Degree-Constrained Subgraph Problems: Hardness and Approximation Results

Omid Amini - *Max Planck (Germany)* David Peleg - *Weizmann Inst. (Israel)* Stéphane Perénnes - *CNRS (France)* Ignasi Sau - CNRS (France) + UPC (Spain) Saket Saurabh - *Univ. Bergen (Norway)*

Mascotte Project - INRIA/CNRS-I3S/UNSA - FRANCE Applied Mathematics IV Department of UPC - SPAIN

ALGO/WAOA - Karlsruhe - September 18th, 2008

Outline of the talk

- Introduction
- Problem 1
 - Definition + results
 - An approximation algorithm
- Problem 2
 - Definition + results
 - A hardness result
- Problem 3
 - Definition + results
- Further research

Degree-Constrained Subgraph Problems

• A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:

- ▶ a (weighted or unweighted) graph G, and
- ▶ an integer d.

- ▶ a (*connected*) subgraph *H* of *G*,
- satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

• A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:

- ▶ a (*weighted* or *unweighted*) graph G, and
- an integer d.

- ▶ a (connected) subgraph H of G,
- ▶ satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

• A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:

- ▶ a (*weighted* or *unweighted*) graph G, and
- an integer d.

- ▶ a (*connected*) subgraph *H* of *G*,
- ► satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

• A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:

- ▶ a (*weighted* or *unweighted*) graph G, and
- ▶ an integer d.

- ▶ a (*connected*) subgraph *H* of *G*,
- ► satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

• A typical DEGREE-CONSTRAINED SUBGRAPH PROBLEM:

Input:

- ▶ a (*weighted* or *unweighted*) graph G, and
- ▶ an integer d.

- ▶ a (*connected*) subgraph *H* of *G*,
- ► satisfying some degree constraints ($\Delta(H) \leq d$ or $\delta(H) \geq d$),
- and optimizing some parameter (|V(H)| or |E(H)|).
- Several problems in this broad family are classical widely studied NP-hard problems.
- They have a number of applications in interconnection networks, routing algorithms, chemistry, ...

1- MAXIMUM *d*-Degree-Bounded Connected Subgraph

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_{*d*}):

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : E \to \mathbb{R}^+$.

Output:

- ▶ is connected, and
- has **maximum degree** $\leq d$.
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*
- If the output subgraph is not required to be connected, the problem is in **P** for any *d* (using matching techniques).
- For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE) problem.

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_{*d*}):

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : \boldsymbol{E} \to \mathbb{R}^+$.

Output:

- is connected, and
- has **maximum degree** $\leq d$.
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*
- If the output subgraph is not required to be connected, the problem is in **P** for any *d* (using matching techniques).
- For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE) problem.

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_{*d*}):

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : \boldsymbol{E} \to \mathbb{R}^+$.

Output:

- is connected, and
- has **maximum degree** $\leq d$.
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE) problem.

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_{*d*}):

Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : \boldsymbol{E} \to \mathbb{R}^+$.

Output:

- is connected, and
- has **maximum degree** $\leq d$.
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE) problem.

• MAXIMUM *d*-DEGREE-BOUNDED CONNECTED SUBGRAPH (MDBCS_{*d*}):

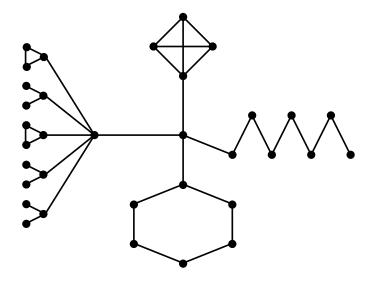
Input:

- an undirected graph G = (V, E),
- an integer $d \ge 2$, and
- a weight function $\omega : \boldsymbol{E} \to \mathbb{R}^+$.

Output:

- is connected, and
- has **maximum degree** $\leq d$.
- It is one of the classical **NP**-hard problems of *[Garey and Johnson, Computers and Intractability, 1979].*
- If the output subgraph is not required to be connected, the problem is in P for any d (using matching techniques).
- For fixed d = 2 it is the well known LONGEST PATH (OR CYCLE) problem.

