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Introduction

@ WDM (Wavelength Division Multiplexing) networks
e 1 wavelength (or frequency) = up to 40 Gb/s
e 1 fiber = hundreds of wavelengths = Tb/s
@ Idea:
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

— we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

@ Objectives:

o Better use of bandwidth
o Reduce the equipment cost (mostly given by electronics)
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— we want to minimize the number of ADMs



@ Request (/,)): two vertices (/,j) that want to exchange
(low-speed) traffic



@ Request (/,)): two vertices (/,j) that want to exchange
(low-speed) traffic

@ Grooming factor C:

_ Capacity of a wavelength
~ Capacity used by a request




@ Request (/,)): two vertices (/,j) that want to exchange
(low-speed) traffic

@ Grooming factor C:

_ Capacity of a wavelength
~ Capacity used by a request

Example:

Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s = C=4



@ Request (/,)): two vertices (/,j) that want to exchange
(low-speed) traffic

@ Grooming factor C:

_ Capacity of a wavelength
~ Capacity used by a request

Example:
Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s = C=4

@ load of an arc in a wavelength: number of requests using this arc
in this wavelength (< C)



ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric
low-speed signal) to/from a wavelength

OADM OADM
[ —
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@ Idea: Use an ADM only at the endpoints of a request
(lightpaths) in order to save as many ADMs as possible
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@ Model:
Topology graph G
Request set graph R
Grooming factor integer C

Requests in a wavelength
ADM in a wavelength

edges in a subgraph of R
vertex in a subgraph of R

Ll Ll

@ We study the case when G = Bn (unidirectional ring)
@ We assume that the requests are symmetric
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Unidirectional Ring with Symmetric Requests

@ Symmetric requests: whenever there is the request (/, ), there is
also the request (J, /).

(i)

@ W.lLo.g. requests (/,f) and (j, i) are in the same subgraph
— each pair of symmetric requests induces load 1
— grooming factor C < each subgraph has < C edges.



Statement of the “old” problem

Traffic Grooming in Unidirectional Rings

Input A cycle C, on n nodes (network);
An undirected graph R on n nodes (request set);
A grooming factor C.

Output A partition of E(R) into subgraphs
Ri,...,Rw with |[E(R;))| < C,i=1...,W.

Objective Minimize - . |V(R.)|.




Example: n=4, R=Ks,and C =3

1 2 1 2

r—e
1 2 y D< 8 ADMs
———o
4 3 4 3
\ 1 2 1 2
4 3 b ﬂ ‘ i 7 ADMs
3 4 3




e Statement of the problem
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@ In all of them: place ADMs at nodes for a fixed request graph.
— placement of ADMs a posteriori.

@ New model [Munoz and S., WG 2008]: place the ADMs at nodes
such that the network can support any request graph with
maximum degree at most A.

— placement of ADMs a priori.



Statement of the "new” problem

Traffic Grooming in Unidirectional Rings

with Bounded-Degree Request Graph

Input An integer n (size of the ring);
An integer C (grooming factor);
An integer A (maximum degree).

Output An assignment of A(v) ADMs to each v € V(Cp),
in such a way that for any graph R on n nodes
with maximum degree at most A, there exists
a partition of E(R) into subgraphs Ry, ..., Ry s.t.:

(N|E(Bj)| < Cforalli=1,...,W;and
(if) each v € V(Cp) isin < A(v) subgraphs.

Objective  Minimize >, ¢, A(V),
and the optimum is denoted A(n, C, A).




e The parameter M(C, A)
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Definition

Let M(C, A) be the smallest positive number M such that, for all n > 1,
the inequality A(n, C, A) < Mn holds.

@ Due to symmetry, it can be seen that A(v) is the same for all
nodes v, except for a subset whose size is independent of n.

@ M(C,A) is always an integer.

@ Equivalently:

M(C,A) is the smallest integer M such that the edges of
any graph with maximum degree at most A can be parti-
tioned into subgraphs with at most C edges, in such a way
that each vertex appears in at most M subgraphs.

@ In the sequel we focus on determining M(C, A).
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@ For P € Pc(G), let
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More formally...

@ Let Ga be the class of (simple undirected) graphs with maximum degree
at most A.

