On the complexity of computing the k-restricted edge-connectivity of a graph

Luis P. Montejano¹ Ignasi Sau²

WG 2015 Munich, June 17, 2015

- ¹ Département de Mathématiques, Université de Montpellier 2, France
- ² CNRS, LIRMM, Montpellier, France

Outline of the talk

- Introduction
- Our results
- 3 Ideas of some of the proofs
- 4 Further research

Next section is...

- Introduction
- Our results
- 3 Ideas of some of the proofs
- Further research

Edge-connectivity

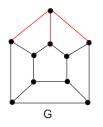
- We consider undirected simple graphs without loops or multiple edges.
- A set $S \subseteq E(G)$ of a graph G is an edge-cut if G S is disconnected.
- The edge-connectivity $\lambda(G)$ is defined as

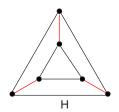
$$\lambda(G) = \min\{|S| : S \subseteq E(G) \text{ is an edge-cut}\}.$$

• $\lambda(G)$ can be computed in poly time by a MAX FLOW algorithm.

• Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.

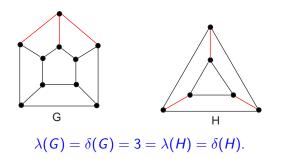
- Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.
- A graph G is maximally edge-connected if $\lambda(G) = \delta(G)$.





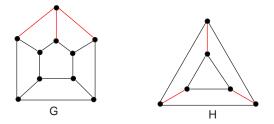
$$\lambda(G) = \delta(G) = 3 = \lambda(H) = \delta(H).$$

- Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.
- A graph G is maximally edge-connected if $\lambda(G) = \delta(G)$.



• A graph *G* is superconnected if every minimum edge-cut consists of the edges adjacent to one vertex.

- Clearly, $\lambda(G) \leq \delta(G)$, where $\delta(G)$ is the minimum degree of G.
- A graph G is maximally edge-connected if $\lambda(G) = \delta(G)$.



G is superconnected while H is not.

• A graph *G* is superconnected if every minimum edge-cut consists of the edges adjacent to one vertex.

Definition [Esfahanian and Hakimi '88]

An edge-cut S is a restricted edge-cut if every component of G-S has at least 2 vertices.

The restricted edge-connectivity $\lambda_2(G)$ of a graph G is defined as

$$\lambda_2(G) = \min\{|S| : S \subseteq E(G) \text{ is a restricted edge-cut}\}.$$

$$\lambda_2(G) = 4$$
 and $\lambda_2(H) = 3$.

 λ_2 is not defined for this graph.

A connected graph G is called λ_2 -connected if $\lambda_2(G)$ exists.

 λ_2 is not defined for this graph.

A connected graph G is called λ_2 -connected if $\lambda_2(G)$ exists.

Theorem [Esfahanian and Hakimi '88]

Every connected graph G that is not a star is λ_2 -connected.

In 1994, Fàbrega and Fiol proposed the concept of k-restricted edge-connectivity, where k is a positive integer.

Definition [Fàbrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of G-S has at least k vertices.

The k-restricted edge-connectivity $\lambda_k(G)$ of a graph G is defined as

$$\lambda_k(G) = \min\{|S| : S \subseteq E(G) \text{ is a k-restricted edge-cut}\}.$$

In 1994, Fàbrega and Fiol proposed the concept of k-restricted edge-connectivity, where k is a positive integer.

Definition [Fàbrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of G-S has at least k vertices.

The k-restricted edge-connectivity $\lambda_k(G)$ of a graph G is defined as

$$\lambda_k(G) = \min\{|S| : S \subseteq E(G) \text{ is a k-restricted edge-cut}\}.$$

A connected graph G is called λ_k -connected if $\lambda_k(G)$ exists.

In 1994, Fàbrega and Fiol proposed the concept of k-restricted edge-connectivity, where k is a positive integer.

Definition [Fàbrega and Fiol '94]

An edge cut S is a k-restricted edge cut if every component of G-S has at least k vertices.

