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Some words on parameterized complexity

° given an NP-hard problem with input size n, fix one parameter
k of the input to see whether the problem gets more “tractable”.

Example: the size of a VERTEX COVER.
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Example: the size of a VERTEX COVER.
@ Given a (NP-hard) problem with input of size n and a parameter k, a
fixed-parameter tractable (FPT) algorithm runs in time
f(k)-n°M) for some function f.

Examples: k-VERTEX COVER, k-LONGEST PATH.

@ A single-exponential parameterized algorithm is an FPT algo s.t.
f(k) =200,
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The decomposition paradigm — “Divide et impera”

Many hard algorithmic graph problems become easier if one
is able to find a suitable decomposition of the input graph.
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Many hard algorithmic graph problems become easier if one
is able to find a suitable decomposition of the input graph.

Some famous examples:

@ PTAS and exact subexponential algorithms based on finding
separators of size O(y/n) on planar graphs. [Baker's approach]

@ Linear-time algorithms for problems expressible in MSOL on
graphS Of bounded treeW|dth [Coucelle’s theorem]

e FPT algorithms based on the structural decomposition result of
H—minor—free gra phS [Graph Minors theory by Robertson and Seymour]

@ Linear-time algorithms based on modular decompositions.
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Next subsection is...

© Protrusion decompositions
@ Definitions
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Protrusions

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

e Given a graph G, aset W C V(G) is a t-protrusion of G if
[0c(W)| <t and tw(G[W]) < t]

trusion

Restricted Pro

Boundary

small treewidth

small size
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(Figure by Felix Reidl)
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[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]

e Given a graph G, aset W C V(G) is a t-protrusion of G if
[0c(W)| <t and tw(G[W]) < t]

ion

Restricted Protrus

Boundary

small treewidth

small size

Protrusion

(Figure by Felix Reidl)

@ The vertex set W' = W \ Og(W) is the restricted protrusion of W.
e We call dg(W) the boundary and |W/| the size of W.
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Protrusion decompositions

An (a, t)-protrusion decomposition of a graph G is a partition
P=YowWYi W - WY of V(G) such that:

o forevery 1 <i</, N(Y;)C Yo

<I <
o forevery 1 < i</, Y;UNy,(Y;) is a t-protrusion of G;
e max{/,|Ys|} < a.

The set Yj is called the separating part of P. (Figure by Felix Reidi)
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Next subsection is...

© Protrusion decompositions

@ A simple algorithm to compute them
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Main (informal) ideas of our algorithm

@ Protrusion decompositions have already been used in the literature.

[Bodlaender, Fomin, Lokshtanov, Saurabh, Thilikos '09-12]
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Main (informal) ideas of our algorithm

@ Here we present a new algorithm to compute protrusion
decompositions for graphs G that come equipped with a set

X CV(G) st tw(G—X) <t

for some constant t > 0.

The set X is called a t-treewidth-modulator.
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@ Our algorithm marks the bags of a tree-decomposition of G.
@ Let r be an integer that is also given to the algorithm.

@ Given tree-decompositions of the conn. comp. of G — X with > r neighbors
in X, we identify a set of bags M in a bottom-up manner.

@ The set V(M) of vertices contained in marked bags together with X will
form the separating part Yj of the protrusion decomposition.

@ Some marked bags will be mapped bijectively into pairwise vertex-disjoint
connected subgraphs of G — X, each of which has > r neighbors in X.

@ Finally, to guarantee that the conn. comp. of G — (X U V(M)) form

protrusions with small boundary, the set M is closed under taking LCA.
11/50
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* Let B be an unprocess. bag at farthest distance from the root of T¢.
* ‘ LCA marking step ‘

if B is the LCA of two marked bags of M:
M + MU {B} and remove the vertices of B from every bag of 7c.

* ‘ Bloom-subgraph marking step‘

else if Gg contains a connected component Cg s.t. |Nx(Cg)| > r:
M < MU {B} and remove the vertices of B from every bag of 7c.

* Bag B is now processed.

Yo = XU V(M).
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Some properties of the bag marking algorithm

The bag marking algorithm can be implemented to run in O(n) time,
where the hidden constant depends only on t and r.
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Some properties of the bag marking algorithm

Given a graph G and a subset S C V(G), a cluster of G — S is a maximal
collection of connected components of G — S with the same neighborhood in S.