@ For G € Ga, let Pc(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

@ For P € Pc(G), let

occ(P) = Vren\jax {Be€ P:ve B}

@ And then,

M(C, A) = max ( min occ(P)>
Gega PGP(;(G)

@ If the request graph is restricted to belong to a subclass of graphs
C C Ga, then the corresponding positive integer is denoted by
M(C, A,C).
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Some properties of M(C, A) [Munoz and S., WG 2008]

@ W.lo.g. we can assume that R has regular degree A.

e C>C'= M(C,A)
e A>A'= MC,A)

M(C',A) forall A > 1.

<
> M(C,A) forall C > 1.

@ Upper bound: M(C,A) < M(1,A) = A.

Proposition (Lower Bound)
M(C,A) > {C“ A] forall C,A > 1.
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Known values of M(C, A) [Munoz and S., WG 2008]

o A=1:M(C,1)=1forall C (trivial).
e A=2: M(C,2)=2forall C (not difficult).

@ A = 3: Cubic graphs. First “interesting” case:
e If C < 3, then M(C,3) =38.
e If C > 5, then M(C,3) =2.

@ Question left open in [Mufoz and S., WG 2008]:
M(3,4) =2 0or 3?77
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e Our results
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Next subsection is...

e Our results
@ CaseA=3,C=4
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Case A=3,C=4
Proposition
M(4,3) = 2.

Idea of the proof.
(in fact, we prove a slightly stronger result)
@ Let G be a minimal counterexample (|V(G)| is minimal).

@ If G has no bridges, then it can be “easily” proved.

@ If G has a bridge e, then the property is true for U and V.

e [vZX deg2 u X deg2
v
y y
U v wt wY
(a) (b)

@ Finally, we merge “carefully” the partitions of U and V to obtain a
partition of G = contradiction.
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e Our results

@ Case A > 4 even
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@ The lower bound follows from [Mufioz and S., WG 2008].

@ Construction:

e Orient the edges of G = (V, E) in an Eulerian tour.

Assign to each vertex v € V its A/2 out-edges, and partition them
into [ £ | stars with (at most) C edges centered at v.

Each vertex v appears as a leaf in stars centered at other vertices
exactly A — A/2 = A/2 times.

e The number of occurrences of each vertex in this partition is
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Let A > 4 be even. Then forany C > 1, M(C,A) = {%1 %W

@ The lower bound follows from [Mufioz and S., WG 2008].

@ Construction:

e Orient the edges of G = (V, E) in an Eulerian tour.

Assign to each vertex v € V its A/2 out-edges, and partition them
into [ £ | stars with (at most) C edges centered at v.

Each vertex v appears as a leaf in stars centered at other vertices
exactly A — A/2 = A/2 times.

e The number of occurrences of each vertex in this partition is

al-a-p0eal-2e
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e Our results

@ Case A > 5 o0dd
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Case A > 5 odd

Proposition

Let A > 5 be odd. Then for any C > 1, M(C,A) < {C%%+%W
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Case A > 5odd

Let A > 5 be odd. Then for any C > 1, M(C,A) < {%%+%W
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Sketch of proof.

@ Since A is odd, |V(G)| is even. Add a perfect matching M to G to obtain a
(A + 1)-regular multigraph G'. Orient the edges of G’ in an Eulerian tour, and
assign to each vertex v € V(G') its (A + 1)/2 out-edges E; .
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Let A > 5 be odd. Then for any C > 1, M(C,A) < {%%+%W

| A,

Sketch of proof

@ Since A is odd, |V(G)| is even. Add a perfect matching M to G to obtain a
(A + 1)-regular multigraph G'. Orient the edges of G’ in an Eulerian tour, and
assign to each vertex v € V(G') its (A + 1)/2 out-edges E; .

@ Remove M and partition E; into stars with C edges.
@ Number of occurrences of each vertex v € V(G):
o . (A1 A1 C+1A | C—1
o Ifanedge of Misin Ef, then: [551]| + A — 871 = [€81 8 + €11




Case A > 5 odd

Let A > 5 be odd. Then for any C > 1, M(C,A) < {%%+%W

| A

Sketch of proof

@ Since A is odd, |V(G)| is even. Add a perfect matching M to G to obtain a
(A + 1)-regular multigraph G'. Orient the edges of G’ in an Eulerian tour, and
assign to each vertex v € V(G') its (A + 1)/2 out-edges E;f.

