disjoint Planar-F-Deletion,

then the number ` of clusters of of GI − Y0 is at most (5tFαrµr ) · k .

Proposition (Fomin, Oum, Thilikos ’10)

There exists a constant µ < 11.355 such that for all r > 2, every n-vertex
graph with no Kr -minor has at most µr · n = 2µ·r log log r · n cliques.

? Now we use the Proposition: the number of remaining clusters is µr · k.
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Back to the road map of the algorithm

Therefore, the partition P = Y0 ] C1 ] · · · ] C` is a

(O(k), r + 2tF )-protrusion decomposition of GI = G − I

Recall the two main steps of our algorithm:

1 Guess the intersection I = X̃ ∩ Y0 of the alt. solution X̃ with Y0 s.t.:

G − I has a linear protrusion decomposition

P = Y0 ] C1 ] · · · ] C`

with X ⊆ Y0 and X̃ \ I ⊆ V (G ) \ Y0.

2 Finally, compute X̃ \ I , given a linear protrusion decomposition.

Based on the finite index of MSO-definable properties (automaton theory)
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Solving the problem when given a linear protrusion decomposition

Main ingredients of our approach:

? We define an equivalence relation on subsets of vertices of each restricted
protrusion Yi (roughly, same class if they behave in the same way).

? Each of these equiv. relations defines finitely many equivalence classes s.t.
any partial solution on Yi can be replaced with one of the representatives.

(by the finite index of MSO-definable properties) [Bodlaender, de Fluiter ’01]

? We use a decomposability property of the solution: there exists a solution
which is formed by the union of one representative per restricted protrusion.

? To make the algorithm constructive and uniform on the family F , we use
classic arguments from tree automaton theory (like method of test sets).
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Next subsection is...

1 Preliminaries

2 Protrusion decompositions
Definitions
A simple algorithm to compute them

3 Single-exponential algorithm for Planar-F-Deletion
Motivation and our result
Sketch of proof
Further research

4 Linear kernels on graphs without topological minors
Motivation and our result
Idea of proof
Further research
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Conclusions and further research

Theorem

The Planar-F-Deletion problem can be solved in time 2O(k) · n2.

F Can a single-exponential algorithm exist when the family F does not
contain any planar graph?

For F = {K5,K3,3}, an explicit FPT algorithm is known.
It runs in time 2O(k log k) · n. [Jansen, Lokshtanov, Saurabh ’14]

F There exists a randomized constant-factor approximation algorithm
for Planar-F-Deletion. [Fomin, Lokshtanov, Misra, Saurabh ’12]

Finding a deterministic constant-factor approximation remains open.

F We could forbid the family of graphs F according to another
containment relation, like topological minor.

32/50



Conclusions and further research

Theorem

The Planar-F-Deletion problem can be solved in time 2O(k) · n2.

F Can a single-exponential algorithm exist when the family F does not
contain any planar graph?

For F = {K5,K3,3}, an explicit FPT algorithm is known.
It runs in time 2O(k log k) · n. [Jansen, Lokshtanov, Saurabh ’14]

F There exists a randomized constant-factor approximation algorithm
for Planar-F-Deletion. [Fomin, Lokshtanov, Misra, Saurabh ’12]

Finding a deterministic constant-factor approximation remains open.

F We could forbid the family of graphs F according to another
containment relation, like topological minor.

32/50



Conclusions and further research

Theorem

The Planar-F-Deletion problem can be solved in time 2O(k) · n2.

F Can a single-exponential algorithm exist when the family F does not
contain any planar graph?

For F = {K5,K3,3}, an explicit FPT algorithm is known.
It runs in time 2O(k log k) · n. [Jansen, Lokshtanov, Saurabh ’14]

F There exists a randomized constant-factor approximation algorithm
for Planar-F-Deletion. [Fomin, Lokshtanov, Misra, Saurabh ’12]

Finding a deterministic constant-factor approximation remains open.

F We could forbid the family of graphs F according to another
containment relation, like topological minor.

32/50



Conclusions and further research

Theorem

The Planar-F-Deletion problem can be solved in time 2O(k) · n2.

F Can a single-exponential algorithm exist when the family F does not
contain any planar graph?

For F = {K5,K3,3}, an explicit FPT algorithm is known.
It runs in time 2O(k log k) · n. [Jansen, Lokshtanov, Saurabh ’14]

F There exists a randomized constant-factor approximation algorithm
for Planar-F-Deletion. [Fomin, Lokshtanov, Misra, Saurabh ’12]

Finding a deterministic constant-factor approximation remains open.

F We could forbid the family of graphs F according to another
containment relation, like topological minor.

32/50



Next section is...

1 Preliminaries

2 Protrusion decompositions
Definitions
A simple algorithm to compute them

3 Single-exponential algorithm for Planar-F-Deletion
Motivation and our result
Sketch of proof
Further research

4 Linear kernels on graphs without topological minors
Motivation and our result
Idea of proof
Further research

33/50



Next subsection is...

