
Ruling out FPT algorithms for
Weighted Coloring on forests

Júlio Araújo1 Julien Baste2 Ignasi Sau1,2

LAGOS, CIRM, Marseille, France
September 14, 2017

Full version available at [arXiv:1703.09726]

1 Departamento de Matemática, UFC, Fortaleza, Brazil.
2 CNRS, LIRMM, Université de Montpellier, Montpellier, France.

1/19

Outline of the talk

1 Introduction

2 Our results

3 Some ideas of the proofs

2/19

Next section is...

1 Introduction

2 Our results

3 Some ideas of the proofs

3/19

Weighted Coloring

We are given a graph G together with a weight function w : V (G)→ R+.

A (proper) k-coloring of G is a partition c = (Si)i∈[1,k] of V (G) into k
stable sets S1, . . . ,Sk .

The weight of a color Si is w(i) = maxv∈Si w(v).

The weight of a coloring c is w(c) =
∑k

i=1 w(i).

The weighted chromatic number of a pair (G ,w) is

σ(G ,w) = min{w(c) | c is a proper coloring of G}.

For a positive integer r , we define

σ(G ,w ; r) = min{w(c) | c is a proper r -coloring of G}.

4/19

Weighted Coloring

We are given a graph G together with a weight function w : V (G)→ R+.

A (proper) k-coloring of G is a partition c = (Si)i∈[1,k] of V (G) into k
stable sets S1, . . . ,Sk .

The weight of a color Si is w(i) = maxv∈Si w(v).

The weight of a coloring c is w(c) =
∑k

i=1 w(i).

The weighted chromatic number of a pair (G ,w) is

σ(G ,w) = min{w(c) | c is a proper coloring of G}.

For a positive integer r , we define

σ(G ,w ; r) = min{w(c) | c is a proper r -coloring of G}.

4/19

Weighted Coloring

We are given a graph G together with a weight function w : V (G)→ R+.

A (proper) k-coloring of G is a partition c = (Si)i∈[1,k] of V (G) into k
stable sets S1, . . . ,Sk .

The weight of a color Si is w(i) = maxv∈Si w(v).

The weight of a coloring c is w(c) =
∑k

i=1 w(i).

The weighted chromatic number of a pair (G ,w) is

σ(G ,w) = min{w(c) | c is a proper coloring of G}.

For a positive integer r , we define

σ(G ,w ; r) = min{w(c) | c is a proper r -coloring of G}.

4/19

Weighted Coloring

We are given a graph G together with a weight function w : V (G)→ R+.

A (proper) k-coloring of G is a partition c = (Si)i∈[1,k] of V (G) into k
stable sets S1, . . . ,Sk .

The weight of a color Si is w(i) = maxv∈Si w(v).

The weight of a coloring c is w(c) =
∑k

i=1 w(i).

The weighted chromatic number of a pair (G ,w) is

σ(G ,w) = min{w(c) | c is a proper coloring of G}.

For a positive integer r , we define

σ(G ,w ; r) = min{w(c) | c is a proper r -coloring of G}.

4/19

Weighted Coloring

We are given a graph G together with a weight function w : V (G)→ R+.

A (proper) k-coloring of G is a partition c = (Si)i∈[1,k] of V (G) into k
stable sets S1, . . . ,Sk .

The weight of a color Si is w(i) = maxv∈Si w(v).

The weight of a coloring c is w(c) =
∑k

i=1 w(i).

The weighted chromatic number of a pair (G ,w) is

σ(G ,w) = min{w(c) | c is a proper coloring of G}.

For a positive integer r , we define

σ(G ,w ; r) = min{w(c) | c is a proper r -coloring of G}.

4/19

Example

(G,w)

1 1

1

11

1

5/19

Example

(G,w)

1 1

1

11

1 σ(G,w) = 2

1 1

1

11

1

5/19

Example

(G,w)

1 1

1

11

1 σ(G,w) = 2

(G,w′)

3 1

1

31

1

1 1

1

11

1

5/19

Example

(G,w)

1 1

1

11

1 σ(G,w) = 2

(G,w′)

3 1

1

31

1 σ(G,w′) = 5

3 1

1

31

1

1 1

1

11

1

5/19

Example

(G,w)

1 1

1

11

1 σ(G,w) = 2

(G,w′)

3 1

1

31

1 σ(G,w′) = 5

3 1

1

31

1

3 1

1

31

1 σ(G,w′; 2) = 6

1 1

1

11

1

5/19

What is known about Weighted Coloring

The Weighted Coloring problem was introduced by [Guan, Zhu. 1997]
to study practical applications related to resource allocation.

If all the vertex weights are equal to one, then σ(G ,w) = χ(G).
Thus, determining σ(G ,w) and σ(G ,w ; r) are NP-hard problems.

The problem is NP-hard even on:
split graphs, interval graphs, bipartite graphs, and
triangle-free planar graphs with bounded degree.

On the other hand, it is polynomial on
cographs and some subclasses of bipartite graphs.

[de Werra, Demange, Monnot, Paschos. 2002]
[Escoffier, Monnot, Paschos. 2006]

[de Werra, Demange, Escoffier, Monnot, Paschos. 2009]

6/19

What is known about Weighted Coloring

The Weighted Coloring problem was introduced by [Guan, Zhu. 1997]
to study practical applications related to resource allocation.