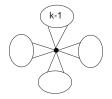
The k-restricted edge-connectivity $\lambda_k(G)$ of a graph G is defined as

$$\lambda_k(G) = \min\{|S| : S \subseteq E(G) \text{ is a k-restricted edge-cut}\}.$$

A connected graph G is called λ_k -connected if $\lambda_k(G)$ exists.

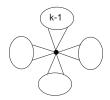
For any k-restricted cut S of size $\lambda_k(G)$, the graph G-S has exactly two connected components.

A k-flower is a graph containing a cut vertex u such that every component of G-u has at most k-1 vertices.



 λ_k is not defined for k-flowers.

A k-flower is a graph containing a cut vertex u such that every component of G-u has at most k-1 vertices.



 λ_k is not defined for k-flowers.

Theorem [Zhang and Yuan '05]

Every connected graph G that is not a k-flower with $k-1 \leq \delta(G)$ is λ_k -connected.

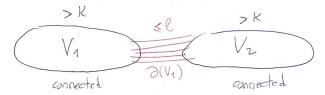
A lot of combinatorial results about λ_k (not exhaustive)

- ullet Introduction of λ_2 : [Esfahanian, Hakimi '88]
- ullet Introduction of λ_k : [Fàbrega and Fiol '94]
- ullet Case k=3: [Bonsma, Ueffing, Volkmann. '02]
- ullet General bounds on λ_k : [Zhang, Yuan '05]
- ullet λ_k in graphs of large girth: [Balbuena, Carmona, Fàbrega, Fiol '97]
- ullet λ_k in triangle-free graphs: [Yuan, Liu '10] [Holtkamp, Meierling, Montejano '12]

Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk² defined in 2012 this notion:

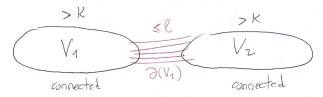
• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (k, ℓ) -separation if $|V_1|, |V_2| > k$, $|\partial(V_1)| \le \ell$, and $G[V_1]$ and $G[V_2]$ are both connected.



Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk² defined in 2012 this notion:

• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (k, ℓ) -separation if $|V_1|, |V_2| > k$, $|\partial(V_1)| \le \ell$, and $G[V_1]$ and $G[V_2]$ are both connected.

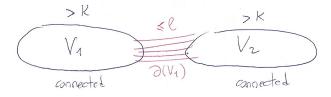


• A graph is (k, ℓ) -connected if it does not have a $(k, \ell - 1)$ -separation.

Meanwhile, in the parameterized complexity community...

Chitnis, Cygan, Hajiaghayi, and Pilipczuk² defined in 2012 this notion:

• Let G be a connected graph. A partition (V_1, V_2) of V(G) is a (k, ℓ) -separation if $|V_1|, |V_2| > k$, $|\partial(V_1)| \leq \ell$, and $G[V_1]$ and $G[V_2]$ are both connected.



- A graph is (k, ℓ) -connected if it does not have a $(k, \ell-1)$ -separation.
- ★ Both notions are essentially the same!

 $\lambda_k(G) \leqslant \ell$ if and only if G admits a $(k-1,\ell)$ -separation.

(k, ℓ) -separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

FPT algorithms for cut problems.

[Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12]

A similar notion existed for vertex-cuts.

[Kawarabayashi, Thorup '11]

• This technique has proved very useful.

[Cygan, Lokshtanov, Pilipczuk², Saurabh '14]

[Kim, Oum, Paul, S., Thilikos '15]

(k, ℓ) -separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

```
• FPT algorithms for cut problems. [Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12]
```

• A similar notion existed for vertex-cuts. [Kawarabayashi, Thorup '11]

• This technique has proved very useful. [Cygan, Lokshtanov, Pilipczuk², Saurabh '14] [Kim, Oum, Paul, S., Thilikos '15]

★ Only one known algorithmic result about (k, ℓ) -separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a n-vertex connected graph G and two integers k, ℓ , either finds a (k, ℓ) -separation, or reports that no such separation exists, in time $(k + \ell)^{O(\min\{k,\ell\})} n^3 \log n$.