Proposition

Let r,t be two positive integers,

let G be a graph and X C V/(G) such that tw(G — X) < t,

let Yo C V(G) be the output of the algorithm with input (G, X, r), and
let Y1,..., Yy be the set of clusters of G — Yj.

Then P := YoW Y1 W---W Yy is a (max{¢,|Yo|}, 2t + r)-protrusion decomp. of G.

£ (Figure by Felix Réidl)
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The (parameterized) PLANAR-F-DELETION problem
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16/50



The (parameterized) PLANAR-F-DELETION problem

Let F be a finite family of graphs containing at least one planar graph.

PLANAR-F-DELETION

Input: A graph G and a non-negative integer k.

Parameter:  The integer k.

Question: Does G have a set X C V(G) such that |X| < k and
G — X is H-minor-free for every H € F?

16/50



The (parameterized) PLANAR-F-DELETION problem

Let F be a finite family of graphs containing at least one planar graph.

PLANAR-F-DELETION

Input: A graph G and a non-negative integer k.

Parameter:  The integer k.

Question: Does G have a set X C V(G) such that |X| < k and
G — X is H-minor-free for every H € F?

Some particular cases:

Q0 F={Ky}: = VERTEX COVER
= TREEWIDTH-ZERO VERTEX DELETION

@ 7 ={K3}: = FEEDBACK VERTEX SET
= TREEWIDTH-ONE VERTEX DELETION

Q@ F={Kis}: = TREEWIDTH-TWO VERTEX DELETION
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How fast can PLANAR-

Particular cases:

o F={Ky} 0*(1.2738%) [Chen, Fernau, Kanj, Xia '10]
o F={Ks} 0*(3.83%) [Cao, Chen, Liu '10]
o F=1{6,} O*(Ck) [Joret, Paul, S., Saurabh, Thomassé '11]
o F={Ki} 0*(ck) [Kim, Paul, Philip '12]

General case:

o PLANAR—‘F-DELETION |S FPT [Roberston and Seymour’s Graph Minors theory]

o 2290989 LO(1) _time algorithm based on standard DP.

) 2O(k log k) . n2 —time algorithm. [Fomin, Lokshtanov, Misra, Saurabh '11]

o 29(K) . nlog? n -time algorithm for
PLANAR-CONNECTED--DELETION.  [Fomin, Lokshtanov, Misra, Saurabh '12]
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Our result

2

The PLANAR-F-DELETION problem can be solved in time 2°() . n2.

@ This result unifies a number of algorithms in the literature.
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Our result

The PLANAR-F-DELETION problem can be solved in time 2°() . n2.

@ This result unifies a number of algorithms in the literature.

@ No hope for a 2°(K) . n9()_time algorithm (under ETH).  (chen et a1 03]

That is, the function 2°(%) in our theorem is best possible.
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Next subsection is...

© Single-exponential algorithm for PLANAR-F-DELETION

@ Sketch of proof
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First step: use iterative compression

Using iterative compression the PLANAR-F-DELETION problem can be
reduced in single-exponential time to the following problem:
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First step: use iterative compression

Using iterative compression the PLANAR-F-DELETION problem can be
reduced in single-exponential time to the following problem:

DiSJOINT PLANAR-F-DELETION
Input: A graph G, a non-negative integer k, and a set

X C V(G) with |[X| = k s.t. G — X is F-minor-free.
Parameter:  The integer k.

Question: Does G have a set | X C V/(G)\ X |such that [X| < k and
G — X is H-minor-free for every H € F?

We call X an alternative solution.

Lemma (well-kwown)

If DISJOINT PLANAR-F-DELETION can be solved in time O*(c*) for
some ¢ € N*, then PLANAR-F-DELETION can be solved in O*((c + 1)¥).
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Working hypothesis: an alternative solution X does exist in G — X.

21/50



Working hypothesis: an alternative solution X does exist in G — X.

Observation:

If (G, X, k) is a YES-instance of DISJOINT PLANAR-F-DELETION, then
e G[X] is F-minor-free
e G[V\ X] is F-minor-free

21/50



Working hypothesis: an alternative solution X does exist in G — X.