If all the vertex weights are equal to one, then σ(G ,w) = χ(G).
Thus, determining σ(G ,w) and σ(G ,w ; r) are NP-hard problems.

The problem is NP-hard even on:
split graphs, interval graphs, bipartite graphs, and
triangle-free planar graphs with bounded degree.

On the other hand, it is polynomial on
cographs and some subclasses of bipartite graphs.

[de Werra, Demange, Monnot, Paschos. 2002]
[Escoffier, Monnot, Paschos. 2006]

[de Werra, Demange, Escoffier, Monnot, Paschos. 2009]

6/19

What is known about Weighted Coloring

The Weighted Coloring problem was introduced by [Guan, Zhu. 1997]
to study practical applications related to resource allocation.

If all the vertex weights are equal to one, then σ(G ,w) = χ(G).
Thus, determining σ(G ,w) and σ(G ,w ; r) are NP-hard problems.

The problem is NP-hard even on:
split graphs, interval graphs, bipartite graphs, and
triangle-free planar graphs with bounded degree.

On the other hand, it is polynomial on
cographs and some subclasses of bipartite graphs.

[de Werra, Demange, Monnot, Paschos. 2002]
[Escoffier, Monnot, Paschos. 2006]

[de Werra, Demange, Escoffier, Monnot, Paschos. 2009]

6/19

Complexity of weighted coloring on trees (or forests)

On an n-vertex graph of treewidth t, σ(G ,w ; r) can be computed in time

nO(r) · rO(t). [Guan, Zhu. 1997]

They showed that we may assume r ≤ χFF(G) (first-fit chromatic number).

For any graph G , it holds that χFF(G) = O(t log n). [Linhares, Reed. 2006]

=⇒ Weighted Coloring can be solved on forests in time
nO(log n) = 2O(log2 n) (quasi-polynomial).

Open problem Is Weighted Coloring polynomial on trees/forests?
More generally, on graphs of bounded treewidth?

Some partial results:

PTAS on bounded treewidth graphs. [Escoffier, Monnot, Paschos. 2006]
Polynomial on the class of trees where vertices with degree at least
three induce a stable set. [Kavitha, Mestre. 2012]

7/19

Complexity of weighted coloring on trees (or forests)
On an n-vertex graph of treewidth t, σ(G ,w ; r) can be computed in time

nO(r) · rO(t). [Guan, Zhu. 1997]

They showed that we may assume r ≤ χFF(G) (first-fit chromatic number).

For any graph G , it holds that χFF(G) = O(t log n). [Linhares, Reed. 2006]

=⇒ Weighted Coloring can be solved on forests in time
nO(log n) = 2O(log2 n) (quasi-polynomial).

Open problem Is Weighted Coloring polynomial on trees/forests?
More generally, on graphs of bounded treewidth?

Some partial results:

PTAS on bounded treewidth graphs. [Escoffier, Monnot, Paschos. 2006]
Polynomial on the class of trees where vertices with degree at least
three induce a stable set. [Kavitha, Mestre. 2012]

7/19

Complexity of weighted coloring on trees (or forests)
On an n-vertex graph of treewidth t, σ(G ,w ; r) can be computed in time

nO(r) · rO(t). [Guan, Zhu. 1997]

They showed that we may assume r ≤ χFF(G) (first-fit chromatic number).

For any graph G , it holds that χFF(G) = O(t log n). [Linhares, Reed. 2006]

=⇒ Weighted Coloring can be solved on forests in time
nO(log n) = 2O(log2 n) (quasi-polynomial).

Open problem Is Weighted Coloring polynomial on trees/forests?
More generally, on graphs of bounded treewidth?

Some partial results:

PTAS on bounded treewidth graphs. [Escoffier, Monnot, Paschos. 2006]
Polynomial on the class of trees where vertices with degree at least
three induce a stable set. [Kavitha, Mestre. 2012]

7/19

Complexity of weighted coloring on trees (or forests)
On an n-vertex graph of treewidth t, σ(G ,w ; r) can be computed in time

nO(r) · rO(t). [Guan, Zhu. 1997]

They showed that we may assume r ≤ χFF(G) (first-fit chromatic number).

For any graph G , it holds that χFF(G) = O(t log n). [Linhares, Reed. 2006]

=⇒ Weighted Coloring can be solved on forests in time
nO(log n) = 2O(log2 n) (quasi-polynomial).

Open problem Is Weighted Coloring polynomial on trees/forests?
More generally, on graphs of bounded treewidth?

Some partial results:

PTAS on bounded treewidth graphs. [Escoffier, Monnot, Paschos. 2006]
Polynomial on the class of trees where vertices with degree at least
three induce a stable set. [Kavitha, Mestre. 2012]

7/19

Complexity of weighted coloring on trees (or forests)
On an n-vertex graph of treewidth t, σ(G ,w ; r) can be computed in time

nO(r) · rO(t). [Guan, Zhu. 1997]

They showed that we may assume r ≤ χFF(G) (first-fit chromatic number).

