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We are given a graph G together with a weight function w : V(G) — R™.

A (proper) k-coloring of G is a partition ¢ = (S5;);c[1,4 of V(G) into k
stable sets Sy, ..., Sk.

The weight of a color S; is w(i) = max,es, w(v).
The weight of a coloring ¢ is w(c) = S5, w(i).
The weighted chromatic number of a pair (G, w) is
o(G,w) = min{w(c) | c is a proper coloring of G}.
For a positive integer r, we define
o(G,w;r) = min{w(c) | c is a proper r-coloring of G}.
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What is known about WEIGHTED COLORING

The WEIGHTED COLORING problem was introduced by [Guan, Zhu. 1997]
to study practical applications related to resource allocation.

If all the vertex weights are equal to one, then o(G, w) = x(G).
Thus, determining (G, w) and o(G, w; r) are NP-hard problems.

The problem is NP-hard even on:

o split graphs, interval graphs, bipartite graphs, and
triangle-free planar graphs with bounded degree.

On the other hand, it is polynomial on

@ cographs and some subclasses of bipartite graphs.

e Werra, Demange, Monnot, Paschos.

de W D M Pasch 2002
[Escoffier, Monnot, Paschos. 2006]

[de Werra, Demange, Escoffier, Monnot, Paschos. 2009]
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They showed that we may assume r < ygp(G) (first-fit chromatic number).
For any graph G, it holds that xrr(G) = O(tlogn). [Linhares, Reed. 2006]

— WEIGHTED COLORING can be solved on forests in time
2 . .
nOllogn) — 20(%e” n) (quasi-polynomial).

Open problem | Is WEIGHTED COLORING polynomial on trees/forests?

More generally, on graphs of bounded treewidth?

Some partial results:

@ PTAS on bounded treewidth graphs. |[Escoffier, Monnot, Paschos. 2006]

@ Polynomial on the class of trees where vertices with degree at least
three induce a stable set. [Kavitha, Mestre. 2012]
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Theorem (Araljo, Nisse, Pérennes. 2014)

Unless the ETH fails, there is no algorithm computing the weighted
chromatic number of n-vertex trees in time n°(°€").

Exponential Time Hypothesis (ETH): the 3-SAT problem on formulas
with n variables cannot be solved in subexponential time, that is, 0(n).
[Impagliazzo, Paturi, Zane. 2001]

That is, the running time n©(°€") is tight under the ETH.

o WEIGHTED COLORING on forests is unlikely to be in P, as this
would contradict the ETH.

@ Also unlikely to be NP-hard, as all problems in NP could be solved in
subexponential time, contradicting again the ETH.
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A few words on parameterized complexity

Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists
an algorithm 4, a computable function f, and a constant ¢ such that given
an instance / = (x, k), A solves the problem in time bounded by f(k)-|/|.

Parameterized reduction: given an input / = (x, k) of the source problem,
computes in time f(k) - |/|, an equivalent instance /" = (x’, k") of the
target problem, such that k' < g(k) for some function g.

W(1]-hard problems: any problem that admits a parameterized reduction
from INDEPENDENT SET parameterized by the size of the solution.
W(2]-hard problems: any problem that admits a parameterized reduction
from DOMINATING SET parameterized by the size of the solution.

The theory of parameterized complexity is built based on FPT # WI[1].

W(1]-hardness: strong evidence of not being FPT.

WI[2]-hardness: even more!
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parameterized by the size of a largest connected component of G.

Consequences: W([1]-hard parameterized by treewidth, cliquewidth, maximum
degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araljo, Baste, S.)

Given a weighted tree (G, w) and an integer r, computing o(G, w;r) is
W(2]-hard parameterized by r.

Note: results are incomparable to those of  [Aradjo, Nisse, Pérennes. 2014]

Recall: on forests, (G, w; r) can be computed in time n©(").

Corollary (Aradjo, Baste, S.)

Assuming ETH, there is no algorithm that, given a weighted tree (G, w)
and a positive integer r, computes (G, w; r) in time f(r) - n°(") for any
computable function f.
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General framework

Our reductions are inspired by the one of [Aradjo, Nisse, Pérennes. 2014]

We present two parameterized reductions:

@ Instance (G, k) of INDEPENDENT SET  —
Instance (G’, w) of WEIGHTED COLORING.

o There exists a solution of INDEPENDENT SET on (G, k) <
o(G’,w) < M, for some appropriately chosen real number M < 2.
o The size of any connected component of G’ is at most 13 - 24K 4 12.