Observation:

If (G, X, k) is a YES-instance of DISJOINT PLANAR-F-DELETION, then
e G[X] is F-minor-free = G[X] has bounded tw!!
e G[V\ X] is F-minor-free = G[V \ X] has bounded tw!!

21/50



Working hypothesis: an alternative solution X does exist in G — X.

Observation:

If (G, X, k) is a YES-instance of DISJOINT PLANAR-F-DELETION, then
e G[X] is F-minor-free = G[X] has bounded tw!!
e G[V\ X] is F-minor-free = G[V \ X] has bounded tw!!

* Let r := |V/(H)| for H being some planar graph in the family F.

21/50



Working hypothesis: an alternative solution X does exist in G — X.

Observation:

If (G, X, k) is a YES-instance of DISJOINT PLANAR-F-DELETION, then
e G[X] is F-minor-free = G[X] has bounded tw!!
e G[V\ X] is F-minor-free = G[V \ X] has bounded tw!!

* Let r := |V/(H)| for H being some planar graph in the family F.

* A connected component C of G — X is called a bloom component if
[Nx(C)| = r, and a bud component otherwise.

Bloom components Bud components
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Linear protrusion decompositions

* Recall that a S-protrusion in a graph G is a subset Y C V/(G) such that
|0(Y)| < 8 and tw(G[Y]) < 8
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Linear protrusion decompositions

* Recall that a S-protrusion in a graph G is a subset Y C V/(G) such that
O(Y)| < 8 and tw(G[Y]) < 8

* A partition P = Yo W Y1 W--- W Yy of V(G) with max{/,|Yp|} < ais an
(v, B)-protrusion decomposition if for every 1 < i < ¥/,

N(Y;) C Yo and Y;U Ny, (Y;) is a S-protrusion

* P is with respect to a parameter k whenever oo = O(k).
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Algorithm to solve DISJOINT PLANAR-F-DELETION

* We will use our algorithm to compute protrusion decompositions.
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be the treewidth-bounding set which is given to the algorithm.

* But it turns out that, with input (G, X, r), the set Y, output by our algorithm
does not define a linear protrusion decomposition of G, which is crucial for us...
Guess the intersection | = X N Yy of the alt. solution X with Yo s.t.:
o G — /| has a linear protrusion decomposition
P=Yod Y -- Y
o with X C Yy and X\ /C V(G)\ Yo.

‘ By carefully analyzing the output of our bag marking algorithm ‘

Finally, compute X \ /, given a linear protrusion decomposition.

‘ Based on the finite index of MSO-definable properties (automaton theory) ‘

* Both steps can be done in single-exponential time.

23/50



First step: analysis of the bag marking algorithm

Lemma (edge simulation to chop bloom components)

If C1,...,Cyis a collection of connected pairwise vertex-disjoint subgraphs
of G — X such that |[Nx(C;)| = r for1 < i< ¥, then|l{ < (14 «,) k|
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Chopping bloom components (2)

Consider an optimal tree-decomposition 7 = (T, B) of a “bloom”
connected component C of G — X (i.e., |[Nx(C)| > r)
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Chopping bloom components (3)

A

Lemma (| Yo| = O(k) and every component is a protrusion)

If (G, X, k) is a YES-instance of DISJOINT PLANAR-F-DELETION, then

e Yo=XUV(M) hassizeatmost‘k+2t;-(1+a,)-k.

@ Every connected component C of G — Y| satisfies
|Nx(C)‘ < r and ‘NYO(C)| < r+ 2tr.
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O(k) and every component is a protrusion)

Lemma (|Yo| =

If (G, X, k) is a YES-instance of DISJOINT PLANAR-F-DELETION, then

e Yo=XUV(M) hassizeatmost‘k+2t;-(1+a,)-k.

@ Every connected component C of G — Y| satisfies
|Nx( )‘ r and ‘NYO(C)| < r+ 2tr.

e Note that k = |X],
o tw(G — X) < tr, and
o (M| < (14 a,)- k (by the "edge simulation”_Lemma)
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Computing a linear protrusion decomposition

Remark: Therefore, Yy and the connected components of G — Y form a
protrusion decomposition of G... but not a linear one!
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Computing a linear protrusion decomposition

Remark: Therefore, Yy and the connected components of G — Y form a
protrusion decomposition of G... but not a linear one!
We need that #protrusions = O(k).

