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Broad family of problems

@ A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:
» a (weighted or unweighted) graph G, and
» an integer d.

Output:

» a (connected) subgraph H of G,
» satisfying some degree constraints (A(H) < d or §(H) > d),
» and optimizing some parameter (| V(H)| or |[E(H)]).

@ Several problems in this broad family are classical widely studied
NP-hard problems.

@ They have a number of applications in interconnection networks,
routing algorithms, chemistry, ...
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Definition of the problem

@ MAXIMUM d-DEGREE-BOUNDED CONNECTED SUBGRAPH
(MDBCS,):

Input:
» an undirected graph G = (V, E),
» aninteger d > 2, and
» a weight function w : E — R,

Output:
a subset of edges E’ C E of maximum weight, s.t. G = (V, E')

» is connected, and
» has maximum degree < d.

@ It is one of the classical NP-hard problems of
[Garey and Johnson, Computers and Intractability, 1979].

@ If the output subgraph is not required to be connected, the
problem is in P for any d (using matching techniques).

@ For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE)
problem.



Example with d = 3, w(e) = 1 for all e € E(G)
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To the best of our knowledge, there were no results in the literature
except for the case d = 2, a.k.a. the LONGEST PATH problem:

@ Approximation algorithms:

@] (Iogn) -approximation, using the color-coding method.
[N. Alon, R. Yuster and U. Zwick, STOC’94].
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[A. Bjorklund and T. Husfeldt, SIAM J. Computing’03].

@ Hardness results:
It does not accept any constant-factor approximation.
[D. Karger, R. Motwani and G. Ramkumar, Algorithmica’97].
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Approximation algorithm for weighted graphs
Input: undirected graph G = (V, E), a weight functionw : E — R,
and anintegerd > 2. Let n=|V|, m = |E|.

F: set of d heaviest edges in G, with weight w(F).
W: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H= (W, F) is connected, the algorithm returns H.

Claim: this yields a min{n/2, m/d}-approximation.

Proof.

Suppose an optimal solution consists of m* edges of total weight w*.
Then ALG = w(F) > & «” . d, since by the choice of F the average weight
of the edges in F can not be smaller than the average weight of the
edges of an optimal solution. As m <m and m* < dn/2, we get that
ALG> % .d = & dandALG> dn/z d=2 n/z

If H= (W, F) consists of a collection F of k connected
components, we glue them in k — 1 phases.
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Example of the algorithm for weighted graphs

H=(W,F)
~/

~7 /
~ d=6

@ Let H= (W, F) be the graph induced by the d heaviest edges.



Example of the algorithm for weighted graphs

H=(W,F)
~J

~7 /
N

@ Assume H has k > 1 connected components.
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@ We compute the distance in G between each pair of components.



Example of the algorithm for weighted graphs

H=(W,F)

6
k=3

@ We add to H a path between a pair of closest vertices.
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@ We repeat these two steps inductively...



Example of the algorithm for weighted graphs

@ Until the graph H is connected.



Example of the algorithm for weighted graphs

H=(W,F)

@ The algorithm outputs this graph H.
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Analysis of the algorithm

(a) Running time: clearly polynomial.

(b) Correctness:
» The output subgraph is connected.

» Claim: after i phases, A(H) <d—k+i+1.
The proof is done by induction. When i = k — 1 we get A(H) < d.

(c) Approximation ratio: follows from case (1).
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Definition of the problem

@ MINIMUM SUBGRAPH OF MINIMUM DEGREE > d (MSMD,):

Input: an undirected graph G = (V, E) and an integer d > 3.
Output: a subset S C V with §(G[S]) > d, s.t. | S| is minimum.

@ For d =2 itis the GIRTH problem (find the length of a shortest
cycle), which is in P.

@ Motivation: close relation with DENSE k-SUBGRAPH problem and
TRAFFIC GROOMING problem in optical networks.
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Idea of the proof for d = 3

(1) First we will see that MSMD3 ¢ PTAS.