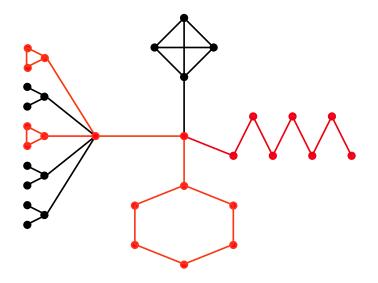
Example with d = 3, $\omega(e) = 1$ for all $e \in E(G)$



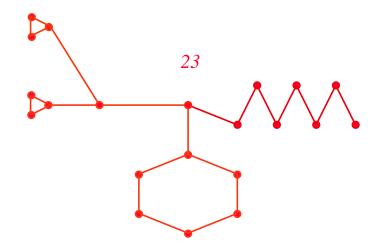
Example with d = 3 (II)



Example with d = 3 (III)



Example with d = 3 (IV)



To the best of our knowledge, there were no results in the literature except for the case d = 2, a.k.a. the **LONGEST PATH** problem:

- Approximation algorithms: $\mathcal{O}\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method. [N. Alon, R. Yuster and U. Zwick, STOC'94]. $\mathcal{O}\left(n\left(\frac{\log \log n}{\log n}\right)^2\right)$ -approximation. [A. Björklund and T. Husfeldt, SIAM J. Computing'03].
- Hardness results:

To the best of our knowledge, there were no results in the literature except for the case d = 2, a.k.a. the **LONGEST PATH** problem:

Approximation algorithms:

 $\mathcal{O}\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method. [N. Alon, R. Yuster and U. Zwick, STOC'94]. $\mathcal{O}\left(n\left(\frac{\log \log n}{\log n}\right)^2\right)$ -approximation. [A. Björklund and T. Husfeldt, SIAM J. Computing'03].

• Hardness results:

To the best of our knowledge, there were no results in the literature except for the case d = 2, a.k.a. the **LONGEST PATH** problem:

Approximation algorithms:

 $\mathcal{O}\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method. [N. Alon, R. Yuster and U. Zwick, STOC'94]. $\mathcal{O}\left(n\left(\frac{\log \log n}{\log n}\right)^2\right)$ -approximation. [A. Björklund and T. Husfeldt, SIAM J. Computing'03].

• Hardness results:

To the best of our knowledge, there were no results in the literature except for the case d = 2, a.k.a. the **LONGEST PATH** problem:

Approximation algorithms:

 $\mathcal{O}\left(\frac{n}{\log n}\right)$ -approximation, using the **color-coding** method. [N. Alon, R. Yuster and U. Zwick, STOC'94]. $\mathcal{O}\left(n\left(\frac{\log \log n}{\log n}\right)^2\right)$ -approximation. [A. Björklund and T. Husfeldt, SIAM J. Computing'03].

Hardness results:

• Approximation algorithms (n = |V(G)|, m = |E(G)|):

• min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.

- min $\{\frac{m}{\log n}, \frac{nd}{2\log n}\}$ -approximation algorithm for **unweighted** graphs, using *color coding*.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.
- Hardness results:
 - For each fixed $d \ge 2$, MDBCS_d does not accept *any* constant-factor approximation in general graphs.

• Approximation algorithms (n = |V(G)|, m = |E(G)|):

- min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
- min{ min{ min{ min{ mod log n} }, min{ min{ min{ min{ mod log n} }, min{ min{ min{ mod log n} }, min{ min{ min{ min{ mod log n} }, min{ min{ min{ min{ min{ min{ min} min{ min{ min{ min} min{ min} }, min{ min{ min{ min} min{ min} }, min{ min{ min{ min} min{ min{ min} min{ min} min{ min{ min} min{ min} min{ min} min{ min{ min} min{ min} min{ min} min{ min} min{ min} min{ min{ min} min{
- ▶ when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.
- Hardness results:
 - For each fixed $d \ge 2$, MDBCS_d does not accept *any* constant-factor approximation in general graphs.

• Approximation algorithms (n = |V(G)|, m = |E(G)|):

- min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
- min{ min{ min{ min{ mod log n}, min{ min{ mod log n}} } approximation algorithm for unweighted graphs, using color coding.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.
- Hardness results:
 - For each fixed $d \ge 2$, MDBCS_d does not accept *any* constant-factor approximation in general graphs.

• Approximation algorithms (n = |V(G)|, m = |E(G)|):

- min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
- when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

For each fixed *d* ≥ 2, MDBCS_d does not accept *any* constant-factor approximation in general graphs.