(k, ℓ) -separations are useful for FPT algorithms

Used in a technique known as recursive understanding:

- FPT algorithms for cut problems. [Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12]
- A similar notion existed for vertex-cuts. [Kawarabayashi, Thorup '11]
- This technique has proved very useful. [Cygan, Lokshtanov, Pilipczuk², Saurabh '14] [Kim, Oum, Paul, S., Thilikos '15]
- * Only one known algorithmic result about (k, ℓ) -separations:

Lemma (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a n-vertex connected graph G and two integers k, ℓ , either finds a (k, ℓ) -separation, or reports that no such separation exists, in time $(k + \ell)^{O(\min\{k,\ell\})} n^3 \log n$.

★ We initiate a systematic study of the complexity of computing the k-restricted edge-connectivity of a graph.

Next section is...

- Introduction
- 2 Our results
- 3 Ideas of some of the proofs
- Further research

Summary of our results

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	ℓ	$k + \Delta$	$\ell + \Delta$
Is G λ_k -conn. ?	NPc, even		EDT		EDT	
λ_k -conn. !	if $\Delta \leqslant 5$	*	FPT	*	FPT	*
) (6) < 0.2	NPh, even	FPT)A/[d]	No poly	EDT	2
$\lambda_k(G) \leqslant \ell$?	if G is λ_k -conn.	(known)	W[1]-hard	kernels	FPT	

Table : Summary of our results, where Δ denotes the maximum degree of the input graph G, and NPc (resp. NPh) stands for NP-complete (resp. NP-hard). The symbol ' \star ' denotes that the problem is not defined for that parameter.

Next section is...

- Introduction
- Our results
- 3 Ideas of some of the proofs
- Further research

Some words on parameterized complexity

• Idea given an NP-hard problem with input size *n*, fix one parameter *k* of the input to see whether the problem gets more "tractable".

Example: the size of a VERTEX COVER.

• Given a (NP-hard) problem with input of size n and a parameter k, a fixed-parameter tractable (FPT) algorithm runs in time

$$f(k) \cdot n^{O(1)}$$
, for some function f .

Examples: *k*-Vertex Cover, *k*-Longest Path.

Determining whether a graph is λ_k -connected is hard

• Given a graph G, if n is even and k = n/2, it is NP-complete to determine whether G contains two vertex-disjoint connected subgraphs of order n/2 each.

[Dyer, Frieze '85]

This implies that the following problem is NP-hard:

```
RESTRICTED EDGE-CONNECTIVITY (REC)
```

Instance: A connected graph G = (V, E) and an integer k.

Output: $\lambda_k(G)$, or a report that G is not λ_k -connected.

Determining whether a graph is λ_k -connected is hard

- Given a graph G, if n is even and k = n/2, it is NP-complete to determine whether G contains two vertex-disjoint connected subgraphs of order n/2 each.

 [Dyer, Frieze '85]
- This implies that the following problem is NP-hard:

```
RESTRICTED EDGE-CONNECTIVITY (REC)
```

Instance: A connected graph G = (V, E) and an integer k.

Output: $\lambda_k(G)$, or a report that G is not λ_k -connected.

• Even if the input graph G is guaranteed to be λ_k -connected, computing $\lambda_k(G)$ remains hard:

Theorem

The REC problem is NP-hard restricted to λ_k -connected graphs.

• Proof for n even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]

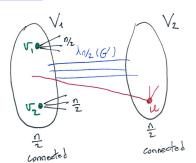
- Proof for n even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G' by adding to G two non-adjacent universal vertices v_1 and v_2 . Note that G' is $\lambda_{n/2}$ -connected.

- Proof for n even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G' by adding to G two non-adjacent universal vertices v_1 and v_2 . Note that G' is $\lambda_{n/2}$ -connected.

Claim v_1 and v_2 belong to different parts in any optimal solution in G'.

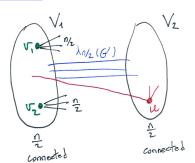
- Proof for n even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G' by adding to G two non-adjacent universal vertices v_1 and v_2 . Note that G' is $\lambda_{n/2}$ -connected.

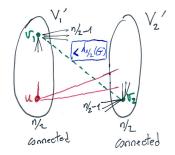
Claim v_1 and v_2 belong to different parts in any optimal solution in G'.



