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Introduction

@ WDM (Wavelength Division Multiplexing) networks

» 1 wavelength (or frequency) = up to 40 Gb/s
» 1 fiber = hundreds of wavelengths = Tb/s
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Introduction

@ WDM (Wavelength Division Multiplexing) networks
» 1 wavelength (or frequency) = up to 40 Gb/s
» 1 fiber = hundreds of wavelengths = Th/s
@ |dea
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

— we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

@ Objectives
» Better use of bandwidth
» Reduce the equipment cost (mostly given by electronics)

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming WG 2008 4/28



ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength

to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength
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— we want to minimize the number of ADMs
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Definitions

@ Request (/,/): a pair of vertices i/, j that want to exchange
(low-speed) traffic
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Definitions

@ Request (/,/): a pair of vertices (i, /) that want to exchange
(low-speed) traffic
@ Grooming factor C:
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Definitions

@ Request (/,/): a pair of vertices (i, /) that want to exchange
(low-speed) traffic
@ Grooming factor C:

node i - node |

A\ /
) [ \
| \ |
A / \\_/ requests
/ inl,

For each wavelenght and each
arc between 2 nodes, there can be
only C requests routed through this arc

Example:
Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s = C=4
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Definitions

@ Request (/,/): a pair of vertices (i, /) that want to exchange
(low-speed) traffic
@ Grooming factor C:

node i - node |

\ /
\ [ \
| \ |
A / A requests

</
/ inl,

For each wavelenght and each
arc between 2 nodes, there can be
only C requests routed through this arc

@ load of an arc in a wavelength: number of requests using this arc
in this wavelength (< C)
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ADM and OADM

@ OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber

@ ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric
low-speed signal) to/from a wavelength

OADM OADM

@ Idea: Use an ADM only at the endpoints of a request
(lightpaths) in order to save as many ADMs as possible
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To fix ideas...

@ Model:
Topology graph G
Request set graph R
Grooming factor integer C

Requests in a wavelength
ADM in a wavelength

edges in a subgraph of R
node in a subgraph of R

Ll Ll
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To fix ideas...

@ Model:

Topology
Request set
Grooming factor

Requests in a wavelength

ADM in a wavelength

Ll Ll

graph G

graph R

integer C

edges in a subgraph of R
node in a subgraph of R

@ We study the case when G = 6,, (unidirectional ring)
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To fix ideas...

@ Model:
Topology graph G
Request set graph R
Grooming factor integer C

Requests in a wavelength
ADM in a wavelength

edges in a subgraph of R
node in a subgraph of R

Ll Ll

@ We study the case when G = 6,, (unidirectional ring)
@ We assume that the requests are symmetric
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Unidirectional Ring with Symmetric Requests

@ Symmetric requests: whenever there is the request (/, ), there is
also the request (j, /).

(i)
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Unidirectional Ring with Symmetric Requests

@ Symmetric requests: whenever there is the request (/, ), there is
also the request (j, /).

(i)

@ W.lLo.g. the requests (/,j) and (j, /) can be in the same subgraph
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Unidirectional Ring with Symmetric Requests

@ Symmetric requests: whenever there is the request (/, ), there is
also the request (j, /).

(i)

@ W.lLo.g. the requests (/,j) and (j, /) can be in the same subgraph
— each pair of symmetric requests induces load 1
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Unidirectional Ring with Symmetric Requests

@ Symmetric requests: whenever there is the request (/, /), there is
also the request (J, /).

(i)

@ W.lLo.g. the requests (/,j) and (j, /) can be in the same subgraph
— each pair of symmetric requests induces load 1
— grooming factor C < each subgraph has at most C edges.
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Statement of the "old” problem

Traffic Grooming in Unidirectional Rings

Input A cycle C, on n nodes (network);
An undirected graph R on n nodes (request set);
A grooming factor C.

Output A partition of E(R) into subgraphs
Ri,...,Rw with |E(R))| < C, i=1...,W.

Objective Minimize -V | |V(R.)|.
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Example: n=4, R=Ky,and C =3

1 2 1 2
r—
1 2 y 8 ADMs
—0e
4 3 4 3
1 2 1 2
N
4 3 7 ADMs
3 4 3
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New model

@ Non-exhaustive previous work (a lot!):

Bermond, Coudert and Mufioz - ONDM 2003.

Bermond and Coudert - ICC 2003.

Bermond, Braud and Coudert - SIROCCO 2005.

Bermond et al. - SIAM J. on Disc. Maths 2005.

Flammini, Moscardelli, Shalom and Zaks - ISAAC 2005.