- Approximation algorithms (n = |V(G)|, m = |E(G)|):
 - min $\{\frac{n}{2}, \frac{m}{d}\}$ -approximation algorithm for weighted graphs.
 - min{ min{ min{ min{ mod log n}, min{ min{ mod log n}} } approximation algorithm for unweighted graphs, using color coding.
 - when G accepts a low-degree spanning tree, in terms of d, then MDBCS_d can be approximated within a small constant factor.

Hardness results:

► For each fixed d ≥ 2, MDBCS_d does not accept any constant-factor approximation in general graphs.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a min{n/2, m/d}-approximation.

Proof.

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \ge \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \le m$ and $m^* \le dn/2$, we get that $ALG \ge \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \ge \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

Approximation algorithm for weighted graphs

Input: undirected graph G = (V, E), a weight function $\omega : E \to \mathbb{R}^+$, and an integer $d \ge 2$. Let n = |V|, m = |E|.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a min{n/2, m/d}-approximation.

Proof.

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \ge \frac{\omega^*}{m^*} \cdot d$, since by the choice of *F* the average weight of the edges in *F* can not be smaller than the average weight of the edges of an optimal solution. As $m^* \le m$ and $m^* \le dn/2$, we get that $ALG \ge \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \ge \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a min{n/2, m/d}-approximation.

Proof.

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \ge \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \le m$ and $m^* \le dn/2$, we get that $ALG \ge \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \ge \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a min{n/2, m/d}-approximation.

Proof.

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \ge \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \le m$ and $m^* \le dn/2$, we get that $ALG \ge \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \ge \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a min{n/2, m/d}-approximation.

Proof.

Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \ge \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \le m$ and $m^* \le dn/2$, we get that $ALG \ge \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \ge \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

F: set of *d* heaviest edges in *G*, with weight $\omega(F)$. *W*: set of endpoints of those edges. Let H = (W, F).

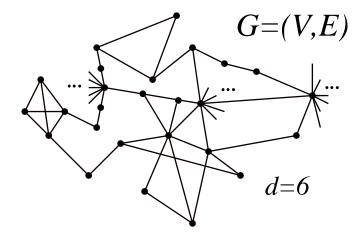
Description of the algorithm: Two cases according to H = (W, F):

(1) If H = (W, F) is connected, the algorithm returns H. **Claim**: this yields a min{n/2, m/d}-approximation.

Proof.

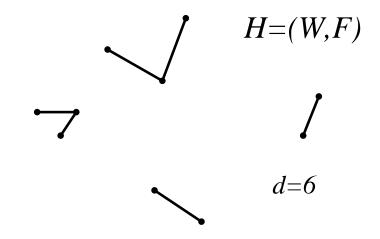
Suppose an optimal solution consists of m^* edges of total weight ω^* . Then $ALG = \omega(F) \ge \frac{\omega^*}{m^*} \cdot d$, since by the choice of F the average weight of the edges in F can not be smaller than the average weight of the edges of an optimal solution. As $m^* \le m$ and $m^* \le dn/2$, we get that $ALG \ge \frac{\omega^*}{m} \cdot d = \frac{\omega^*}{m/d}$ and $ALG \ge \frac{\omega^*}{dn/2} \cdot d = \frac{\omega^*}{n/2}$.

Example of the algorithm for weighted graphs



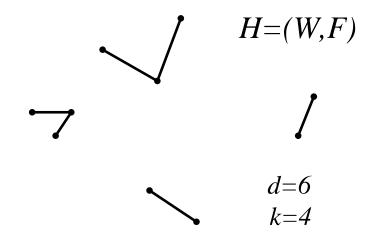
• Given a weighted graph G = (V, E) and an integer d...

Example of the algorithm for weighted graphs

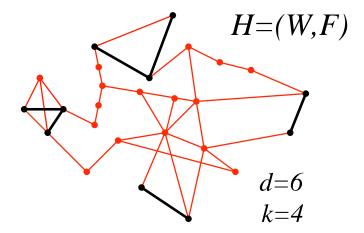


• Let H = (W, F) be the graph induced by the *d* heaviest edges.

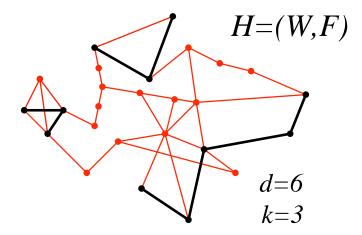
Example of the algorithm for weighted graphs



• Assume *H* has k > 1 connected components.



