Traffic Grooming in Unidirectional WDM Rings with Bounded Degree Request Graph

Ignasi Sau

Joint work with Xavier Muñoz

Mascotte Project - INRIA/CNRS-I3S/UNSA - FRANCE Applied Mathematics IV Department of UPC - SPAIN

Outline of the talk

- Introduction to traffic grooming
- Definition of the problem
- Example
- New model
- Preliminaries
- Case of cubic request graphs
- Summary of results
- Conclusions and further research

Traffic Grooming

Introduction

WDM (Wavelength Division Multiplexing) networks

- 1 wavelength (or frequency) = up to 40 Gb/s
- 1 fiber = hundreds of wavelengths = Tb/s

• <u>Idea</u>

Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 \longrightarrow we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

Objectives

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

Introduction

- WDM (Wavelength Division Multiplexing) networks
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - I fiber = hundreds of wavelengths = Tb/s

• <u>Idea</u>

Traffic grooming consists in packing low-speed traffic flows into higher speed streams

 \longrightarrow we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

Objectives

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

Introduction

- WDM (Wavelength Division Multiplexing) networks
 - 1 wavelength (or frequency) = up to 40 Gb/s
 - I fiber = hundreds of wavelengths = Tb/s

• <u>Idea</u>

Traffic grooming consists in packing low-speed traffic flows into higher speed streams

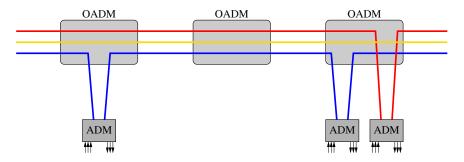
 \longrightarrow we allocate the same wavelength to several low-speed requests (TDM, Time Division Multiplexing)

Objectives

- Better use of bandwidth
- Reduce the equipment cost (mostly given by electronics)

ADM and OADM

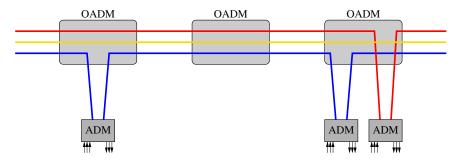
- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength



 \rightarrow we want to minimize the number of ADMs

ADM and OADM

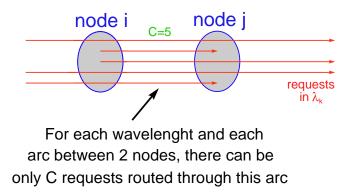
- OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- **ADM** (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength



 \rightarrow we want to minimize the number of ADMs

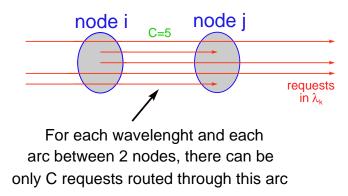
• **Request** (*i*, *j*): a pair of vertices *i*, *j* that want to exchange (low-speed) traffic

- **Request** (*i*, *j*): a pair of vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:



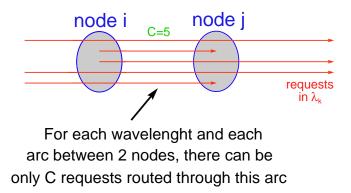
Example: Capacity of one wavelength = 2400 Mb/sCapacity used by a request = 600 Mb/s \Rightarrow C = 4

- **Request** (*i*, *j*): a pair of vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:



Example:Capacity of one wavelength = 2400 Mb/sCapacity used by a request = 600 Mb/s $\Rightarrow C = 4$

- **Request** (*i*, *j*): a pair of vertices (*i*, *j*) that want to exchange (low-speed) traffic
- Grooming factor C:



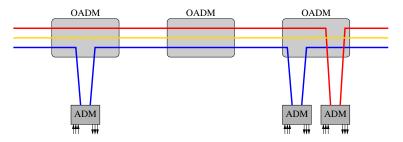
 load of an arc in a wavelength: number of requests using this arc in this wavelength (≤ C)

Ignasi Sau (UPC+INRIA/CNRS)

Traffic Grooming

ADM and OADM

- **OADM** (Optical Add/Drop Multiplexer)= insert/extract a wavelength to/from an optical fiber
- ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric low-speed signal) to/from a wavelength



• <u>Idea:</u> Use an **ADM only at the endpoints of a request** (lightpaths) in order to save as many ADMs as possible

To fix ideas...