(2) Then we will see that MSMD3 ¢ APX.
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(1) MSMD; is not in PTAS

@ Reduction from VERTEX COVER:

Instance H of VERTEX COVER — Instance G of MSMD;

@ We will see that

PTAS for G = PTAS for H

@ And so,
# PTAS for MSMD3

@ We can suppose |E(H)| =3-2"and 6(H) > 3.



We build a complete ternary tree with |E(H)| = 3 - 2" leaves:

T



We add a copy of the set of leaves E(H):

T

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,



We join both sets with a Hamiltonian cycle (for technical reasons):

T




We add all the vertices of H:




We add the incidence relations between E(H) and V(H) — G:
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(1) MSMDg is not in PTAS

@ If we touch a vertex of G\ V(H), we have to touch all the vertices
of G\ V(H)

@ Thus, MSMD3 in G is equivalent to minimize the number of
selected vertices in V(H)

— this is exactly VERTEX COVER in H !!

@ Thus,
OPTusmp,(G) = OPTyc(H) + |V(G\ V(H))| =
— OPTyo(H) +9-2"

@ This clearly proves that

PTAS for MSMD3; = PTAS for VERTEX COVER
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(2) MSMDj is notin APX

@ Let a > 1 be the factor of inapproximability of MSMD3

@ We use a technique called error amplification:

» We build a sequence of families of graphs G, such that MSMD3 is
hard to approximate in Gx within a factor o

» This proves that the problem is not in APX
(for any constant C, 3 k > 0 such that o > C)

o Let G1 = G.
We explain the construction of Go: first take our graph G and...



For any vertex v (note its degree by d,):




We will replace the vertex v with a graph Gy, built as follows:



We begin by placing a copy of G (described before):




We select d, vertices of degree 3in T C G:




We replace each of these vertices x; with a Cy:




In each C4, we join 3 of the vertices to the neighbors of x;:




We join the d, vertices of degree 2 to the d, neighbors of v:




This construction for all v € G defines Go:
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(2) MSMDj is notin APX

@ Once a vertex in one G, is chosen — MSMDs3 in G,

(which is hard up to a constant «)

@ But minimize the number of v’s for which we touch G, —
MSMDg in G (which is also hard up to a constant «)

@ Thus, in G, the problem is hard to approximate up to a factor
2
o=«

@ Inductively we prove that in Gk the problem is hard to approximate
up to a factor ¥



3- DUAL DEGREE-DENSE
k-SUBGRAPH (DDDkS)



Definition of the problem + results

@ DuAL DEGREE-DENSE k-SUBGRAPH (DDDKS):

Input: an undirected graph G = (V, E) and a positive integer k.



Definition of the problem + results

@ DuAL DEGREE-DENSE k-SUBGRAPH (DDDKS):

Input: an undirected graph G = (V, E) and a positive integer k.
Output: a subset S C V with |S| < k, s.t. §(G[S]) is maximum.



Definition of the problem + results

@ DuAL DEGREE-DENSE k-SUBGRAPH (DDDKS):

Input: an undirected graph G = (V, E) and a positive integer k.
Output: a subset S C V with |S| < k, s.t. §(G[S]) is maximum.

@ It is the natural dual version of the preceding problem.



Definition of the problem + results

@ DuAL DEGREE-DENSE k-SUBGRAPH (DDDKS):

Input: an undirected graph G = (V, E) and a positive integer k.
Output: a subset S C V with |S| < k, s.t. §(G[S]) is maximum.

@ It is the natural dual version of the preceding problem.

@ Our results:

» Randomized O(+/nlog n)-approximation algorithm in general
graphs.

» Deterministic O(n’)-approximation algorithm in general graphs, for
some universal constant § < 1/3.
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Further Research

@ Problem 1:

» Approximation algorithms and hardness results in general graphs.
» Open: closing the huge complexity gap of MDBCS,, d > 2.

@ Problem 2:

» Hardness results and an approximation algorithm in minor-free
graphs.

» Open: finding approximation algorithms in general graphs for
MSMDy, d > 3.

@ Problem 3:

» Approximation algorithms in general graphs.
» Open: hardness results for DDDKS, k > 3.



Thanks!
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