For any graph G , it holds that χFF(G) = O(t log n). [Linhares, Reed. 2006]

=⇒ Weighted Coloring can be solved on forests in time
nO(log n) = 2O(log2 n) (quasi-polynomial).

Open problem Is Weighted Coloring polynomial on trees/forests?
More generally, on graphs of bounded treewidth?

Some partial results:

PTAS on bounded treewidth graphs. [Escoffier, Monnot, Paschos. 2006]
Polynomial on the class of trees where vertices with degree at least
three induce a stable set. [Kavitha, Mestre. 2012]

7/19

Complexity of weighted coloring on trees (or forests)
On an n-vertex graph of treewidth t, σ(G ,w ; r) can be computed in time

nO(r) · rO(t). [Guan, Zhu. 1997]

They showed that we may assume r ≤ χFF(G) (first-fit chromatic number).

For any graph G , it holds that χFF(G) = O(t log n). [Linhares, Reed. 2006]

=⇒ Weighted Coloring can be solved on forests in time
nO(log n) = 2O(log2 n) (quasi-polynomial).

Open problem Is Weighted Coloring polynomial on trees/forests?
More generally, on graphs of bounded treewidth?

Some partial results:

PTAS on bounded treewidth graphs. [Escoffier, Monnot, Paschos. 2006]
Polynomial on the class of trees where vertices with degree at least
three induce a stable set. [Kavitha, Mestre. 2012]

7/19

Complexity of weighted coloring on trees (or forests)
On an n-vertex graph of treewidth t, σ(G ,w ; r) can be computed in time

nO(r) · rO(t). [Guan, Zhu. 1997]

They showed that we may assume r ≤ χFF(G) (first-fit chromatic number).

For any graph G , it holds that χFF(G) = O(t log n). [Linhares, Reed. 2006]

=⇒ Weighted Coloring can be solved on forests in time
nO(log n) = 2O(log2 n) (quasi-polynomial).

Open problem Is Weighted Coloring polynomial on trees/forests?
More generally, on graphs of bounded treewidth?

Some partial results:

PTAS on bounded treewidth graphs. [Escoffier, Monnot, Paschos. 2006]
Polynomial on the class of trees where vertices with degree at least
three induce a stable set. [Kavitha, Mestre. 2012]

7/19

The problem has been recently solved!
The question of [Guan, Zhu. 1997] has been answered only recently:

Theorem (Araújo, Nisse, Pérennes. 2014)
Unless the ETH fails, there is no algorithm computing the weighted
chromatic number of n-vertex trees in time no(log n).

Exponential Time Hypothesis (ETH): the 3-SAT problem on formulas
with n variables cannot be solved in subexponential time, that is, 2o(n).

[Impagliazzo, Paturi, Zane. 2001]

That is, the running time nO(log n) is tight under the ETH.

Weighted Coloring on forests is unlikely to be in P, as this
would contradict the ETH.

Also unlikely to be NP-hard, as all problems in NP could be solved in
subexponential time, contradicting again the ETH.

8/19

The problem has been recently solved!
The question of [Guan, Zhu. 1997] has been answered only recently:

Theorem (Araújo, Nisse, Pérennes. 2014)
Unless the ETH fails, there is no algorithm computing the weighted
chromatic number of n-vertex trees in time no(log n).

Exponential Time Hypothesis (ETH): the 3-SAT problem on formulas
with n variables cannot be solved in subexponential time, that is, 2o(n).

[Impagliazzo, Paturi, Zane. 2001]

That is, the running time nO(log n) is tight under the ETH.

Weighted Coloring on forests is unlikely to be in P, as this
would contradict the ETH.

Also unlikely to be NP-hard, as all problems in NP could be solved in
subexponential time, contradicting again the ETH.

8/19

The problem has been recently solved!
The question of [Guan, Zhu. 1997] has been answered only recently:

Theorem (Araújo, Nisse, Pérennes. 2014)
Unless the ETH fails, there is no algorithm computing the weighted
chromatic number of n-vertex trees in time no(log n).

Exponential Time Hypothesis (ETH): the 3-SAT problem on formulas
with n variables cannot be solved in subexponential time, that is, 2o(n).

[Impagliazzo, Paturi, Zane. 2001]

That is, the running time nO(log n) is tight under the ETH.

Weighted Coloring on forests is unlikely to be in P, as this
would contradict the ETH.

Also unlikely to be NP-hard, as all problems in NP could be solved in
subexponential time, contradicting again the ETH.

8/19

The problem has been recently solved!
The question of [Guan, Zhu. 1997] has been answered only recently:

Theorem (Araújo, Nisse, Pérennes. 2014)
Unless the ETH fails, there is no algorithm computing the weighted
chromatic number of n-vertex trees in time no(log n).

Exponential Time Hypothesis (ETH): the 3-SAT problem on formulas
with n variables cannot be solved in subexponential time, that is, 2o(n).

[Impagliazzo, Paturi, Zane. 2001]

That is, the running time nO(log n) is tight under the ETH.

Weighted Coloring on forests is unlikely to be in P, as this
would contradict the ETH.

Also unlikely to be NP-hard, as all problems in NP could be solved in
subexponential time, contradicting again the ETH.