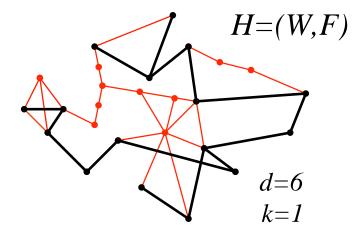
• We compute the distance in G between each pair of components.



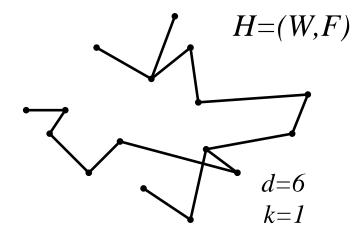
• We add to *H* a path between a pair of closest vertices.



We repeat these two steps inductively...



• Until the graph *H* is connected.



• The algorithm outputs this graph *H*.

(a) Running time: clearly polynomial.

(b) Correctness:

- The output subgraph is connected.
- Claim: after *i* phases, Δ(H) ≤ d − k + i + 1. The proof is done by induction. When i = k − 1 we get Δ(H) ≤ d.

(c) Approximation ratio: follows from case (1).

(a) Running time: clearly polynomial.

(b) Correctness:

- The output subgraph is connected.
- Claim: after *i* phases, Δ(H) ≤ d − k + i + 1. The proof is done by induction. When i = k − 1 we get Δ(H) ≤ d.

(c) Approximation ratio: follows from case (1).

(a) Running time: clearly polynomial.

(b) Correctness:

- The output subgraph is connected.
- Claim: after *i* phases, Δ(H) ≤ d − k + i + 1. The proof is done by induction. When i = k − 1 we get Δ(H) ≤ d.

(c) Approximation ratio: follows from case (1).

(a) Running time: clearly polynomial.

(b) Correctness:

- The output subgraph is connected.
- Claim: after *i* phases, Δ(H) ≤ d − k + i + 1. The proof is done by induction. When i = k − 1 we get Δ(H) ≤ d.
- (c) Approximation ratio: follows from case (1).

2- MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$

MINIMUM SUBGRAPH OF MINIMUM DEGREE ≥ d (MSMD_d): Input: an undirected graph G = (V, E) and an integer d ≥ 3. Output: a subset S ⊆ V with δ(G[S]) ≥ d, s.t. |S| is minimum

- For d = 2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: close relation with DENSE *k*-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

• MINIMUM SUBGRAPH OF MINIMUM DEGREE $\geq d$ (MSMD_d):

Input: an undirected graph G = (V, E) and an integer $d \ge 3$. **Output:** a subset $S \subseteq V$ with $\delta(G[S]) \ge d$, s.t. |S| is minimum.

- For d = 2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: close relation with DENSE *k*-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

- MINIMUM SUBGRAPH OF MINIMUM DEGREE ≥ d (MSMD_d):
 Input: an undirected graph G = (V, E) and an integer d ≥ 3.
 Output: a subset S ⊆ V with δ(G[S]) ≥ d, s.t. |S| is minimum.
- For d = 2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: close relation with DENSE *k*-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

- MINIMUM SUBGRAPH OF MINIMUM DEGREE ≥ d (MSMD_d):
 Input: an undirected graph G = (V, E) and an integer d ≥ 3.
 Output: a subset S ⊆ V with δ(G[S]) ≥ d, s.t. |S| is minimum.
- For d = 2 it is the GIRTH problem (find the length of a shortest cycle), which is in P.
- Motivation: close relation with DENSE *k*-SUBGRAPH problem and TRAFFIC GROOMING problem in optical networks.

State of the art + our results

- This problem was first introduced in [O. Amini, I. S. and S. Saurabh, IWPEC'08].
 - W[1]-hard in general graphs, for $d \ge 3$.
 - ► FPT in minor-closed classes of graphs.
- Our results:
 - $MSMD_d$ is not in APX for any $d \ge 3$.
 - ▷ O(n/ log n)-approximation algorithm for minor-closed classes of graphs, using a structural result and dynamic programming.

State of the art + our results

- This problem was first introduced in [O. Amini, I. S. and S. Saurabh, IWPEC'08].
 - W[1]-hard in general graphs, for $d \ge 3$.
 - FPT in minor-closed classes of graphs.
- Our results:
 - $MSMD_d$ is not in APX for any $d \ge 3$.
 - O(n/ log n)-approximation algorithm for minor-closed classes of graphs, using a structural result and dynamic programming.

