
Degree-Constrained Subgraph Problems:
Hardness and Approximation Results

Omid Amini - Max Planck (Germany)
David Peleg - Weizmann Inst. (Israel)
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Broad family of problems

A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:
I a (weighted or unweighted) graph G, and
I an integer d .

Output:
I a (connected) subgraph H of G,
I satisfying some degree constraints (∆(H) ≤ d or δ(H) ≥ d),
I and optimizing some parameter (|V (H)| or |E(H)|).

Several problems in this broad family are classical widely studied
NP-hard problems.

They have a number of applications in interconnection networks,
routing algorithms, chemistry, ...



Broad family of problems

A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:
I a (weighted or unweighted) graph G, and
I an integer d .

Output:
I a (connected) subgraph H of G,
I satisfying some degree constraints (∆(H) ≤ d or δ(H) ≥ d),
I and optimizing some parameter (|V (H)| or |E(H)|).

Several problems in this broad family are classical widely studied
NP-hard problems.

They have a number of applications in interconnection networks,
routing algorithms, chemistry, ...



Broad family of problems

A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:
I a (weighted or unweighted) graph G, and
I an integer d .

Output:
I a (connected) subgraph H of G,
I satisfying some degree constraints (∆(H) ≤ d or δ(H) ≥ d),
I and optimizing some parameter (|V (H)| or |E(H)|).

Several problems in this broad family are classical widely studied
NP-hard problems.

They have a number of applications in interconnection networks,
routing algorithms, chemistry, ...



Broad family of problems

A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:
I a (weighted or unweighted) graph G, and
I an integer d .

Output:
I a (connected) subgraph H of G,
I satisfying some degree constraints (∆(H) ≤ d or δ(H) ≥ d),
I and optimizing some parameter (|V (H)| or |E(H)|).

Several problems in this broad family are classical widely studied
NP-hard problems.

They have a number of applications in interconnection networks,
routing algorithms, chemistry, ...



Broad family of problems

A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:
I a (weighted or unweighted) graph G, and
I an integer d .

Output:
I a (connected) subgraph H of G,
I satisfying some degree constraints (∆(H) ≤ d or δ(H) ≥ d),
I and optimizing some parameter (|V (H)| or |E(H)|).

Several problems in this broad family are classical widely studied
NP-hard problems.

They have a number of applications in interconnection networks,
routing algorithms, chemistry, ...



1- MAXIMUM
d -DEGREE-BOUNDED

CONNECTED SUBGRAPH



Definition of the problem
MAXIMUM d -DEGREE-BOUNDED CONNECTED SUBGRAPH
(MDBCSd ):

Input:
I an undirected graph G = (V ,E),
I an integer d ≥ 2, and
I a weight function ω : E → R+.

Output:
a subset of edges E ′ ⊆ E of maximum weight, s.t. G′ = (V ,E ′)

I is connected, and
I has maximum degree ≤ d .

It is one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].

If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)
problem.



Definition of the problem
MAXIMUM d -DEGREE-BOUNDED CONNECTED SUBGRAPH
(MDBCSd ):

Input:
I an undirected graph G = (V ,E),
I an integer d ≥ 2, and
I a weight function ω : E → R+.

Output:
a subset of edges E ′ ⊆ E of maximum weight, s.t. G′ = (V ,E ′)

I is connected, and
I has maximum degree ≤ d .

It is one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].

If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)
problem.



Definition of the problem
MAXIMUM d -DEGREE-BOUNDED CONNECTED SUBGRAPH
(MDBCSd ):

Input:
I an undirected graph G = (V ,E),
I an integer d ≥ 2, and
I a weight function ω : E → R+.

Output:
a subset of edges E ′ ⊆ E of maximum weight, s.t. G′ = (V ,E ′)

I is connected, and
I has maximum degree ≤ d .

It is one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].

If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)
problem.



Definition of the problem
MAXIMUM d -DEGREE-BOUNDED CONNECTED SUBGRAPH
(MDBCSd ):

Input:
I an undirected graph G = (V ,E),
I an integer d ≥ 2, and
I a weight function ω : E → R+.

Output:
a subset of edges E ′ ⊆ E of maximum weight, s.t. G′ = (V ,E ′)

I is connected, and
I has maximum degree ≤ d .

It is one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].

If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)
problem.



Definition of the problem
MAXIMUM d -DEGREE-BOUNDED CONNECTED SUBGRAPH
(MDBCSd ):

Input:
I an undirected graph G = (V ,E),
I an integer d ≥ 2, and
I a weight function ω : E → R+.

Output:
a subset of edges E ′ ⊆ E of maximum weight, s.t. G′ = (V ,E ′)

I is connected, and
I has maximum degree ≤ d .

It is one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].

If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)
problem.



Example with d = 3, ω(e) = 1 for all e ∈ E(G)



Example with d = 3 (II)
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Example with d = 3 (III)



Example with d = 3 (IV)
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State of the art

To the best of our knowledge, there were no results in the literature
except for the case d = 2, a.k.a. the LONGEST PATH problem:

Approximation algorithms:
O

(
n

log n

)
-approximation, using the color-coding method.