- Proof for n even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G' by adding to G two non-adjacent universal vertices v_1 and v_2 . Note that G' is $\lambda_{n/2}$ -connected.

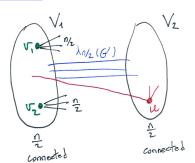
Claim v_1 and v_2 belong to different parts in any optimal solution in G'.

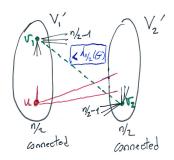




- Proof for n even and k = n/2. Reduction from MINIMUM BISECTION in connected 3-regular graphs, which is NP-hard. [Berman, Karpinski '02]
- Given G, we build G' by adding to G two non-adjacent universal vertices v_1 and v_2 . Note that G' is $\lambda_{n/2}$ -connected.

Claim v_1 and v_2 belong to different parts in any optimal solution in G'.





ullet Thus, REC problem in $G'\equiv ext{MINIMUM BISECTION}$ problem in G.

A parameterized analysis of the REC problem

Since the REC problem is NP-hard, we parameterize it:

PARAMETERIZED RESTRICTED EDGE-CONNECTIVITY (p-REC)

Instance: A connected graph G and two integers k and ℓ .

Question: $\lambda_k(G) \leqslant \ell$?

Parameter 1: The integers k and ℓ .

Parameter 2: The integer k.

Parameter 3: The integer ℓ .

A parameterized analysis of the REC problem

Since the REC problem is NP-hard, we parameterize it:

PARAMETERIZED RESTRICTED EDGE-CONNECTIVITY (p-REC)

Instance: A connected graph G and two integers k and ℓ .

Question: $\lambda_k(G) \leqslant \ell$?

Parameter 1: The integers k and ℓ .

Parameter 2: The integer k.

Parameter 3: The integer ℓ .

The **p**-REC problem is **FPT** when parameterized by both k and ℓ :

Theorem (Chitnis, Cygan, Hajiaghayi, Pilipczuk² '12)

There exists an algorithm that given a n-vertex connected graph G and two integers k, ℓ , either finds a (k, ℓ) -separation, or reports that no such separation exists, in time $(k + \ell)^{O(\min\{k,\ell\})} n^3 \log n$.

W[1]-hardness with parameter k only

Theorem

The **p**-REC problem is W[1]-hard when parameterized by k.

It is easy to see that the problem is in XP: solvable in time $n^{O(k)}$.

W[1]-hardness with parameter k only

Theorem

The **p**-REC problem is W[1]-hard when parameterized by k.

It is easy to see that the problem is in XP: solvable in time $n^{O(k)}$.

Reduction from k-CLIQUE: the same as the one for CUTTING k
 VERTICES FROM A GRAPH, only the analysis changes. [Downey et al. '03]

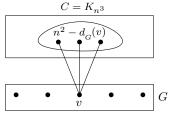
W[1]-hardness with parameter k only

Theorem

The \mathbf{p} -REC problem is $\mathbf{W[1]}$ -hard when parameterized by \mathbf{k} .

It is easy to see that the problem is in XP: solvable in time $n^{O(k)}$.

- Reduction from k-CLIQUE: the same as the one for CUTTING k VERTICES FROM A GRAPH, only the analysis changes. [Downey et al. '03]
- Given $G \rightarrow G'$:



n representative vertices

• Consider $\ell = kn^2 - 2\binom{k}{2}$ and take $k \le n/2$.

Theorem

Given a graph G and a positive integer k, determining whether G is λ_k -connected is NP-hard.

Theorem

Given a graph G and a positive integer k, determining whether G is λ_k -connected is NP-hard.

Theorem

Given a graph G and two integers k,ℓ such that G is λ_k -connected, determining whether $\lambda_k(G) \leq \ell$ is W[1]-hard when parameterized by k.

Theorem

Given a graph G and a positive integer k, determining whether G is λ_k -connected is NP-hard.

Theorem

Given a graph G and two integers k,ℓ such that G is λ_k -connected, determining whether $\lambda_k(G) \leq \ell$ is W[1]-hard when parameterized by k.

Theorem

Given a graph G and a positive integer $\frac{k}{k}$, determining whether G is $\frac{\lambda_k}{k}$ -connected is FPT when parameterized by $\frac{k}{k}$.