Flammini, Monaco, Moscardelli, Shalom and Zaks - WG 2006.
Amini, Pérennes and S. - ISAAC 2007.

Bermond, Munoz and S. - Manusc. 2008.

Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2008.

vV VvV VvY VY VvV VY VvYY
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Bermond, Coudert and Munoz - ONDM 2003.
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@ In all of them: place ADMs at nodes for a fixed request graph.
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Bermond, Munoz and S. - Manusc. 2008.

Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2008.

vV VvV VvY VY VvV VY VvYY

@ In all of them: place ADMs at nodes for a fixed request graph.
— placement of ADMs a posteriori.

@ New model: place the ADMs at nodes such that the network can
support any request graph with maximum degree at most A.
— placement of ADMs a priori.
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Statement of the "new” problem
Traffic Grooming in Unidirectional Rings

with Bounded-Degree Request Graph

Input An integer n (size of the ring);
An integer C (grooming factor);
An integer A (maximum degree).

Output An assignment of A(v) ADMs to each node v € V(C,),
in such a way that for any graph R on n nodes
with maximum degree at most A, it exists
a partition of £(R) into subgraphs Ry, ..., Ry s.t.:

() |E(B)| < Cforalli=1,...,W;and
(i) each vertex v € V(C,) appears in < A(v) subgraphs.

Objective  Minimize >, ¢, A(V),
and the optimum is denoted A(n, C, A).
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M(C, )

Definition

Let M(C, A) be the least positive number M such that, for any n > 1,
the inequality A(n, C, A) < Mn holds.
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M(C, )

Definition

Let M(C, A) be the least positive number M such that, for any n > 1,
the inequality A(n, C, A) < Mn holds.

@ Due to symmetry, it can be seen that A(v) is the same for all
nodes v, except for a subset whose size is independent of n.
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M(C, A)
Definition

Let M(C, A) be the least positive number M such that, for any n > 1,
the inequality A(n, C, A) < Mn holds.

@ Due to symmetry, it can be seen that A(v) is the same for all
nodes v, except for a subset whose size is independent of n.

@ M(C,A) is always an integer.

@ Equivalently:

M(C, A) is the least integer M such that

the edges of any graph with maximum degree at most A can be
partitioned into subgraphs with at most C edges, in such a way
that each vertex appears in at most M subgraphs.
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M(C, A)

Definition

Let M(C, A) be the least positive number M such that, for any n > 1,
the inequality A(n, C, A) < Mn holds.

@ Due to symmetry, it can be seen that A(v) is the same for all
nodes v, except for a subset whose size is independent of n.

@ M(C,A) is always an integer.

@ Equivalently:

M(C, A) is the least integer M such that

the edges of any graph with maximum degree at most A can be
partitioned into subgraphs with at most C edges, in such a way
that each vertex appears in at most M subgraphs.

@ In the sequel we focus on determining M(C, A).
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More formally...

@ Let G be the class of (simple undirected) graphs with maximum degree
at most A.
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@ For G € Ga, let Po(G) be the set of partitions of E(G) into subgraphs
with at most C edges.
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More formally...

@ Let G be the class of (simple undirected) graphs with maximum degree
at most A.

@ For G € Ga, let Po(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

@ For P € Pc(G), let

occ(P) = Vrenve}é) {Be P:ve B}
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More formally...

@ Let G be the class of (simple undirected) graphs with maximum degree
at most A.

@ For G € Ga, let Po(G) be the set of partitions of E(G) into subgraphs
with at most C edges.
@ For P € Pc(G), let

occ(P) = vrenvax {Be P:ve B}

@ And then,

M(C, A) = max ( min occ(P))
GeGa \PEPC(G)

@ For a general graph G,

min _occ(P) = min ( max |{Be P:ve B}|>
PePc(G) PePc(G) \veV(G
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More formally...

@ Let G be the class of (simple undirected) graphs with maximum degree
at most A.

@ For G € Ga, let Po(G) be the set of partitions of E(G) into subgraphs
with at most C edges.
@ For P € Pc(G), let

occ(P) = vrenvax {Be P:ve B}

@ And then,

M(C, A) = max ( min occ(P))
GeGa \PEPC(G)

@ For a general graph G,

PePc(G) PePc(G) \veV(G
— C-Edge-PartitionWidth of G...?
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Some properties of M(C, A)

@ W.lLo.g. we can assume that R has regular degree A.
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@ C>C = M(C,A)<M(C' A)forall A.
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Some properties of M(C, A)
@ W.lLo.g. we can assume that R has regular degree A.