@ Remove M and partition E; into stars with C edges.
@ Number of occurrences of each vertex v € V(G):

o Ifanedge of Misin £/, then: [551 ] + A — 871 = [€E18 4 C1)
@ Otherwise, if no edge of M is in E,f, then:

A+1 Atl _ [CH1A CH1A , C-1

(S5 +a- S =[S+ F < [F 2+ 5]




Case A > 5 odd (ll)

Let A >5beodd. If A (mod 2C) =1 orA (mod 2C) > C + 1, then
M(C.0) = |S£15 .
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Case A > 5 odd (Il)

Let A >5beodd. If A (mod 2C) =1 orA (mod 2C) > C + 1, then
M(C.0) = |S£15 .

Corollary (Case C = 2)

Forany A > 5 odd, M(2,A) = [32].

Proposition

Let A > 5 be odd and let C be the class of A-regular graphs than

contain a perfect matching. Then M(C, A,C) = {0—31 %W .
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Next subsection is...

e Our results

@ |Improved lower bound when A = C (mod 2C)
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Improved lower bound when

Let A > 5 be odd. If A = C (mod 2C), then M(C, A) = [%ﬂ%} +1.
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Theorem

Let A > 5 be odd. If A = C (mod 2C), then M(C, A) = [

Corollary (Case C = 3)

Forany A > 5 odd, M(3, A) = [25;t1].

| .

Idea of the proof of the Theorem.
@ We prove that if A = kC with k odd, then M(C,A) > [S£1 4] + 1.

@ Since both A and k are odd, so is C, and therefore [ 5] = k- Z5L.

@ We proceed to build a A-regular graph G with no C-edge-partition where each
vertex is incident to at most k - ;' =: LB(C, A) subgraphs.

@ First, we construct a graph H where all vertices have degree A except one which
has degree A — 1. Furthermore, we build H so that it has girth strictly greater
than C.
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Theorem

Let A > 5 be odd. If A = C (mod 2C), then M(C, A) = [

Corollary (Case C = 3)

Forany A > 5 odd, M(3, A) = [25;t1].

| \

Idea of the proof of the Theorem.
@ We prove that if A = kC with k odd, then M(C,A) > [S£1 4] + 1.

@ Since both A and k are odd, so is C, and therefore [ 5] = k- Z5L.
@ We proceed to build a A-regular graph G with no C-edge-partition where each

vertex is incident to at most k - ;' =: LB(C, A) subgraphs.

@ First, we construct a graph H where all vertices have degree A except one which
has degree A — 1. Furthermore, we build H so that it has girth strictly greater
than C. Such a graph H exists by [Chandran, SIAM J. Dicr. Math., 2003].
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Idea of the proof

@ Make A copies of H and add a cut-vertex v joined to all vertices of degree A — 1
to make our A-regular graph G.

@ Now suppose for the sake of contradiction that there is a C-edge-partition 5 of G
where each vertex is incident to at most LB(C, A) subgraphs.

@ Since the girth of G is greater than C, all the subgraphs in B are trees.
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Idea of the proof

@ Since LB(C,A) < A, v must have degree at least 2 in some subgraph T € .
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@ Since LB(C,A) < A, v must have degree at least 2 in some subgraph T € .

G

@ Since |[E(T)| < C, the tree T contains at most | %2 | = 252 edges
of a copy of H intersecting T.
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Idea of the proof

@ Since LB(C,A) < A, v must have degree at least 2 in some subgraph T € .

@ Since |[E(T)| < C, the tree T contains at most | %2 | = 252 edges
of a copy of H intersecting T.
@ Now we only work in this copy H. Let o = |E(T N H)| < €52
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Idea of the proof

@ Since LB(C,A) < A, v must have degree at least 2 in some subgraph T € .

@ Since |[E(T)| < C, the tree T contains at most | %2 | = 252 edges
of a copy of H intersecting T.

@ Now we only work in this copy H. Let o = |E(T N H)| < €52
(a = 232 = 1in the example).
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Idea of the proof

@ Let B = {BN H}ges— (1), With the empty subgraphs removed. That is, B’
contains the subgraphs in B that partition the edges in H that are not in T.

D=5
C=5
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Idea of the proof

@ Let B = {BN H}ges— (1), With the empty subgraphs removed. That is, B’
contains the subgraphs in B that partition the edges in H that are not in T.