The proof is based on a simple application of the technique of splitters.

Theorem

Given a graph G and a positive integer k, determining whether G is λ_k -connected is NP-hard.

Theorem

Given a graph G and two integers k,ℓ such that G is λ_k -connected, determining whether $\lambda_k(G) \leq \ell$ is W[1]-hard when parameterized by k.

Theorem

Given a graph G and a positive integer k, determining whether G is λ_k -connected is FPT when parameterized by k.

The proof is based on a simple application of the technique of splitters.

 \bigstar Parameterized complexity of $|\lambda_k(G) \leq \ell$ with parameter ℓ ?

Parameterized complexity with parameter ℓ

Theorem

The **p**-REC problem does not admit polynomial kernels when parameterized by ℓ , unless $coNP \subseteq NP/poly$.

Parameterized complexity with parameter ℓ

Theorem

The **p**-REC problem does not admit polynomial kernels when parameterized by ℓ , unless coNP \subseteq NP/poly.

- A kernel for a parameterized problem Π is an algorithm that given (x, k) outputs, in time polynomial in |x| + k, an instance (x', k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - * Both $|x'|, k' \leq g(k)$, where g is some computable function.
- If $g(k) = k^{O(1)}$: we say that Π admits a polynomial kernel.
- Folklore result: Π is $\mathrm{FPT} \Leftrightarrow \Pi$ admits a kernel
- Question: which FPT problems admit polynomial kernels?

Parameterized complexity with parameter ℓ

Theorem

The **p**-REC problem does not admit polynomial kernels when parameterized by ℓ , unless $coNP \subseteq NP/poly$.

- A kernel for a parameterized problem Π is an algorithm that given (x,k) outputs, in time polynomial in |x|+k, an instance (x',k') s.t.:
 - ★ $(x, k) \in \Pi$ if and only if $(x', k') \in \Pi$, and
 - \star Both $|x'|, k' \leq g(k)$, where g is some computable function.
- If $g(k) = k^{O(1)}$: we say that Π admits a polynomial kernel.
- Folklore result: Π is $\mathrm{FPT} \Leftrightarrow \Pi$ admits a kernel
- Question: which FPT problems admit polynomial kernels?
- It is possible to prove that polynomial kernels are unlikely to exist.

[Bodlaender, Downey, Fellows, Hermelin '08] [Bodlaender, Thomassé, Yeo '09] [Bodlaender, Jansen, Kratsch '11]

Non-existence of polynomial kernels with parameter ℓ

- The proof is inspired by the one to prove that the MIN BISECTION
 does not admit polynomial kernels.
- Main difference: both parts left out by the edge-cut are connected.

Non-existence of polynomial kernels with parameter ℓ

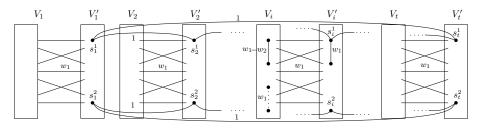
- The proof is inspired by the one to prove that the MIN BISECTION
 does not admit polynomial kernels.
- Main difference: both parts left out by the edge-cut are connected.
- We use the technique of cross-composition [Bodlaender, Jansen, Kratsch '11]

Cross-composition from MAX CUT (which is NP-hard) to EDGE-WEIGHTED **p**-REC parameterized by ℓ is a poly-time algorithm that, given t instances $(G_1, p_1), \ldots, (G_t, p_t)$ of MAX CUT, constructs one instance (G^*, k, ℓ) of EDGE-WEIGHTED **p**-REC such that:

- (G^*, k, ℓ) is YES iff one of the t instances of MAX CUT is YES, and

Idea of the proof

Given $(G_1, p), \ldots, (G_t, p)$, we create G^* as follows:



- We define $w_1 := 5n^2$ and $w_2 := 5$.
- And we set $k := |V(G^*)|/2$ and $\ell := w_1 n^2 w_2 p + 4$.
- k is not polynomially bounded in terms of n, but this is not a problem since the parameter is ℓ , which is bounded by $5n^4$.
- This construction can be performed in polynomial time in $t \cdot n$.