8/19

The problem has been recently solved!
The question of [Guan, Zhu. 1997] has been answered only recently:

Theorem (Araújo, Nisse, Pérennes. 2014)
Unless the ETH fails, there is no algorithm computing the weighted
chromatic number of n-vertex trees in time no(log n).

Exponential Time Hypothesis (ETH): the 3-SAT problem on formulas
with n variables cannot be solved in subexponential time, that is, 2o(n).

[Impagliazzo, Paturi, Zane. 2001]

That is, the running time nO(log n) is tight under the ETH.

Weighted Coloring on forests is unlikely to be in P, as this
would contradict the ETH.

Also unlikely to be NP-hard, as all problems in NP could be solved in
subexponential time, contradicting again the ETH.

8/19

Can we relax the complexity hypothesis?

Objective of this article

Providing hardness results for computing σ(G ,w) and σ(G ,w ; r) when G
is a forest, relying on complexity assumptions weaker than the ETH.

We study the problem from the viewpoint of parameterized complexity,
and we assume the weaker hypothesis FPT 6= W[1].

Indeed, it is well-known that

ETH =⇒ FPT 6= W[1] =⇒ P 6= NP

9/19

Can we relax the complexity hypothesis?

Objective of this article

Providing hardness results for computing σ(G ,w) and σ(G ,w ; r) when G
is a forest, relying on complexity assumptions weaker than the ETH.

We study the problem from the viewpoint of parameterized complexity,
and we assume the weaker hypothesis FPT 6= W[1].

Indeed, it is well-known that

ETH =⇒ FPT 6= W[1] =⇒ P 6= NP

9/19

Can we relax the complexity hypothesis?

Objective of this article

Providing hardness results for computing σ(G ,w) and σ(G ,w ; r) when G
is a forest, relying on complexity assumptions weaker than the ETH.

We study the problem from the viewpoint of parameterized complexity,
and we assume the weaker hypothesis FPT 6= W[1].

Indeed, it is well-known that

ETH =⇒ FPT 6= W[1] =⇒ P 6= NP

9/19

Can we relax the complexity hypothesis?

Objective of this article

Providing hardness results for computing σ(G ,w) and σ(G ,w ; r) when G
is a forest, relying on complexity assumptions weaker than the ETH.

We study the problem from the viewpoint of parameterized complexity,
and we assume the weaker hypothesis FPT 6= W[1].

Indeed, it is well-known that

ETH =⇒ FPT 6= W[1] =⇒ P 6= NP

9/19

Can we relax the complexity hypothesis?

Objective of this article

Providing hardness results for computing σ(G ,w) and σ(G ,w ; r) when G
is a forest, relying on complexity assumptions weaker than the ETH.

We study the problem from the viewpoint of parameterized complexity,
and we assume the weaker hypothesis FPT 6= W[1].

Indeed, it is well-known that

ETH =⇒ FPT 6= W[1] =⇒ P 6= NP

9/19

A few words on parameterized complexity
Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists
an algorithm A, a computable function f , and a constant c such that given
an instance I = (x , k), A solves the problem in time bounded by f (k) · |I|c .

Parameterized reduction: given an input I = (x , k) of the source problem,
computes in time f (k) · |I|c , an equivalent instance I ′ = (x ′, k ′) of the
target problem, such that k ′ ≤ g(k) for some function g .

W[1]-hard problems: any problem that admits a parameterized reduction
from Independent Set parameterized by the size of the solution.
W[2]-hard problems: any problem that admits a parameterized reduction
from Dominating Set parameterized by the size of the solution.

The theory of parameterized complexity is built based on FPT 6= W[1].

W[1]-hardness: strong evidence of not being FPT.
W[2]-hardness: even more!

10/19

A few words on parameterized complexity
Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists
an algorithm A, a computable function f , and a constant c such that given
an instance I = (x , k), A solves the problem in time bounded by f (k) · |I|c .

Parameterized reduction: given an input I = (x , k) of the source problem,
computes in time f (k) · |I|c , an equivalent instance I ′ = (x ′, k ′) of the
target problem, such that k ′ ≤ g(k) for some function g .

W[1]-hard problems: any problem that admits a parameterized reduction
from Independent Set parameterized by the size of the solution.
W[2]-hard problems: any problem that admits a parameterized reduction
from Dominating Set parameterized by the size of the solution.

The theory of parameterized complexity is built based on FPT 6= W[1].

W[1]-hardness: strong evidence of not being FPT.
W[2]-hardness: even more!

10/19

A few words on parameterized complexity
Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists
an algorithm A, a computable function f , and a constant c such that given
an instance I = (x , k), A solves the problem in time bounded by f (k) · |I|c .

Parameterized reduction: given an input I = (x , k) of the source problem,
computes in time f (k) · |I|c , an equivalent instance I ′ = (x ′, k ′) of the
target problem, such that k ′ ≤ g(k) for some function g .

W[1]-hard problems: any problem that admits a parameterized reduction
from Independent Set parameterized by the size of the solution.
W[2]-hard problems: any problem that admits a parameterized reduction
from Dominating Set parameterized by the size of the solution.