State of the art + our results

- This problem was first introduced in [O. Amini, I. S. and S. Saurabh, IWPEC'08].
 - W[1]-hard in general graphs, for $d \ge 3$.
 - FPT in minor-closed classes of graphs.
- Our results:
 - $MSMD_d$ is not in APX for any $d \ge 3$.
 - O(n/ log n)-approximation algorithm for minor-closed classes of graphs, using a structural result and dynamic programming.

Idea of the proof for d = 3

(1) First we will see that $MSMD_3 \notin PTAS$.

(2) Then we will see that $MSMD_3 \notin APX$.

• Reduction from VERTEX COVER:

```
Instance H of VERTEX COVER \rightarrow Instance G of MSMD<sub>3</sub>
```

• We will see that

PTAS for $G \Rightarrow$ PTAS for H

And so,

 \nexists PTAS for MSMD₃

• Reduction from VERTEX COVER:

```
Instance H of VERTEX COVER \rightarrow Instance G of MSMD<sub>3</sub>
```

• We will see that

PTAS for $G \Rightarrow$ PTAS for H

And so,

 \nexists PTAS for MSMD₃

• Reduction from VERTEX COVER:

```
Instance H of VERTEX COVER \rightarrow Instance G of MSMD<sub>3</sub>
```

• We will see that

PTAS for $G \Rightarrow$ PTAS for H

And so,

 \nexists PTAS for MSMD₃

• Reduction from VERTEX COVER:

```
Instance H of VERTEX COVER \rightarrow Instance G of MSMD<sub>3</sub>
```

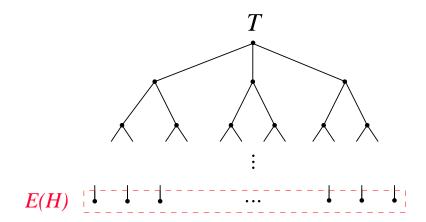
• We will see that

PTAS for $G \Rightarrow$ PTAS for H

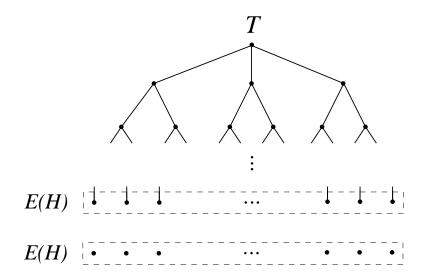
And so,

 \nexists PTAS for MSMD₃

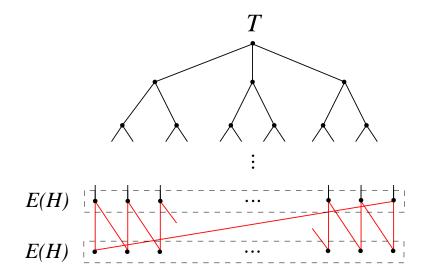
We build a complete ternary tree with $|E(H)| = 3 \cdot 2^m$ leaves:



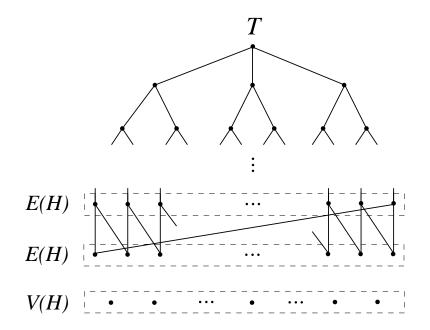
We add a copy of the set of leaves E(H):



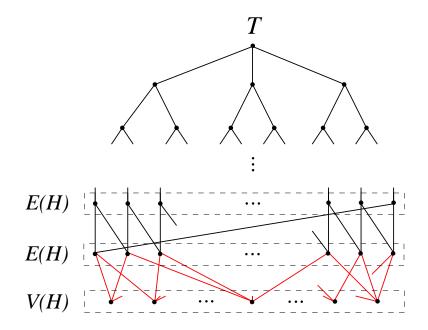
We join both sets with a Hamiltonian cycle (for technical reasons):



We add all the vertices of *H*:



We add the incidence relations between E(H) and $V(H) \rightarrow G$:



- If we touch a vertex of G \ V(H), we have to touch all the vertices of G \ V(H)
- Thus, MSMD₃ in *G* is equivalent to minimize the number of selected vertices in *V*(*H*)
 - \rightarrow this is **exactly** VERTEX COVER in *H* !!
- Thus,

 $OPT_{MSMD_3}(G) = OPT_{VC}(H) + |V(G \setminus V(H))| =$ $= OPT_{VC}(H) + 9 \cdot 2^m$

• This clearly proves that

- If we touch a vertex of G \ V(H), we have to touch all the vertices of G \ V(H)
- Thus, MSMD₃ in G is equivalent to minimize the number of selected vertices in V(H)

 \rightarrow this is **exactly** VERTEX COVER in *H* !!