Branching step:

Guess | = X N Y, among the 29(K) subsets of V(M)

Let G, := G — [. Recall that a cluster of G; — Y{ is a maximal set of
connected components of G; — Yy with the same neighborhood in Yj.

=
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Linear protrusion decomposition (2)

o>

Lemma (For some choice of I, #clusters = O(k))

If (G, Yo \ I,k —|!]) is a YES-instance of DISJOINT PLANAR-F-DELETION,
then the number { of clusters of of Gj — Yp is at most | (5traju,) - k |.
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If (G, Yo \ I,k —|!]) is a YES-instance of DISJOINT PLANAR-F-DELETION,
then the number { of clusters of of Gj — Yp is at most | (5traju,) - k |.

A\

Proposition (Fomin, Oum, Thilikos '10)
There exists a constant n < 11.355 such that for all r > 2, every n-vertex
graph with no K.-minor has at most (i, - n = 27198187 . 5 cliques.

We have that G’ = G, — U’ C; is F-minor-free.

28/50



Linear protrusion decomposition (2)

o>

Lemma (For some choice of I, #clusters = O(k))
If (G, Yo \ I,k —|!]) is a YES-instance of DISJOINT PLANAR-F-DELETION,

then the number { of clusters of of Gj — Yp is at most | (5traju,) - k |.

A\

Proposition (Fomin, Oum, Thilikos '10)
There exists a constant n < 11.355 such that for all r > 2, every n-vertex
graph with no K.-minor has at most (i, - n = 27198187 . 5 cliques.

* Using edge simulation we construct a minor of G’ on vertices of Yj.
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Proposition (Fomin, Oum, Thilikos '10)
There exists a constant n < 11.355 such that for all r > 2, every n-vertex
graph with no K.-minor has at most (i, - n = 27198187 . 5 cliques.

* As before, the number of clusters used so far is at most «, - k.
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Linear protrusion decomposition (2)

o>

Lemma (For some choice of I, #clusters = O(k))
If (G, Yo \ I,k —|!]) is a YES-instance of DISJOINT PLANAR-F-DELETION,

then the number { of clusters of of Gj — Yp is at most | (5traju,) - k |.

A\

Proposition (Fomin, Oum, Thilikos '10)
There exists a constant n < 11.355 such that for all r > 2, every n-vertex
graph with no K.-minor has at most (i, - n = 27198187 . 5 cliques.

* When we cannot add more edges, all neighborhoods of clusters are cliques!
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Linear protrusion decomposition (2)

o>

Lemma (For some choice of I, #clusters = O(k))
If (G, Yo \ I,k —|!]) is a YES-instance of DISJOINT PLANAR-F-DELETION,

then the number { of clusters of of Gj — Yp is at most | (5traju,) - k |.

A\

Proposition (Fomin, Oum, Thilikos '10)
There exists a constant n < 11.355 such that for all r > 2, every n-vertex
graph with no K.-minor has at most (i, - n = 27198187 . 5 cliques.

* Now we use the Proposition: the number of remaining clusters is /i, - k.
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Solving the problem when given a linear protrusion decomposition

SRR

Main ingredients of our approach:

* We define an equivalence relation on subsets of vertices of each restricted
protrusion Y; (roughly, same class if they behave in the same way).

* Each of these equiv. relations defines finitely many equivalence classes s.t.
any partial solution on Y; can be replaced with one of the representatives.
(by the finite index of MSO-definable properties) [Bodlaender, de Fluiter 01]

* We use a decomposability property of the solution: there exists a solution
which is formed by the union of one representative per restricted protrusion.

* To make the algorithm constructive and uniform on the family F, we use
classic arguments from tree automaton theory (like method of test sets).
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Next subsection is...

© Single-exponential algorithm for PLANAR-F-DELETION

@ Further research
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Conclusions and further research

The PLANAR-F-DELETION problem can be solved in time 2°(K) . p2.

% Can a single-exponential algorithm exist when the family 7 does not
contain any planar graph?

For 7 = {Ks, K33}, an explicit FPT algorithm is known.
It runs in t|me 20(k|0g k) - n. [Jansen, Lokshtanov, Saurabh '14]

% There exists a randomized constant-factor approximation algorithm
for PLANAR—.F—DELETION [Fomin, Lokshtanov, Misra, Saurabh "12]
Finding a deterministic constant-factor approximation remains open.