1 Preliminaries

2 Protrusion decompositions
Definitions
A simple algorithm to compute them

3 Single-exponential algorithm for Planar-F-Deletion
Motivation and our result
Sketch of proof
Further research

4 Linear kernels on graphs without topological minors
Motivation and our result
Idea of proof
Further research

34/50



Kernels

A kernel for a parameterized problem Π is an algorithm that given
(x , k) outputs, in time polynomial in |x |+ k, an instance (x ′, k ′) s.t.:

? (x , k) ∈ Π if and only if (x ′, k ′) ∈ Π, and

? Both |x ′|, k ′ 6 g(k) , where g is some computable function.

The function g is called the size of the kernel.

? If g(k) = kO(1): Π admits a polynomial kernel.
? If g(k) = O(k): Π admits a linear kernel.

Folklore result: for a parameterized problem Π,

Π is FPT ⇔ Π admits a kernel

Question: which FPT problems admit linear or polynomial kernels?
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Minors and topological minors

G H

H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg 6 2.

Therefore: H minor of G ⇒ H topological minor of G .

Fixed H: H-minor-free graphs ⊆ H-topological-minor-free graphs .
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Linear kernels on sparse graphs – an overview

Dominating Set on planar graphs. [Alber, Fellows, Niedermeier ’04]

Framework for several problems on planar graphs. [Guo, Niedermeier ’04]

Meta-result for graphs of bounded genus.
[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos ’09]

Meta-result for H-minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos ’10]

Meta-result for H-topological-minor-free graphs. [Our result]
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Our result

Theorem

Fix a graph H. Let Π be a parameterized graph problem on the class of
H-topological-minor-free graphs that is treewidth-bounding and has finite
integer index (FII). Then Π admits a linear kernel.

A parameterized graph problem Π is treewidth-bounding if ∃
constants c , t such that if (G , k) ∈ Π then

∃X ⊆ V (G ) s.t. |X | 6 c · k and tw(G − X ) 6 t.

FII allows us to replace large protrusions by smaller gadgets...

F We assume that the gadgets are given . Our algorithm is non-uniform.

Problems affected by our result:
Treewidth-t Vertex Deletion, Chordal Vertex Deletion,
Interval Vertex Deletion, Edge Dominating Set, Feedback
Vertex Set, Connected Vertex Cover, . . .
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Linear kernels on sparse graphs – the conditions

(Figure by Felix Reidl)
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Are our conditions very restrictive?

We require FII + treewidth-bounding

FII is necessary when using protrusion replacement rules.

What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bidimensional + separation property. [Fomin, Lokshtanov, Saurabh, Thilikos ’10]

But it holds that

bidimensional + separation property ⇒ treewidth-bounding

Thus, our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos ’10]
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Next subsection is...

1 Preliminaries

2 Protrusion decompositions
Definitions
A simple algorithm to compute them

3 Single-exponential algorithm for Planar-F-Deletion
Motivation and our result
Sketch of proof
Further research

4 Linear kernels on graphs without topological minors
Motivation and our result
Idea of proof
Further research

41/50



Finite Integer Index (FII)
[Bodlaender, de Fluiter ’01]

Let Π be a parameterized graph problem restricted to a graph class G
and let G1,G2 be two t-boundaried graphs in Gt .

We say that G1 ≡Π,t G2 if there exists a constant ∆Π,t(G1,G2) such
that for all t-boundaried graphs H and for all k :

1 G1 ⊕ H ∈ G iff G2 ⊕ H ∈ G;
2 (G1 ⊕ H, k) ∈ Π iff (G2 ⊕ H, k + ∆Π,t(G1,G2)) ∈ Π.

Problem Π has FII in the class G if for every integer t, the equivalence
relation ≡Π,t has a finite number of equivalence classes.

Main idea If a parameterized problem has FII then its instances can
be reduced by replacing any “large” protrusion by a “small” gadget
(representative in a set Rt) from the same equivalence class.

The protrusion limit of Π is a function ρΠ : N→ N defined as
ρΠ(t) = maxG∈Rt |V (G )|. We also define ρ′Π(t) = ρΠ(2t).
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Disconnected Planar-F-Deletion has not FII

We prove: if F is a family of graphs containing some disconnected
graph H, then Planar-F-Deletion has not FII (in general).

We define G1 ∼Π,t G2 iff ∃ integer i such that ∀ t-boundaried graph
H, it holds

π(G1 ⊕ H) = π(G2 ⊕ H) + i ,

where π(G ) denotes the optimal value of problem o-Π on graph G .

We let F1 = K4, F2 = K2,3, F := F1 ] F2, and F = {F}.
For i > 1, let Gi (resp. Hi ) be the 1-boundaried graph consisting of a
boundary vertex v (resp. u) together with i disjoint copies of F1

(resp. F2) joined to v (resp. u) by an edge.