Thus,

$$OPT_{MSMD_3}(G) = OPT_{VC}(H) + |V(G \setminus V(H))| =$$
$$= OPT_{VC}(H) + 9 \cdot 2^m$$

• This clearly proves that

- If we touch a vertex of G \ V(H), we have to touch all the vertices of G \ V(H)
- Thus, MSMD₃ in G is equivalent to minimize the number of selected vertices in V(H)
 - \rightarrow this is **exactly** VERTEX COVER in *H* !!

Thus,

$$OPT_{MSMD_3}(G) = OPT_{VC}(H) + |V(G \setminus V(H))| =$$
$$= OPT_{VC}(H) + 9 \cdot 2^m$$

• This clearly proves that

- If we touch a vertex of G \ V(H), we have to touch all the vertices of G \ V(H)
- Thus, MSMD₃ in G is equivalent to minimize the number of selected vertices in V(H)
 - \rightarrow this is **exactly** VERTEX COVER in *H* !!
- Thus,

$$OPT_{MSMD_3}(G) = OPT_{VC}(H) + |V(G \setminus V(H))| =$$

= $OPT_{VC}(H) + 9 \cdot 2^m$

• This clearly proves that

• Let $\alpha > 1$ be the factor of inapproximability of MSMD₃

- We use a technique called error amplification:
 - We build a sequence of families of graphs G_k, such that MSMD₃ is hard to approximate in G_k within a factor α^k
 - This proves that the problem is not in APX (for any constant C, ∃ k > 0 such that α^k > C)

• Let $G_1 = G$.

- Let $\alpha > 1$ be the factor of inapproximability of MSMD₃
- We use a technique called error amplification:
 - We build a sequence of families of graphs G_k, such that MSMD₃ is hard to approximate in G_k within a factor α^k
 - This proves that the problem is not in APX (for any constant C, ∃ k > 0 such that α^k > C)

• Let $G_1 = G$.

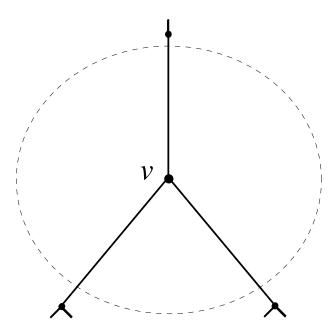
- Let $\alpha > 1$ be the factor of inapproximability of MSMD₃
- We use a technique called error amplification:
 - We build a sequence of families of graphs G_k, such that MSMD₃ is hard to approximate in G_k within a factor α^k
 - This proves that the problem is not in APX (for any constant C, ∃ k > 0 such that α^k > C)

• Let $G_1 = G$.

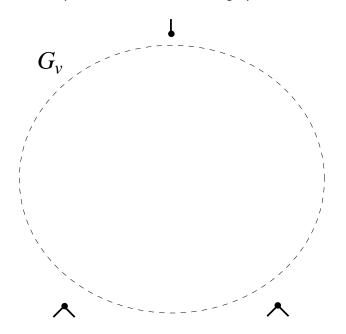
- Let $\alpha > 1$ be the factor of inapproximability of MSMD₃
- We use a technique called error amplification:
 - We build a sequence of families of graphs G_k, such that MSMD₃ is hard to approximate in G_k within a factor α^k
 - This proves that the problem is not in APX (for any constant C, ∃ k > 0 such that α^k > C)

• Let $G_1 = G$.