D=5
C=5

@ Let n=|V(H)|, which is odd as in H there is one vertex of degree A — 1 and all
the others have degree A.
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Idea of the proof

@ Therefore, the total number of edges of the trees in B’ is

S IE(T) = EH) o = P a2 PO

Ten’
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@ Therefore, the total number of edges of the trees in B’ is

S IE(T) = EH) o = P a2 PO

Ten’

@ Asa < £33 from (1) we get

nkC—-1 C-3 nk —1
S IE(T)] > >~ —( 5 )-C+1. )
TeB!
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Idea of the proof

@ Therefore, the total number of edges of the trees in B’ is

S IE(T) = EH) o = P a2 PO

TenB!

@ Asa < £33 from (1) we get

nkC—-1 C-3 nk — 1
> IE(T)| > >~ —(2 )-C+1. )
Ten’

@ As each tree in B’ has at most C edges, from (2) we get that

goo [nk=1 17  nk=1 [17  nk—1
|B|_[2 tal= "5 tlgl="5 1 O

V
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Idea of the proof

@ Therefore, the total number of edges of the trees in B’ is

S IE(T) = EH) o = P a2 PO

TeB’

@ Asa < £33 from (1) we get

nkC—1 C-3 nk — 1
S IEn = TS (B e @
TeB’

@ As each tree in B’ has at most C edges, from (2) we get that

nk —1 1 nk —1 1 nk —1

@ Clearly, > 7o [V(T)| = e |[E(T) + 1B/, and [V(T N H)| = a + 1.
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Idea of the proof

@ Therefore, using (1) and (3), we get that the total number of occurrences
of the vertices of H in some tree of B is

> HTeB:veTy STIVDI+IUTAH) =D |E(T)+ 1B+ a+1
veV(H) Ten’ TenB!
nkC — 1 , nkC—1 nk—1
= - 1>
> a+|Bl+a+1 > st

_ nk-%+1 = n-LB(C,A)+1,

+2
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Idea of the proof

@ Therefore, using (1) and (3), we get that the total number of occurrences
of the vertices of H in some tree of B is

S HTeB:veT} = > V(DI+IV(TnH)= > [E(T)+|B|+a+1
veV(H) TeB’ TeB’
nkC — 1 , nkC—1 nk—1
= — 1> 2
> a+|Bl+a+1 > st t
C+1

= nk-T+1 = n-LB(C,A)+1,

@ which implies that at least one vertex of H appears in at least
LB(C, A) + 1 subgraphs, which is a contradiction to 55 being a
C-edge-partition of G in which each vertex appears in at most LB(C, A)
subgraphs.
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Summary of results: values of M(C, A)

[CA[T1[2] 38 [ 4] 5 [ 6 | 7 [..[Aeen]| Aodd |
1 T2 3 4 5 6 7 A

2 1[2] 38 |3 4 5 6 =2 2

3 112 (32 3 4 5(4) 5 2 %@A)
4 1[2] 2 |3 4 4 5 2 > 2 (9)
5 112 2 | 3] 403 4 5 % 2%(:)
6 1] 2] 2 3 |>3(=)] 4 5 2 ZE(:)
7 12 2 3 [>3(=)] 4 5 (4) b2 zgz(:)
8 12 2 [38[>83:5)] 4 [>4(9) & ERAIC)
9 12 2 [3[>83(=)] 4 [>4() =2 > (=)
R __ o I
C 1 2 2 3 | >8(=) 4 >4 (=) %f Z%E( )

Table: Known values of M(C, A). The red cases remain open.
The (blue) cases in brackets only hold if the graph has a perfect matching.
The symbol “(=)” means that the corresponding lower bound is attained.
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Conclusions and further research

@ We have studied a new model of traffic grooming that allows the
network to support dynamic traffic without reconfiguring the
electronic equipment at the nodes.
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e the request graph does not contain a perfect matching.

@ For these open cases, we provided upper bounds that differ from
the optimal value by at most one.
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Conclusions and further research

@ We have studied a new model of traffic grooming that allows the
network to support dynamic traffic without reconfiguring the
electronic equipment at the nodes.

@ We established the value of M(C, A) for “almost all” values of C
and A, leaving open only the case where:
e A >5isodd;
o C>4,
@ 3<A (mod2C)<C-1;and
e the request graph does not contain a perfect matching.

@ For these open cases, we provided upper bounds that differ from
the optimal value by at most one.

@ Further Research:

o Determine M(C, A) for the remaining cases:

(G lor[S5a]+177

o Other classes of request graphs that make sense from the

telecommunications point of view? “



Gracies!
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