The theory of parameterized complexity is built based on FPT 6= W[1].

W[1]-hardness: strong evidence of not being FPT.
W[2]-hardness: even more!

10/19

A few words on parameterized complexity
Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists
an algorithm A, a computable function f , and a constant c such that given
an instance I = (x , k), A solves the problem in time bounded by f (k) · |I|c .

Parameterized reduction: given an input I = (x , k) of the source problem,
computes in time f (k) · |I|c , an equivalent instance I ′ = (x ′, k ′) of the
target problem, such that k ′ ≤ g(k) for some function g .

W[1]-hard problems: any problem that admits a parameterized reduction
from Independent Set parameterized by the size of the solution.

W[2]-hard problems: any problem that admits a parameterized reduction
from Dominating Set parameterized by the size of the solution.

The theory of parameterized complexity is built based on FPT 6= W[1].

W[1]-hardness: strong evidence of not being FPT.
W[2]-hardness: even more!

10/19

A few words on parameterized complexity
Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists
an algorithm A, a computable function f , and a constant c such that given
an instance I = (x , k), A solves the problem in time bounded by f (k) · |I|c .

Parameterized reduction: given an input I = (x , k) of the source problem,
computes in time f (k) · |I|c , an equivalent instance I ′ = (x ′, k ′) of the
target problem, such that k ′ ≤ g(k) for some function g .

W[1]-hard problems: any problem that admits a parameterized reduction
from Independent Set parameterized by the size of the solution.
W[2]-hard problems: any problem that admits a parameterized reduction
from Dominating Set parameterized by the size of the solution.

The theory of parameterized complexity is built based on FPT 6= W[1].

W[1]-hardness: strong evidence of not being FPT.
W[2]-hardness: even more!

10/19

A few words on parameterized complexity
Instances of a parameterized problem: come with an integer parameter k.

A parameterized problem is fixed-parameter tractable (FPT) if there exists
an algorithm A, a computable function f , and a constant c such that given
an instance I = (x , k), A solves the problem in time bounded by f (k) · |I|c .

Parameterized reduction: given an input I = (x , k) of the source problem,
computes in time f (k) · |I|c , an equivalent instance I ′ = (x ′, k ′) of the
target problem, such that k ′ ≤ g(k) for some function g .

W[1]-hard problems: any problem that admits a parameterized reduction
from Independent Set parameterized by the size of the solution.
W[2]-hard problems: any problem that admits a parameterized reduction
from Dominating Set parameterized by the size of the solution.

The theory of parameterized complexity is built based on FPT 6= W[1].

W[1]-hardness: strong evidence of not being FPT.
W[2]-hardness: even more!

10/19

Next section is...

1 Introduction

2 Our results

3 Some ideas of the proofs

11/19

Theorem (Araújo, Baste, S.)
Given a weighted forest (G ,w), computing σ(G ,w) is W[1]-hard
parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum
degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araújo, Baste, S.)
Given a weighted tree (G ,w) and an integer r , computing σ(G ,w ; r) is
W[2]-hard parameterized by r .

Note: results are incomparable to those of [Araújo, Nisse, Pérennes. 2014]

Recall: on forests, σ(G ,w ; r) can be computed in time nO(r).

Corollary (Araújo, Baste, S.)
Assuming ETH, there is no algorithm that, given a weighted tree (G ,w)
and a positive integer r , computes σ(G ,w ; r) in time f (r) · no(r) for any
computable function f .

12/19

Theorem (Araújo, Baste, S.)
Given a weighted forest (G ,w), computing σ(G ,w) is W[1]-hard
parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum
degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araújo, Baste, S.)
Given a weighted tree (G ,w) and an integer r , computing σ(G ,w ; r) is
W[2]-hard parameterized by r .

Note: results are incomparable to those of [Araújo, Nisse, Pérennes. 2014]

Recall: on forests, σ(G ,w ; r) can be computed in time nO(r).

Corollary (Araújo, Baste, S.)
Assuming ETH, there is no algorithm that, given a weighted tree (G ,w)
and a positive integer r , computes σ(G ,w ; r) in time f (r) · no(r) for any
computable function f .

12/19

Theorem (Araújo, Baste, S.)
Given a weighted forest (G ,w), computing σ(G ,w) is W[1]-hard
parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum
degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araújo, Baste, S.)
Given a weighted tree (G ,w) and an integer r , computing σ(G ,w ; r) is
W[2]-hard parameterized by r .

Note: results are incomparable to those of [Araújo, Nisse, Pérennes. 2014]

Recall: on forests, σ(G ,w ; r) can be computed in time nO(r).

Corollary (Araújo, Baste, S.)
Assuming ETH, there is no algorithm that, given a weighted tree (G ,w)
and a positive integer r , computes σ(G ,w ; r) in time f (r) · no(r) for any
computable function f .

12/19

Theorem (Araújo, Baste, S.)
Given a weighted forest (G ,w), computing σ(G ,w) is W[1]-hard
parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum
degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araújo, Baste, S.)
Given a weighted tree (G ,w) and an integer r , computing σ(G ,w ; r) is
W[2]-hard parameterized by r .