By construction, if i , j > 1, it holds π(Gi ⊕ Hj) = min{i , j}.
Then, if we take 1 6 n < m,

π(Gn ⊕ Hn−1)− π(Gm ⊕ Hn−1) = (n − 1)− (n − 1) = 0,

π(Gn ⊕ Hm)− π(Gm ⊕ Hm) = n −m < 0.

Thus, Gn,Gm /∈ same equiv. class of ∼Π,1 whenever 1 6 n < m.
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Some important ingredients (suppose problem Π has FII)

Lemma (The parameter does not increase)

∀ fixed t, ∃ finite set Rt of t-boundaried graphs s.t. for each t-boundaried
graph G ∈ Gt ∃ G ′ ∈ Rt s.t. G ≡Π,t G ′ and ∆Π,t(G ,G ′) > 0.

Lemma (Finding maximum sized protrusions)

Let t be a constant. Given an n-vertex graph G , a t-protrusion of G with
the maximum number of vertices can be found in time O(nt+1).

Lemma (Big... but not too big!)

If one is given a t-protrusion X ⊆ V (G ) s.t. ρ′Π(t) < |X |, then one can, in
time O(|X |), find an equiv. 2t-protrusion W s.t. ρ′Π(t) < |W | 6 2 · ρ′Π(t).

Lemma (Replacing protrusions of constant size)

For t ∈ N, suppose that the set Rt of representatives of ≡Π,t is given. If
W is a t-protrusion of size at most a fixed constant c, then one can decide
in constant time which G ′ ∈ Rt satisfies G ′ ≡Π,t G [W ].
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W is a t-protrusion of size at most a fixed constant c, then one can decide
in constant time which G ′ ∈ Rt satisfies G ′ ≡Π,t G [W ].
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Protrusion replacement

Protrusion reduction rule

Let (G , k) ∈ Π and let t ∈ N be a constant (to be fixed later).

Suppose that G has a t-protrusion W ′ ⊆ V (G ) s.t. |W ′| > ρ′Π(t).

Let W ⊆ V (G ) be a 2t-protrusion of G s.t. ρ′Π(t) < |W | 6 2 · ρ′Π(t).

We let GW denote the 2t-boundaried graph G [W ] with boundary
bd(GW ) = ∂G (W ).

Let further G1 ∈ R2t be the representative of GW for the equivalence
relation ≡Π,|∂(W )|.

The protrusion reduction rule (for boundary size t) is the following:

Reduce (G , k)
to (G ′, k ′) = (G [V \W ]⊕ G1, k −∆Π,2t(G1,GW )).

It runs in polynomial time ... given the sets of representatives!
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Protrusion decompositions (in case someone forgot!)

An (α, t)-protrusion decomposition of a graph G is a partition
P = Y0 ] Y1 ] · · · ] Y` of V (G ) such that:

for every 1 6 i 6 `, N(Yi ) ⊆ Y0;

for every 1 6 i 6 `, Yi ∪ NY0(Yi ) is a t-protrusion of G ;

max{`, |Y0|} 6 α.

(Figure by Felix Reidl)
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Kernelization algorithm

1 We apply exhaustively the protrusion replacement rule.

If (G , k) is reduced w.r.t. the protrusion reduction rule with boundary
size β (this can be done in polynomial time), ∀t 6 β, every
t-protrusion W of G has size 6 ρ′Π(t).

We can choose β := 2t + ω(H), where t comes from the
treewidth-bounding property of Π.

2 We use protrusion decompositions to analyze the kernel size.

Using what we explained before, we can easily prove that:

Let Π be a parameterized graph problem that has FII and is
t-treewidth-bounding, both on the class of H-topological-minor-free
graphs. Then any reduced Yes-instance (G , k) has a protrusion
decomposition V (G ) = Y0 ] Y1 ] · · · ] Y` s.t.:

1 |Y0| = O(k);
2 |Yi | 6 ρ′Π(2t + ωH) for 1 6 i 6 `; and
3 ` = O(k).
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Next subsection is...

1 Preliminaries

2 Protrusion decompositions
Definitions
A simple algorithm to compute them

3 Single-exponential algorithm for Planar-F-Deletion
Motivation and our result
Sketch of proof
Further research

4 Linear kernels on graphs without topological minors
Motivation and our result
Idea of proof
Further research
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Limits of our approach and further research

For which notions of sparseness (beyond H-topological-minor-free
graphs) can we use our technique to obtain polynomial kernels?

1 A class G of graphs locally excludes a minor if ∀r ∈ N, ∃Hr s.t. the

r -neighborhood of a vertex of any graph of G excludes Hr as a minor.

(includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

2 Graphs of bounded expansion (contains H-topological-minor-free)?

Obtaining a kernel for Treewidth-t Vertex Deletion on graphs
of bounded expansion is as hard as on general graphs.

Best known kernel: kO(t). [Fomin, Lokshtanov, Misra, Saurabh ’12]

Constructing the kernels? Finding the sets of representatives!!

Explicit constants? Lower bounds on their size?
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Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE
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