% We could forbid the family of graphs F according to another

containment relation, like topological minor.
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Next subsection is...

@ Linear kernels on graphs without topological minors
@ Motivation and our result
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Kernels

@ A kernel for a parameterized problem [T is an algorithm that given
(x, k) outputs, in time polynomial in |x| + k, an instance (x’, k') s.t.:

* (x, k) € Mif and only if (x’, k") € M, and
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@ A kernel for a parameterized problem [T is an algorithm that given
(x, k) outputs, in time polynomial in |x| + k, an instance (x’, k') s.t.:

* (x, k) € Mif and only if (x’, k") € M, and

* Both | |x'|, k" < g(k) |, where g is some computable function.

@ The function g is called the size of the kernel.

* If g(k) = k°M): M admits a polynomial kernel.
* If g(k) = O(k): T admits a linear kernel.

@ Folklore result: for a parameterized problem [T,

Mis FPT <« [I1 admits a kernel

@ Question: which FPT problems admit linear or polynomial kernels?
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@ H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

36/50



Minors and topological minors

@ H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

@ H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg < 2.

36/50



Minors and topological minors

@ H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

@ H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg < 2.

@ Therefore: H minor of G = H topological minor of G |.

36/50



Minors and topological minors

@ H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

@ H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg < 2.

@ Therefore: H minor of G < H topological minor of G |.

36/50



Minors and topological minors

@ H is a minor of a graph G if H can be obtained from a subgraph of G
by contracting edges.

@ H is a topological minor of G if H can be obtained from a subgraph
of G by contracting edges with at least one endpoint of deg < 2.

@ Therefore: ’H minor of G < H topological minor of G ‘

o Fixed H: ‘H—minor—free graphs C H-topological-minor-free graphs ‘
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Linear kernels on sparse graphs — an overview

@ DOMINATING SET on planar graphs. [Alber, Fellows, Niedermeier '04]
@ Framework for several problems on planar graphs. [Guo, Niedermeier '04]
@ Meta-result for graphs of bounded genus.

[Bodlaender, Fomin, Lokshtanov, Penninkx, Saurabh, Thilikos '09]
@ Meta-result for H-minor-free graphs. [Fomin, Lokshtanov, Saurabh, Thilikos '10]
@ Meta-result for H-topological-minor-free graphs. [Our result]
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Our result

Fix a graph H. Let Il be a parameterized graph problem on the class of
H-topological-minor-free graphs that is treewidth-bounding and has finite
integer index (FIl). Then I admits a linear kernel.
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Our result

Fix a graph H. Let Il be a parameterized graph problem on the class of
H-topological-minor-free graphs that is treewidth-bounding and has finite
integer index (FIl). Then I admits a linear kernel.

@ A parameterized graph problem 1 is treewidth-bounding if 3
constants ¢, t such that if (G, k) € I then

IX C V(G)st. |[X|<c-kandtw(G—X) <t

o FIl allows us to replace large protrusions by smaller gadgets...

% We assume that the ’gadgets are given ‘ Our algorithm is non-uniform.

Problems affected by our result:
TREEWIDTH-t VERTEX DELETION, CHORDAL VERTEX DELETION,
INTERVAL VERTEX DELETION, EDGE DOMINATING SET, FEEDBACK

VERTEX SET, CONNECTED VERTEX COVER, ...
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Linear kernels on sparse graphs — the conditions

H-topological-
minor-free

U

H-minor-free

U

bounded genus

U

planar

treewidth-bounding

bidimensional,
separation property

quasi-compact

“distance-property”

(Figure by Felix Reidl)
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’We require FIl + treewidth-bounding

@ Fll is necessary when using protrusion replacement rules.

@ What about requiring the problems to be treewidth-bounding?

Conditions on H-minor-free graphs:
bldlmenSIona| + Separation property [Fomin, Lokshtanov, Saurabh, Thilikos "10]

But it holds that

bidimensional + separation property‘:>‘treewidth—bounding

@ Thus, our results imply the linear kernels of [Fomin, Lokshtanov, Saurabh, Thilikos '10]
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Next subsection is...