Note: results are incomparable to those of [Araújo, Nisse, Pérennes. 2014]

Recall: on forests, σ(G ,w ; r) can be computed in time nO(r).

Corollary (Araújo, Baste, S.)
Assuming ETH, there is no algorithm that, given a weighted tree (G ,w)
and a positive integer r , computes σ(G ,w ; r) in time f (r) · no(r) for any
computable function f .

12/19

Theorem (Araújo, Baste, S.)
Given a weighted forest (G ,w), computing σ(G ,w) is W[1]-hard
parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum
degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araújo, Baste, S.)
Given a weighted tree (G ,w) and an integer r , computing σ(G ,w ; r) is
W[2]-hard parameterized by r .

Note: results are incomparable to those of [Araújo, Nisse, Pérennes. 2014]

Recall: on forests, σ(G ,w ; r) can be computed in time nO(r).

Corollary (Araújo, Baste, S.)
Assuming ETH, there is no algorithm that, given a weighted tree (G ,w)
and a positive integer r , computes σ(G ,w ; r) in time f (r) · no(r) for any
computable function f .

12/19

Theorem (Araújo, Baste, S.)
Given a weighted forest (G ,w), computing σ(G ,w) is W[1]-hard
parameterized by the size of a largest connected component of G.

Consequences: W[1]-hard parameterized by treewidth, cliquewidth, maximum
degree, maximum diameter of a connected component, number of colors, etc.

Theorem (Araújo, Baste, S.)
Given a weighted tree (G ,w) and an integer r , computing σ(G ,w ; r) is
W[2]-hard parameterized by r .

Note: results are incomparable to those of [Araújo, Nisse, Pérennes. 2014]

Recall: on forests, σ(G ,w ; r) can be computed in time nO(r).

Corollary (Araújo, Baste, S.)
Assuming ETH, there is no algorithm that, given a weighted tree (G ,w)
and a positive integer r , computes σ(G ,w ; r) in time f (r) · no(r) for any
computable function f .

12/19

Next section is...

1 Introduction

2 Our results

3 Some ideas of the proofs

13/19

General framework

Our reductions are inspired by the one of [Araújo, Nisse, Pérennes. 2014]

We present two parameterized reductions:
1 Instance (G , k) of Independent Set −→

Instance (G ′,w) of Weighted Coloring.

There exists a solution of Independent Set on (G , k) ⇐⇒
σ(G ′,w) ≤ M, for some appropriately chosen real number M < 2.
The size of any connected component of G ′ is at most 13 · 24k + 12.

2 Instance (G , k) of Dominating Set −→
Instance (G ′,w) of Weighted Coloring.

There exists a solution of Dominating Set on (G , k) ⇐⇒
σ(G ′,w ; r) ≤ M, with r = 4k + 4.

14/19

General framework

Our reductions are inspired by the one of [Araújo, Nisse, Pérennes. 2014]

We present two parameterized reductions:
1 Instance (G , k) of Independent Set −→

Instance (G ′,w) of Weighted Coloring.

There exists a solution of Independent Set on (G , k) ⇐⇒
σ(G ′,w) ≤ M, for some appropriately chosen real number M < 2.
The size of any connected component of G ′ is at most 13 · 24k + 12.

2 Instance (G , k) of Dominating Set −→
Instance (G ′,w) of Weighted Coloring.

There exists a solution of Dominating Set on (G , k) ⇐⇒
σ(G ′,w ; r) ≤ M, with r = 4k + 4.

14/19

General framework

Our reductions are inspired by the one of [Araújo, Nisse, Pérennes. 2014]

We present two parameterized reductions:
1 Instance (G , k) of Independent Set −→

Instance (G ′,w) of Weighted Coloring.

There exists a solution of Independent Set on (G , k) ⇐⇒
σ(G ′,w) ≤ M, for some appropriately chosen real number M < 2.
The size of any connected component of G ′ is at most 13 · 24k + 12.

2 Instance (G , k) of Dominating Set −→
Instance (G ′,w) of Weighted Coloring.

There exists a solution of Dominating Set on (G , k) ⇐⇒
σ(G ′,w ; r) ≤ M, with r = 4k + 4.

14/19

General framework

Our reductions are inspired by the one of [Araújo, Nisse, Pérennes. 2014]

We present two parameterized reductions:
1 Instance (G , k) of Independent Set −→

Instance (G ′,w) of Weighted Coloring.

There exists a solution of Independent Set on (G , k) ⇐⇒
σ(G ′,w) ≤ M, for some appropriately chosen real number M < 2.
The size of any connected component of G ′ is at most 13 · 24k + 12.

2 Instance (G , k) of Dominating Set −→
Instance (G ′,w) of Weighted Coloring.

There exists a solution of Dominating Set on (G , k) ⇐⇒
σ(G ′,w ; r) ≤ M, with r = 4k + 4.

14/19

General framework

Our reductions are inspired by the one of [Araújo, Nisse, Pérennes. 2014]

We present two parameterized reductions:
1 Instance (G , k) of Independent Set −→

Instance (G ′,w) of Weighted Coloring.

There exists a solution of Independent Set on (G , k) ⇐⇒
σ(G ′,w) ≤ M, for some appropriately chosen real number M < 2.
The size of any connected component of G ′ is at most 13 · 24k + 12.