@ C>C = M(C,A)<M(C' A)forall A.
e A>AN = M(C,A) > M(C,A") for all C.
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Some properties of M(C, A)

@ W.lLo.g. we can assume that R has regular degree A.

@ C>C = M(C,A)<M(C, A)forall A.
e A>AN = M(C,A) > M(C,A") for all C.

@ Upper bound: M(C,A) < M(1,A) = A.
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Some properties of M(C, A)

@ W.lLo.g. we can assume that R has regular degree A.

@ C>C = M(C,A)<M(C, A)forall A.
e A>AN = M(C,A) > M(C,A") for all C.

@ Upper bound: M(C,A) < M(1,A) =

® Lower bound: M(C.4) > | €414 ].
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Some properties of M(C, A)

@ W.lLo.g. we can assume that R has regular degree A.

C>C = M(C,A) <M(C',A) forall A.
A >N = M(C,A)>M(C,A")forall C.

Upper bound: M(C,A) < M(1,A) =

Lower bound: M(C, A) > {%%W

Cases according to A:
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Some properties of M(C, A)

@ W.lLo.g. we can assume that R has regular degree A.

@ C>C = M(C,A)<M(C, A)forall A.
e A>AN = M(C,A) > M(C,A") for all C.

@ Upper bound: M(C,A) < M(1,A) =
@ Lower bound: M(C,A) > {%%l

@ Cases according to A:
A =1: M(C,1) =1 forall C (trivial).
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Some properties of M(C, A)

@ W.lLo.g. we can assume that R has regular degree A.

@ C>C = M(C,A)<M(C' A)forall A.
e A>AN = M(C,A) > M(C,A") for all C.

@ Upper bound: M(C,A) < M(1,A) =
@ Lower bound: M(C.A) > {%%W

@ Cases according to A:

A =1: M(C,1) =1 forall C (trivial).
A =2: M(C,2) =2 forall C (not difficult).
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Some properties of M(C, A)

@ W.lLo.g. we can assume that R has regular degree A.

@ C>C = M(C,A)<M(C' A)forall A.
e A>AN = M(C,A) > M(C,A") for all C.

@ Upper bound: M(C,A) < M(1,A) =
@ Lower bound: M(C.A) > {%%W

@ Cases according to A:

A =1: M(C,1) =1 forall C (trivial).

A =2: M(C,2) =2 forall C (not difficult).

A = 3: Cubic graphs. First "interesting” case...
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Case A =3

@ Lower bound: M(C.3) > {%g]
@ Upper bound: M(C,3) < 3.
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Case A =3

@ Lower bound: M(C,3) >
@ Upper bound: M(C,3) <

@ Case C=2: M(2,3) > [2
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Case A =3

@ Lower bound: M(C.3) > {%%1
@ Upper bound: M(C,3) <3

@ Case C=2: M(2,3) > [ 3] =[2] =3.

@ Case C =3:
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Case A =3

@ Lower bound: M(C,3) {%%W
@ Upper bound: M(C,3) <3

@ Case C=2: M(2,3) > [ 3] =[2] =3.

@ Case C =3:

» If the request graph is 2-connected (i.e. bridgeless),
by Petersen’s Theorem (1891) it can be partitioned into a perfect
matching + disjoint cycles = the graph can be partitioned into Ps’s
= each vertex appears in 2 subgraphs.
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Case A =3

@ Lower bound: M(C,3) {%%W
@ Upper bound: M(C,3) <3

@ Case C=2: M(2,3) > [ 3] =[2] =3.

@ Case C =3:

» If the request graph is 2-connected (i.e. bridgeless),
by Petersen’s Theorem (1891) it can be partitioned into a perfect
matching + disjoint cycles = the graph can be partitioned into Ps’s
= each vertex appears in 2 subgraphs.

» If not, consider the following request graph (next slide):

A cubic graph that cannot be edge-partitioned into subgraphs with
at most 3 edges in such a way that each vertex appears in at most
2 subgraphs = M(3,3) = 3.
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Case A=3,C=3

e, 4a, e
a,e—2 ° = sa,
€
N
Al

@ Consider this cubic graph (which has girth 4).

@ Suppose we can partition it into subgraphs with at most 3 edges in
such a way that each vertex appears in at most 2 subgraphs.
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Case A=3,C=3
T+
S A
SN

@ Consider the subgraphs containing ag (i.e. containing the edges
e1, €2, €3).
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Case A=3,C=3
AN

@ Consider the subgraphs containing ag (i.e. containing the edges
e1, €2, €3).
@ At least one of them "ends” in one of the vertices ay, a», as.
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Case A=3,C=3

HQ.)Q

@ Letw.l.o.g. a; be this vertex.
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Case A=3,C=3

’_QJQ

@ Letw.l.o.g. a; be this vertex.