@ Linear kernels on graphs without topological minors

@ |dea of proof
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@ Let [1 be a parameterized graph problem restricted to a graph class G
and let Gy, G» be two t-boundaried graphs in G;.

o We say that G; =p ; G if there exists a constant Ap (G, G2) such
that for all t-boundaried graphs H and for all k:

QO GOHeGIffGaHEG;
Q (Gi@ H, k) eNiff (G & H, k+ An(Gi, G)) € M.

@ Problem I1 has Fll in the class G if for every integer t, the equivalence
relation =p ; has a finite number of equivalence classes.

° If a parameterized problem has Fll then its instances can

be reduced by replacing any “large” protrusion by a “small” gadget
(representative in a set R;) from the same equivalence class.

@ The protrusion limit of I is a function pn: N — N defined as
pr(t) = maxger, |V(G)|. We also define p(t) = pn(2t).
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Disconnected PLANAR-F-DELETION has not FlI

@ We prove: if F is a family of graphs containing some disconnected
graph H, then PLANAR-F-DELETION has not FIl (in general).
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(resp. F2) joined to v (resp. u) by an edge.

@ By construction, if i,j > 1, it holds 7(G; & H;) = min{i,j}.
@ Then, if we take 1 < n < m,
m(Gp ® Hpo1) = 7(Gm® Hym1) = (n—1)—(n—1) = 0,
7(Gp ® Hp) —7(Gm® Hn) = n—m< 0.

@ Thus, G, G, ¢ same equiv. class of ~p; whenever 1 < n < m.
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Lemma (Big... but not too big!)

If one is given a t-protrusion X C V(G) s.t. pp(t) < |X
time O(| X

, then one can, in
), find an equiv. 2t-protrusion W s.t. pp(t) < |[W| < 2- pp(t)

v

Lemma (Replacing protrusions of constant size)

For t € N, suppose that the set R; of representatives of =n ; is given. If
W is a t-protrusion of size at most a fixed constant c, then one can decide
in constant time which G’ € R satisfies G' =p ; G[W].
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@ We let Gy denote the 2t-boundaried graph G[W/] with boundary
bd(Gw) = dg(W).

o Let further G; € Ry be the representative of Gy for the equivalence
relation =n,la(w)|-

@ The protrusion reduction rule (for boundary size t) is the following:

Reduce (G, k)
to (G/, k’) = (G[V\ W] & Gy, k — A|'|7213(G17 Gw))
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Protrusion decompositions (in case someone forgot!)

An (a, t)-protrusion decomposition of a graph G is a partition
P=YowW YW WYy of V(G) such that:

o forevery 1 < i</ N(Y;)C Yo;
<4, YiU Ny, (Y)) is a t-protrusion of G;
.

<
o forevery 1 < i
} <

e max{/,| Yy

(Figure by Felix Reidl)
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If (G, k) is reduced w.r.t. the protrusion reduction rule with boundary
size 3 (this can be done in polynomial time), Vt < 3, every
t-protrusion W of G has size < pp;(t).

We can choose [ := 2t + w(H), where t comes from the
treewidth-bounding property of 1.

© | We use protrusion decompositions to analyze the kernel size.

Using what we explained before, we can easily prove that:

Let 1 be a parameterized graph problem that has Fll and is
t-treewidth-bounding, both on the class of H-topological-minor-free
graphs. Then any reduced YEs-instance (G, k) has a protrusion
decomposition V(G) = YouW Y1 W --- W Y s.t.:

@ |Yo| = O(k);

@ |Yi| < pp(2t +wy) for 1 < i< 4; and

0 (= O(k).
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@ Further research
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r-neighborhood of a vertex of any graph of G excludes H, as a minor.

(includes H-minor-free but incomparable with H-topological-minor-free)

Except for a very restricted case, our technique fails.

© Graphs of’ bounded expansion ‘ (contains H-topological-minor-free)?

Obtaining a kernel for TREEWIDTH-t VERTEX DELETION on graphs
of bounded expansion is as hard as on general graphs.

Best known kernel: ko(t). [Fomin, Lokshtanov, Misra, Saurabh '12]
o Constructing the kernels? Finding the sets of representatives!!

@ Explicit constants? Lower bounds on their size?
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