2 Instance (G , k) of Dominating Set −→
Instance (G ′,w) of Weighted Coloring.

There exists a solution of Dominating Set on (G , k) ⇐⇒
σ(G ′,w ; r) ≤ M, with r = 4k + 4.

14/19

Some useful gadgets
For i ∈ [0, 4k + 3] and j ∈ [0, n], let w j

i = 1
2i + jε, for some ε > 0.

Index i : colors in G ′. Index j : vertices of the input graph G .

Binomial trees Role: force most of the colors of the vertices of the forest.

For each i ∈ [0, 4k + 3], we define recursively the weighted rooted tree Bi :

w0
0 B0 w0

i Bi

w0
0

B0

w0
1

B1

w0
2

B2

· · ·
w0

i−1

Bi−1

if i = 0, then B0 has a unique node of weight w0
0 ,

otherwise, Bi has a root r of weight w0
i and, for each j ∈ [0, i − 1],

we introduce a copy of Bj and we connect its root to r .

15/19

Some useful gadgets
For i ∈ [0, 4k + 3] and j ∈ [0, n], let w j

i = 1
2i + jε, for some ε > 0.

Index i : colors in G ′. Index j : vertices of the input graph G .

Binomial trees Role: force most of the colors of the vertices of the forest.

For each i ∈ [0, 4k + 3], we define recursively the weighted rooted tree Bi :

w0
0 B0 w0

i Bi

w0
0

B0

w0
1

B1

w0
2

B2

· · ·
w0

i−1

Bi−1

if i = 0, then B0 has a unique node of weight w0
0 ,

otherwise, Bi has a root r of weight w0
i and, for each j ∈ [0, i − 1],

we introduce a copy of Bj and we connect its root to r .
15/19

Some useful gadgets (2)
For ` ∈ [0, 3], let W` = w0

4k+` = 1
24k+` .

Let R` = S4k+` to be the unique color of weight W`.

AND gadget
Let i ∈ [0, 1]. Given two vertices I1, I2, we define the Ri -AND gadget
between the input vertices I1 and I2, to be “this” graph:

I1{Ri } ∪ S

I2{Ri } ∪ S′
{Ri , R2, R3}

v2

{Ri , R2}

v1

{R1−i , R3}

v3

O {R0, R1}

Available colors are forced by pendant binomial trees (omitted).

If both I1 and I2 are colored Ri , then O must be colored Ri .
If either I1 or I2 is not colored Ri , then O can be colored either R0 or R1.

16/19

Some useful gadgets (2)
For ` ∈ [0, 3], let W` = w0

4k+` = 1
24k+` .

Let R` = S4k+` to be the unique color of weight W`.

AND gadget
Let i ∈ [0, 1]. Given two vertices I1, I2, we define the Ri -AND gadget
between the input vertices I1 and I2, to be “this” graph:

I1{Ri } ∪ S

I2{Ri } ∪ S′
{Ri , R2, R3}

v2

{Ri , R2}

v1

{R1−i , R3}

v3

O {R0, R1}

Available colors are forced by pendant binomial trees (omitted).

If both I1 and I2 are colored Ri , then O must be colored Ri .
If either I1 or I2 is not colored Ri , then O can be colored either R0 or R1.

16/19

Some useful gadgets (2)
For ` ∈ [0, 3], let W` = w0

4k+` = 1
24k+` .

Let R` = S4k+` to be the unique color of weight W`.

AND gadget
Let i ∈ [0, 1]. Given two vertices I1, I2, we define the Ri -AND gadget
between the input vertices I1 and I2, to be “this” graph:

I1{Ri } ∪ S

I2{Ri } ∪ S′
{Ri , R2, R3}

v2

{Ri , R2}

v1

{R1−i , R3}

v3

O {R0, R1}

Available colors are forced by pendant binomial trees (omitted).

If both I1 and I2 are colored Ri , then O must be colored Ri .
If either I1 or I2 is not colored Ri , then O can be colored either R0 or R1.

16/19

Some useful gadgets (3)
Vertex tree
For i ∈ [0, k − 1] and j ∈ [0, n − 1], we define the vertex tree T j

i ,
representing the vertex j , to be “this” graph, with root u:

u
{R0, R1}

{S4i , R0}

Aj
4i+1

{S4i+2, R0}

An−j
4i+3

{S4i , R0}

Aj+1
4i+1

{S4i+2, R0}

An−1−j
4i+3

R0-AND {S4i , R0}

Aj+1
4i+1

{S4i+2, R0}

An−j
4i+3

Idea: root u gets color R0 (R1) ⇒ vertex v is (not) in the solution.
(It can be proved that the choices need to be consistent for each vertex.)

Each time we choose a vertex ⇒ “pay” (n − 1)ε in the total weight.
Making k such choices is forced by M = k(n − 1)ε+

∑
i∈[0,4k+3]

1
2i .