@ Now we have to partition this graph into subgraphs with at most 3
edges in such a way that each vertex except a; appears in at most
2 subgraphs and a; appears in exactly 1 subgraph.
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Case A=3,C=3

@ Equivalently, we have to partition this graph H into subgraphs with
at most 3 edges, in such a way that the thick edge appears in a
subgraph with at most 2 edges, and each vertex appears in at
most 2 subgraphs.
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Case A=3,C=3

@ Let ny be the total number of vertices of degree 1 in all the subgraphs of
the decomposition of H.
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Case A=3,C=3

@ Let ny be the total number of vertices of degree 1 in all the subgraphs of
the decomposition of H.

@ Since each vertex of H can appear in at most 2 subgraphs and H is
cubic, each vertex can appear with degree 1 in at most 1 subgraph.
Thus, ny < |V(H)| = 6.
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Case A=3,C=3

@ Let ny be the total number of vertices of degree 1 in all the subgraphs of
the decomposition of H.

@ Since each vertex of H can appear in at most 2 subgraphs and H is
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Case A=3,C=3

@ Let ny be the total number of vertices of degree 1 in all the subgraphs of
the decomposition of H.

@ Since each vertex of H can appear in at most 2 subgraphs and H is
cubic, each vertex can appear with degree 1 in at most 1 subgraph.
Thus, ny < |V(H)| = 6.

@ Since we have to use at least 1 subgraph with at most 2 edges and
|E(H)| = 9, there are at least 1 + [232] = 4 subgraphs in the
decomposition of H.

@ But each subgraph involved in the decomposition of H has at least 2
vertices of degree 1 (because H is triangle-free). Therefore, ny > 8, a
contradiction.
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Summary of results: values of M(C, A)

[CIA]]1 ]2 ]383]4]5][6] 7 ]8]29 | Aeven | A odd
1 T]23]4] 5 6] 78] 9 A A
3A 3A
2 1l2]3|3[4a][5]6|6]7 3 2]
3 1123 |3| 4 |4]|5|6/|>6 2 > 28
4 1|22 |3| 4 [4]5 |56 52 > 3¢
5 12|23 4|5 |56 3 > 3%
7A 7A
6 11223 4|5 | 5|6 n > 72
7 12|23 3| 4 5| 6 2 > %
9A 9A
8 112 |2|3|>3|4|> 5| 6 94 > %
9 12|23 |>3|4]|>4|5/]|>5 8 > 52
Cc+1 A C+1 A
c 11223 |[>3|4]|>4|5]|>5 [%ﬂ >cia
@ Red cases remain open. [case M(4,3) = 2 also with Zhentao L.
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Summary of results: values of M(C, A)

. even [¢]
CA[1][2[3][4]5 6] 7 8]9 A A odd
i T]2[3 4] 5 6] 7 [8]09 A A
2 112 (3 |3| 4 |5|6 6|7 8 8
3 1l2]3|3]4afa]5 |66 2a N
4 1122 |3|4|4|5|5]6 & > 3£

3A 3A
5 12233 4|5 ]5]6 A 122]
7A A
6 1l2]2|3[=>3[4]5]|5]s6 s > 74
4 4
7 12233 4|4 |5]6s a 4]
8 1|22 |3 |>3|4|>4|5/]|68 e > %
5 5
9 12233 [4]4|5]s5 54 %]
c 12233 ]4|4]5]s ERIEGE

@ Red cases remain open.

@ Blue cases only hold if the request graph has a perfect matching.
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Conclusions and further research

@ We have introduced a new model for traffic grooming from a
graph-theoretical point of view — graph partitioning.

@ This formulation allows the network to support dynamic traffic
without reconfiguring the electronic equipment at the nodes.
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Conclusions and further research

@ We have introduced a new model for traffic grooming from a
graph-theoretical point of view — graph partitioning.

@ This formulation allows the network to support dynamic traffic
without reconfiguring the electronic equipment at the nodes.

@ We have determined the value of M(C, A) when A is even, and
when A =3or C=2.

@ Also the case when both A and C are odd, provided that the
request graph has a perfect matching.

@ Further Research:

» Determine M(C, A) for A > 5 odd!

» Other classes of request graphs that make sense from the
telecommunications point of view?

» Complexity of ”C-Edge-PartitionWidth".
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Thanks!

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming



	Introduction
	Traffic Grooming
	Conclusions