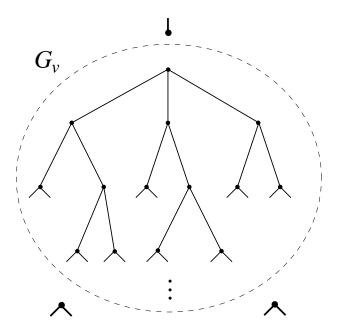
For any vertex v (note its degree by d_v):



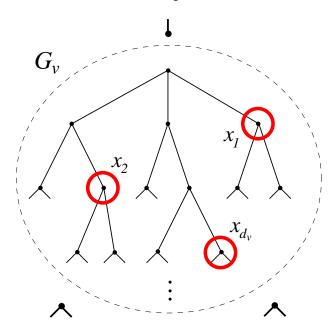
We will replace the vertex v with a graph G_v , built as follows:



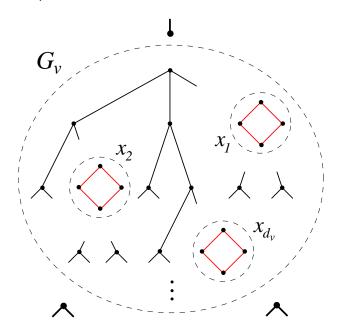
We begin by placing a copy of G (described before):



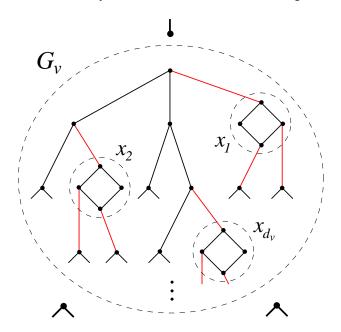
We select d_v vertices of degree 3 in $T \subset G$:



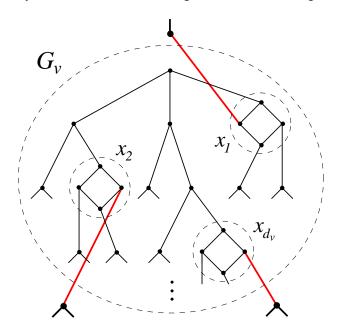
We replace each of these vertices x_i with a C_4 :



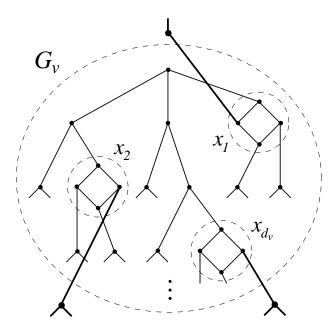
In each C_4 , we join 3 of the vertices to the neighbors of x_i :



We join the d_v vertices of degree 2 to the d_v neighbors of v:



This construction for all $v \in G$ defines G_2 :



(2) $MSMD_3$ is not in APX

- Once a vertex in one G_ν is chosen → MSMD₃ in G_ν (which is hard up to a constant α)
- But minimize the number of *v*'s for which we touch $G_v \rightarrow MSMD_3$ in *G* (which is also hard up to a constant α)

- Thus, in G_2 the problem is hard to approximate up to a factor $\alpha \cdot \alpha = \alpha^2$
- Inductively we prove that in G_k the problem is hard to approximate up to a factor α^k

(2) $MSMD_3$ is not in APX

- Once a vertex in one G_ν is chosen → MSMD₃ in G_ν (which is hard up to a constant α)
- But minimize the number of *v*'s for which we touch $G_v \rightarrow MSMD_3$ in *G* (which is also hard up to a constant α)

- Thus, in G_2 the problem is hard to approximate up to a factor $\alpha \cdot \alpha = \alpha^2$
- Inductively we prove that in G_k the problem is hard to approximate up to a factor α^k

(2) $MSMD_3$ is not in APX

- Once a vertex in one G_ν is chosen → MSMD₃ in G_ν (which is hard up to a constant α)
- But minimize the number of *v*'s for which we touch $G_v \rightarrow MSMD_3$ in *G* (which is also hard up to a constant α)

- Thus, in G_2 the problem is hard to approximate up to a factor $\alpha \cdot \alpha = \alpha^2$
- Inductively we prove that in G_k the problem is hard to approximate up to a factor α^k

3- DUAL DEGREE-DENSE *k*-SUBGRAPH (DDD*k*S)

• DUAL DEGREE-DENSE *k*-SUBGRAPH (DDD*k*S):

Input: an undirected graph G = (V, E) and a positive integer k. **Output:** a subset $S \subseteq V$ with $|S| \leq k$, s.t. $\delta(G[S])$ is maximum.

• It is the natural *dual* version of the preceding problem.