17/19

Some useful gadgets (3)
Vertex tree
For i ∈ [0, k − 1] and j ∈ [0, n − 1], we define the vertex tree T j

i ,
representing the vertex j , to be “this” graph, with root u:

u
{R0, R1}

{S4i , R0}

Aj
4i+1

{S4i+2, R0}

An−j
4i+3

{S4i , R0}

Aj+1
4i+1

{S4i+2, R0}

An−1−j
4i+3

R0-AND {S4i , R0}

Aj+1
4i+1

{S4i+2, R0}

An−j
4i+3

Idea: root u gets color R0 (R1) ⇒ vertex v is (not) in the solution.
(It can be proved that the choices need to be consistent for each vertex.)

Each time we choose a vertex ⇒ “pay” (n − 1)ε in the total weight.
Making k such choices is forced by M = k(n − 1)ε+

∑
i∈[0,4k+3]

1
2i .

17/19

Some useful gadgets (3)
Vertex tree
For i ∈ [0, k − 1] and j ∈ [0, n − 1], we define the vertex tree T j

i ,
representing the vertex j , to be “this” graph, with root u:

u
{R0, R1}

{S4i , R0}

Aj
4i+1

{S4i+2, R0}

An−j
4i+3

{S4i , R0}

Aj+1
4i+1

{S4i+2, R0}

An−1−j
4i+3

R0-AND {S4i , R0}

Aj+1
4i+1

{S4i+2, R0}

An−j
4i+3

Idea: root u gets color R0 (R1) ⇒ vertex v is (not) in the solution.
(It can be proved that the choices need to be consistent for each vertex.)

Each time we choose a vertex ⇒ “pay” (n − 1)ε in the total weight.

Making k such choices is forced by M = k(n − 1)ε+
∑

i∈[0,4k+3]
1
2i .

17/19

Some useful gadgets (3)
Vertex tree
For i ∈ [0, k − 1] and j ∈ [0, n − 1], we define the vertex tree T j

i ,
representing the vertex j , to be “this” graph, with root u:

u
{R0, R1}

{S4i , R0}

Aj
4i+1

{S4i+2, R0}

An−j
4i+3

{S4i , R0}

Aj+1
4i+1

{S4i+2, R0}

An−1−j
4i+3

R0-AND {S4i , R0}

Aj+1
4i+1

{S4i+2, R0}

An−j
4i+3

Idea: root u gets color R0 (R1) ⇒ vertex v is (not) in the solution.
(It can be proved that the choices need to be consistent for each vertex.)

Each time we choose a vertex ⇒ “pay” (n − 1)ε in the total weight.
Making k such choices is forced by M = k(n − 1)ε+

∑
i∈[0,4k+3]

1
2i .

17/19

Sketch of the W[1]-hardness reduction
(G , k) of Independent Set −→ (G ′,w) of Weighted Coloring.

We create, for each edge {v1, v2} ∈ E (G) and i1, i2 ∈ [0, k − 1], a tree
H{v1,v2},i1,i2 obtained from the vertex trees T v1

i1 and T v2
i2 as follows:

R0-AND

{R0, R1}

{R0, R1}

{R1}
T v1
i1

T v2
i2

Idea: for {v1, v2} ∈ E (G), at most one of v1 and v2 in the stable set.

Forest (G ′,w): disjoint union of these trees H{v1,v2},i1,i2 , for
{v1, v2} ∈ E (G) and i1, i2 ∈ [0, k − 1]. (with some other technical stuff)

There exists a solution of Independent Set on (G , k) ⇔ σ(G ′,w) ≤ M.

18/19

Sketch of the W[1]-hardness reduction
(G , k) of Independent Set −→ (G ′,w) of Weighted Coloring.

We create, for each edge {v1, v2} ∈ E (G) and i1, i2 ∈ [0, k − 1], a tree
H{v1,v2},i1,i2 obtained from the vertex trees T v1

i1 and T v2
i2 as follows:

R0-AND

{R0, R1}

{R0, R1}

{R1}
T v1
i1

T v2
i2

Idea: for {v1, v2} ∈ E (G), at most one of v1 and v2 in the stable set.

Forest (G ′,w): disjoint union of these trees H{v1,v2},i1,i2 , for
{v1, v2} ∈ E (G) and i1, i2 ∈ [0, k − 1]. (with some other technical stuff)

There exists a solution of Independent Set on (G , k) ⇔ σ(G ′,w) ≤ M.

18/19

Sketch of the W[1]-hardness reduction
(G , k) of Independent Set −→ (G ′,w) of Weighted Coloring.

We create, for each edge {v1, v2} ∈ E (G) and i1, i2 ∈ [0, k − 1], a tree
H{v1,v2},i1,i2 obtained from the vertex trees T v1

i1 and T v2
i2 as follows:

R0-AND

{R0, R1}

{R0, R1}

{R1}
T v1
i1

T v2
i2

Idea: for {v1, v2} ∈ E (G), at most one of v1 and v2 in the stable set.

Forest (G ′,w): disjoint union of these trees H{v1,v2},i1,i2 , for
{v1, v2} ∈ E (G) and i1, i2 ∈ [0, k − 1]. (with some other technical stuff)

There exists a solution of Independent Set on (G , k) ⇔ σ(G ′,w) ≤ M.
18/19

Gràcies!

19/19

	Introduction
	Our results
	Some ideas of the proofs