Claim (G^*, k, ℓ) is a YES-instance of EDGE-WEIGHTED **p**-REC iff there exists $i \in \{1, ..., t\}$ such that (G_i, p) is a YES-instance of MAX CUT.

Considering the maximum degree as a parameter

Considering the $\Delta(G)$ as an extra parameter turns the problem easier?

Considering the maximum degree as a parameter

Considering the $\Delta(G)$ as an extra parameter turns the problem easier?

Theorem

Determining whether a connected graph G is λ_k -connected is NP-complete when k is part of the input, even if $\Delta(G) \leq 5$.

Appropriate modification of the reduction from 3DM given in

[Dyer, Frieze '85]

Considering the maximum degree as a parameter

Considering the $\Delta(G)$ as an extra parameter turns the problem easier?

Theorem

Determining whether a connected graph G is λ_k -connected is NP-complete when k is part of the input, even if $\Delta(G) \leq 5$.

Appropriate modification of the reduction from 3DM given in

[Dyer, Frieze '85]

Theorem

The p-REC problem is FPT when parameterized by k and the maximum degree Δ of the input graph.

Algorithm based on a simple exhaustive search + Min Cut algorithm.

Next section is...

- Introduction
- Our results
- 3 Ideas of some of the proofs
- 4 Further research

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	ℓ	$k + \Delta$	$\ell + \Delta$
ls G	NPc, even					
λ_k -conn. ?	if $\Delta \leqslant 5$	*	FPT	*	FPT	*
	NPh, even	FPT		No poly		
$\lambda_k(G) \leqslant \ell$?	if G is	(known)	W[1]-hard	kernels	FPT	?
	λ_k -conn.					

• Main open question: is the problem FPT when parameterized by ℓ ?

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	ℓ	$k + \Delta$	$\ell + \Delta$
ls G	NPc, even					
λ_k -conn. ?	if $\Delta \leqslant 5$	*	FPT	*	FPT	*
	NPh, even	FPT		No poly		
$\lambda_k(G) \leqslant \ell$?	if G is	(known)	W[1]-hard	kernels	FPT	?
	λ_k -conn.					

• Main open question: is the problem FPT when parameterized by ℓ?

For MIN BISECTION, the non-existence of polynomial kernels was known before the problem was recently proved to be FPT. [Cygan et al. '14]

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	ℓ	$k + \Delta$	$\ell + \Delta$
ls G	NPc, even if $\Delta \leqslant 5$					
λ_k -conn. ?	if $\Delta \leqslant 5$	*	FPT	*	FPT	*
	NPh, even	FPT		No poly		
$\lambda_k(G) \leqslant \ell$?	if G is	(known)	W[1]-hard	kernels	FPT	?
	λ_k -conn.					

- Main open question: is the problem FPT when parameterized by ℓ?

 For MIN BISECTION, the non-existence of polynomial kernels was known before the problem was recently proved to be FPT. [Cygan et al. '14]
- We don't know it even for the combined parameter $\ell + \Delta$.

 Adding Δ as a parameter may not make things easier, as MIN BISECTION is as hard in 3-regular graphs as in general graphs. [Berman, Karpinski '02]

Problem	Classical	Parameterized complexity with parameter				
	complexity	$k + \ell$	k	ℓ	$k + \Delta$	$\ell + \Delta$
ls G	NPc, even if $\Delta \leqslant 5$					
Is G λ_k -conn. ?	if $\Delta \leqslant 5$	*	FPT	*	FPT	*
	NPh, even	FPT		No poly		
$\lambda_k(G) \leqslant \ell$?	if G is	(known)	W[1]-hard	kernels	FPT	?
	λ_k -conn.					

- Main open question: is the problem FPT when parameterized by ℓ?
 For MIN BISECTION, the non-existence of polynomial kernels was known before the problem was recently proved to be FPT. [Cygan et al. '14]
- We don't know it even for the combined parameter $\ell + \Delta$.

 Adding Δ as a parameter may not make things easier, as MIN BISECTION is as hard in 3-regular graphs as in general graphs.

 [Berman, Karpinski '02]
- Polynomial kernels with parameter $k + \ell$?

Gràcies!