@ Instance (G, k) of DOMINATING SET  —
Instance (G’, w) of WEIGHTED COLORING.

o There exists a solution of DOMINATING SET on (G, k) <
o(G,w;r) < M, with r = 4k + 4.
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Some useful gadgets

For i € [0,4k + 3] and j € [0, ], let w/ = 5 + je, for some £ > 0.

Index i: colors in G'. Index j: vertices of the input graph G.

| Binomial trees | Role: force most of the colors of the vertices of the forest.

For each i € [0,4k + 3], we define recursively the weighted rooted tree B;:

e if i =0, then By has a unique node of weight Wg,
@ otherwise, B; has a root r of weight W,-0 and, for each j € [0, — 1],

we introduce a copy of B; and we connect its.root-to r-
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For £ € [0,3], let W, = wf,, = 5.
Let Ry = Suk4¢ to be the unique color of weight W,.

AND gadget

Let /i € [0,1]. Given two vertices I, l, we define the Ri-AND gadget
between the input vertices /1 and b, to be “this” graph:

{Ri, R2, R3} Vs

{RYUS @ o " @ @ {Ro, R1}

{Ri—i, R3}

wyvs (h)——@ !

{Ri, R}
Available colors are forced by pendant binomial trees (omitted).
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For £ € [0,3], let W, = wf,, = 5.
Let Ry = Suk4¢ to be the unique color of weight W,.

AND gadget

Let /i € [0,1]. Given two vertices I, l, we define the Ri-AND gadget
between the input vertices /1 and b, to be “this” graph:

{Ri, R2, R3} Vs

{RYUS @ o " @ @ {Ro, R1}

{Ri—i, R3}

wyvs (h)——@ !

{Ri, R2}

Available colors are forced by pendant binomial trees (omitted).

If both /; and b are colored R;, then O must be colored R;.

If either 1 or I» is not colored R;, then O can be colored either Ry or-Rj.
16/19



Some useful gadgets (3)

For i € [0,k — 1] and j € [0, n — 1], we define the vertex tree T/,
representing the vertex j, to be “this” graph, with root u:

n—j j Ro, R:
Aits A, {Ro, Ru}

—1-j i1
4i+1 —~ Ars Al
@ @ u @ @
{Saiy2, Ro} {S4i, Ro}

{Saiy2, Ro} {S4i, Ro}

AT

1
4i+3 ’q£i+1
o U o

{54i+27 R()} Ro-AND {541'7 RO}
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{Saiy2, Ro} {S4i, Ro} {Saiy2, Ro} {S4i, Ro}
—j +1
Aris A
o ) o
{54i+27 R()} Ro—AND {541'7 RO}

Idea: root u gets color Ry (R1) = vertex v is (not) in the solution.
(It can be proved that the choices need to be consistent for each vertex.)

Each time we choose a vertex = “pay” (n — 1)e in the total weight.

Making k such choices is forced by M = k(n —1)e + 3 ci0.ak+3] %
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Sketch of the W[1]-hardness reduction

G, k) of INDEPENDENT SET — (G’, w) of WEIGHTED COLORING.
(

We create, for each edge {vi, w2} € E(G) and i1, i> € [0, k — 1], a tree
H{vy vo}.i1,i Obtained from the vertex trees T, and T.? as follows:

oy =~ 1o Fa}
S S

—~

L

Uzr N
i, e ——
[ {RO,RI}

I

I

Ro-AND

{R1}

——e

Idea:

for {v1, v} € E(G), at most one of v; and v, in the stable set.
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Sketch of the W[1]-hardness reduction

G, k) of INDEPENDENT SET — (G’, w) of WEIGHTED COLORING.
(

We create, for each edge {vi, w2} € E(G) and i1, i> € [0, k — 1], a tree

H{vy vo}.i1,i Obtained from the vertex trees T, and T.? as follows:

~~ _{Ro, Ri}

U1 °
- {R1}
L Re-AND | ‘o
T "~ <
i [

.-~ {Ro, R1}

Idea: for {v1, v} € E(G), at most one of v; and v, in the stable set.

Forest (G’,w): disjoint union of these trees Hy,, ., i, j,, for
{vi,va} € E(G) and i1,/ € [0,k —1].  (with some other technical stuff)

There exists a solution of INDEPENDENT SET on (G, k) < o(G,w) < M,
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