• Our results:

- ► Randomized O(√n log n)-approximation algorithm in general graphs.
- Deterministic O(n^δ)-approximation algorithm in general graphs, for some universal constant δ < 1/3.</p>

• DUAL DEGREE-DENSE *k*-SUBGRAPH (DDD*k*S):

Input: an undirected graph G = (V, E) and a positive integer *k*. **Output:** a subset $S \subseteq V$ with $|S| \le k$, s.t. $\delta(G[S])$ is maximum.

• It is the natural *dual* version of the preceding problem.

• Our results:

- Randomized $\mathcal{O}(\sqrt{n} \log n)$ -approximation algorithm in general graphs.
- Deterministic O(n^δ)-approximation algorithm in general graphs, for some universal constant δ < 1/3.</p>

• DUAL DEGREE-DENSE *k*-SUBGRAPH (DDD*k*S):

Input: an undirected graph G = (V, E) and a positive integer *k*. **Output:** a subset $S \subseteq V$ with $|S| \le k$, s.t. $\delta(G[S])$ is maximum.

- It is the natural *dual* version of the preceding problem.
- Our results:
 - Randomized $\mathcal{O}(\sqrt{n} \log n)$ -approximation algorithm in general graphs.
 - Deterministic O(n^δ)-approximation algorithm in general graphs, for some universal constant δ < 1/3.

• DUAL DEGREE-DENSE *k*-SUBGRAPH (DDD*k*S):

Input: an undirected graph G = (V, E) and a positive integer *k*. **Output:** a subset $S \subseteq V$ with $|S| \le k$, s.t. $\delta(G[S])$ is maximum.

- It is the natural *dual* version of the preceding problem.
- Our results:
 - ► Randomized $O(\sqrt{n} \log n)$ -approximation algorithm in general graphs.
 - Deterministic O(n^δ)-approximation algorithm in general graphs, for some universal constant δ < 1/3.

• Problem 1:

- Approximation algorithms and hardness results in general graphs.
- **Open:** closing the *huge* complexity gap of $MDBCS_d$, $d \ge 2$.
- Problem 2:
 - Hardness results and an approximation algorithm in minor-free graphs.
 - ► Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.
- Problem 3:
 - Approximation algorithms in general graphs.
 - **Open:** hardness results for DDDkS, $k \ge 3$.

• Problem 1:

- Approximation algorithms and hardness results in general graphs.
- **Open:** closing the *huge* complexity gap of $MDBCS_d$, $d \ge 2$.
- Problem 2:
 - Hardness results and an approximation algorithm in minor-free graphs.
 - ► Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.
- Problem 3:
 - Approximation algorithms in general graphs.
 - **Open:** hardness results for DDDkS, $k \ge 3$.

• Problem 1:

- Approximation algorithms and hardness results in general graphs.
- **Open:** closing the *huge* complexity gap of $MDBCS_d$, $d \ge 2$.

Problem 2:

- Hardness results and an approximation algorithm in minor-free graphs.
- ► Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.
- Problem 3:
 - Approximation algorithms in general graphs.
 - **Open:** hardness results for DDDkS, $k \ge 3$.

• Problem 1:

- Approximation algorithms and hardness results in general graphs.
- **Open:** closing the *huge* complexity gap of $MDBCS_d$, $d \ge 2$.

Problem 2:

- Hardness results and an approximation algorithm in minor-free graphs.
- ► Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.
- Problem 3:
 - Approximation algorithms in general graphs.
 - **Open:** hardness results for DDDkS, $k \ge 3$.

• Problem 1:

- Approximation algorithms and hardness results in general graphs.
- **Open:** closing the *huge* complexity gap of $MDBCS_d$, $d \ge 2$.

Problem 2:

- Hardness results and an approximation algorithm in minor-free graphs.
- ► Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.

• Problem 3:

- Approximation algorithms in general graphs.
- **Open:** hardness results for DDDkS, $k \ge 3$.

• Problem 1:

- Approximation algorithms and hardness results in general graphs.
- **Open:** closing the *huge* complexity gap of $MDBCS_d$, $d \ge 2$.

Problem 2:

- Hardness results and an approximation algorithm in minor-free graphs.
- ► Open: finding approximation algorithms in general graphs for MSMD_d, d ≥ 3.

• Problem 3:

- Approximation algorithms in general graphs.
- **Open:** hardness results for DDDkS, $k \ge 3$.

Thanks!