[N. Alon, R. Yuster and U. Zwick, STOC’94].

O
(

n
(

log log n
log n

)2
)

-approximation.

[A. Björklund and T. Husfeldt, SIAM J. Computing’03].

Hardness results:
It does not accept any constant-factor approximation.
[D. Karger, R. Motwani and G. Ramkumar, Algorithmica’97].
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Our results

Approximation algorithms (n = |V (G)|, m = |E(G)|):

I min{ n
2 ,

m
d }-approximation algorithm for weighted graphs.

I min{ m
log n ,

nd
2 log n}-approximation algorithm for unweighted graphs,

using color coding.

I when G accepts a low-degree spanning tree, in terms of d , then
MDBCSd can be approximated within a small constant factor.

Hardness results:
I For each fixed d ≥ 2, MDBCSd does not accept any

constant-factor approximation in general graphs.
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Approximation algorithm for weighted graphs
Input: undirected graph G = (V ,E), a weight function ω : E → R+,
and an integer d ≥ 2. Let n = |V |, m = |E |.

F : set of d heaviest edges in G, with weight ω(F ).
W : set of endpoints of those edges. Let H = (W ,F ).

Description of the algorithm: Two cases according to H = (W ,F ):

(1) If H = (W ,F ) is connected, the algorithm returns H.
Claim: this yields a min{n/2,m/d}-approximation.

Proof.
Suppose an optimal solution consists of m∗ edges of total weight ω∗.
Then ALG = ω(F ) ≥ ω∗

m∗ · d , since by the choice of F the average weight
of the edges in F can not be smaller than the average weight of the
edges of an optimal solution. As m∗ ≤ m and m∗ ≤ dn/2, we get that
ALG ≥ ω∗

m · d = ω∗

m/d and ALG ≥ ω∗

dn/2 · d = ω∗

n/2 .

(2) If H = (W ,F ) consists of a collection F of k connected
components, we glue them in k − 1 phases.
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Example of the algorithm for weighted graphs

G=(V,E)

d=6

Given a weighted graph G = (V ,E) and an integer d ...



Example of the algorithm for weighted graphs

H=(W,F)

d=6

Let H = (W ,F ) be the graph induced by the d heaviest edges.



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=4

Assume H has k > 1 connected components.



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=4

We compute the distance in G between each pair of components.



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=3

We add to H a path between a pair of closest vertices.



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=2

We repeat these two steps inductively...



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=1

Until the graph H is connected.



Example of the algorithm for weighted graphs

H=(W,F)

d=6
k=1

The algorithm outputs this graph H.



Analysis of the algorithm

(a) Running time: clearly polynomial.

(b) Correctness:
I The output subgraph is connected.
I Claim: after i phases, ∆(H) ≤ d − k + i + 1.

The proof is done by induction. When i = k − 1 we get ∆(H) ≤ d .

(c) Approximation ratio: follows from case (1).
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2- MINIMUM SUBGRAPH

OF MINIMUM DEGREE ≥ d



Definition of the problem

MINIMUM SUBGRAPH OF MINIMUM DEGREE ≥ d (MSMDd ):

Input: an undirected graph G = (V ,E) and an integer d ≥ 3.

Output: a subset S ⊆ V with δ(G[S]) ≥ d , s.t. |S| is minimum.

For d = 2 it is the GIRTH problem (find the length of a shortest
cycle), which is in P.

Motivation: close relation with DENSE k -SUBGRAPH problem and
TRAFFIC GROOMING problem in optical networks.
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State of the art + our results

This problem was first introduced in
[O. Amini, I. S. and S. Saurabh, IWPEC’08].

I W[1]-hard in general graphs, for d ≥ 3.
I FPT in minor-closed classes of graphs.

Our results:

I MSMDd is not in APX for any d ≥ 3.
I O(n/ log n)-approximation algorithm for minor-closed classes of

graphs, using a structural result and dynamic programming.



State of the art + our results

This problem was first introduced in
[O. Amini, I. S. and S. Saurabh, IWPEC’08].

I W[1]-hard in general graphs, for d ≥ 3.
I FPT in minor-closed classes of graphs.

Our results:

I MSMDd is not in APX for any d ≥ 3.
I O(n/ log n)-approximation algorithm for minor-closed classes of

graphs, using a structural result and dynamic programming.



State of the art + our results

This problem was first introduced in
[O. Amini, I. S. and S. Saurabh, IWPEC’08].

I W[1]-hard in general graphs, for d ≥ 3.
I FPT in minor-closed classes of graphs.

Our results:

I MSMDd is not in APX for any d ≥ 3.
I O(n/ log n)-approximation algorithm for minor-closed classes of

graphs, using a structural result and dynamic programming.



Idea of the proof for d = 3

(1) First we will see that MSMD3 /∈ PTAS.

(2) Then we will see that MSMD3 /∈ APX.



(1) MSMD3 is not in PTAS

Reduction from VERTEX COVER:

Instance H of VERTEX COVER → Instance G of MSMD3

We will see that

PTAS for G ⇒ PTAS for H

And so,
@ PTAS for MSMD3

We can suppose |E(H)| = 3 · 2m and δ(H) ≥ 3.
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Reduction from VERTEX COVER:

Instance H of VERTEX COVER → Instance G of MSMD3

We will see that

PTAS for G ⇒ PTAS for H

And so,
@ PTAS for MSMD3

We can suppose |E(H)| = 3 · 2m and δ(H) ≥ 3.



We build a complete ternary tree with |E(H)| = 3 · 2m leaves:

T

E(H)



We add a copy of the set of leaves E(H):

T

E(H)

E(H)



We join both sets with a Hamiltonian cycle (for technical reasons):

T

E(H)

E(H)



We add all the vertices of H:

T

E(H)

E(H)

V(H)



We add the incidence relations between E(H) and V (H)→ G:

T

E(H)

E(H)

V(H)



(1) MSMD3 is not in PTAS

If we touch a vertex of G \ V (H), we have to touch all the vertices
of G \ V (H)

Thus, MSMD3 in G is equivalent to minimize the number of
selected vertices in V (H)

→ this is exactly VERTEX COVER in H !!

Thus,

OPTMSMD3(G) = OPTVC(H) + |V (G \ V (H))| =

= OPTVC(H) + 9 · 2m

This clearly proves that

PTAS for MSMD3 ⇒ PTAS for VERTEX COVER
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(2) MSMD3 is not in APX

Let α > 1 be the factor of inapproximability of MSMD3

We use a technique called error amplification:

I We build a sequence of families of graphs Gk , such that MSMD3 is
hard to approximate in Gk within a factor αk

I This proves that the problem is not in APX

(for any constant C, ∃ k > 0 such that αk > C)

Let G1 = G.
We explain the construction of G2: first take our graph G and...
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For any vertex v (note its degree by dv ):

v



We will replace the vertex v with a graph Gv , built as follows:

Gv



We begin by placing a copy of G (described before):

Gv



We select dv vertices of degree 3 in T ⊂ G:

x1
x2

xdv

Gv



We replace each of these vertices xi with a C4:

x1x2

xdv

Gv



In each C4, we join 3 of the vertices to the neighbors of xi :

x1x2

xdv

Gv



We join the dv vertices of degree 2 to the dv neighbors of v :

x1x2

xdv

Gv



This construction for all v ∈ G defines G2:

x1x2

xdv

Gv



(2) MSMD3 is not in APX

Once a vertex in one Gv is chosen → MSMD3 in Gv

(which is hard up to a constant α)

But minimize the number of v ’s for which we touch Gv →
MSMD3 in G (which is also hard up to a constant α)

Thus, in G2 the problem is hard to approximate up to a factor
α · α = α2

Inductively we prove that in Gk the problem is hard to approximate
up to a factor αk



(2) MSMD3 is not in APX

Once a vertex in one Gv is chosen → MSMD3 in Gv

(which is hard up to a constant α)

But minimize the number of v ’s for which we touch Gv →
MSMD3 in G (which is also hard up to a constant α)

Thus, in G2 the problem is hard to approximate up to a factor
α · α = α2

Inductively we prove that in Gk the problem is hard to approximate
up to a factor αk



(2) MSMD3 is not in APX

Once a vertex in one Gv is chosen → MSMD3 in Gv

(which is hard up to a constant α)

But minimize the number of v ’s for which we touch Gv →
MSMD3 in G (which is also hard up to a constant α)

Thus, in G2 the problem is hard to approximate up to a factor
α · α = α2

Inductively we prove that in Gk the problem is hard to approximate
up to a factor αk



3- DUAL DEGREE-DENSE

k -SUBGRAPH (DDDkS)



Definition of the problem + results

DUAL DEGREE-DENSE k -SUBGRAPH (DDDkS):

Input: an undirected graph G = (V ,E) and a positive integer k .

Output: a subset S ⊆ V with |S| ≤ k , s.t. δ(G[S]) is maximum.

It is the natural dual version of the preceding problem.

Our results:

I Randomized O(
√

n log n)-approximation algorithm in general
graphs.

I Deterministic O(nδ)-approximation algorithm in general graphs, for
some universal constant δ < 1/3.
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Further Research

Problem 1:
I Approximation algorithms and hardness results in general graphs.
I Open: closing the huge complexity gap of MDBCSd , d ≥ 2.

Problem 2:
I Hardness results and an approximation algorithm in minor-free

graphs.
I Open: finding approximation algorithms in general graphs for

MSMDd , d ≥ 3.

Problem 3:
I Approximation algorithms in general graphs.
I Open: hardness results for DDDkS, k ≥ 3.
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Thanks!
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