Model:

Topology	\rightarrow	graph G
Request set	\rightarrow	graph <i>R</i>
Grooming factor	\rightarrow	integer C
Requests in a wavelength	\rightarrow	edges in a subgraph of R
ADM in a wavelength	\rightarrow	node in a subgraph of <i>R</i>

We study the case when G = C_n (unidirectional ring)
We assume that the requests are symmetric

To fix ideas...

Model:

Topology	\rightarrow	graph G
Request set	\rightarrow	graph <i>R</i>
Grooming factor	\rightarrow	integer C
Requests in a wavelength	\rightarrow	edges in a subgraph of R
ADM in a wavelength	\rightarrow	node in a subgraph of <i>R</i>

• We study the case when $G = \overrightarrow{C}_n$ (unidirectional ring)

We assume that the requests are symmetric

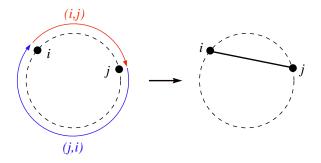
To fix ideas...

Model:

Topology	\rightarrow	graph G
Request set	\rightarrow	graph <i>R</i>
Grooming factor	\rightarrow	integer C
Requests in a wavelength	\rightarrow	edges in a subgraph of R
ADM in a wavelength	\rightarrow	node in a subgraph of <i>R</i>

- We study the case when $G = \overrightarrow{C}_n$ (unidirectional ring)
- We assume that the requests are symmetric

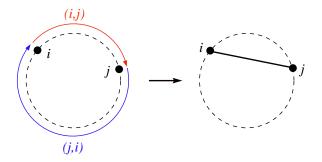
• **Symmetric requests**: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).



W.I.o.g. the requests (*i*, *j*) and (*j*, *i*) can be in the same subgraph
 → each pair of symmetric requests induces load 1

 \rightarrow grooming factor $C \Leftrightarrow$ each subgraph has at most C edges.

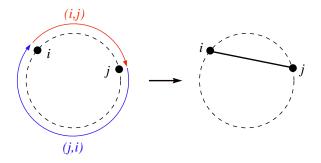
• **Symmetric requests**: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).



• W.I.o.g. the requests (i, j) and (j, i) can be in the same subgraph

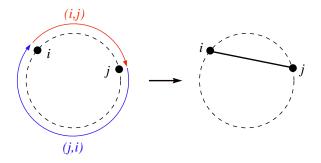
- ightarrow each pair of symmetric requests induces load 1
- \rightarrow grooming factor *C* \Leftrightarrow each subgraph has at most *C* edges.

• **Symmetric requests**: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).



- W.I.o.g. the requests (*i*, *j*) and (*j*, *i*) can be in the same subgraph
 → each pair of symmetric requests induces load 1
 - \rightarrow grooming factor *C* \Leftrightarrow each subgraph has at most *C* edges.

• **Symmetric requests**: whenever there is the request (*i*, *j*), there is also the request (*j*, *i*).

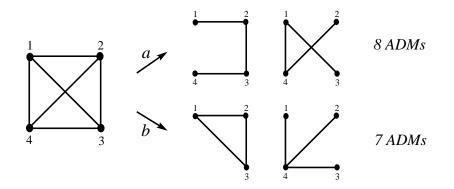


- W.I.o.g. the requests (i, j) and (j, i) can be in the same subgraph
 - \rightarrow each pair of symmetric requests induces load 1
 - \rightarrow grooming factor *C* \Leftrightarrow each subgraph has at most *C* edges.

Statement of the "old" problem

Traffic Grooming in Unidirectional Rings			
Input	A cycle C_n on n nodes (network); An <i>undirected</i> graph R on n nodes (request set); A grooming factor C .		
Output	A partition of $E(R)$ into subgraphs R_1, \ldots, R_W with $ E(R_i) \le C$, i=1,W.		
Objective	Minimize $\sum_{\omega=1}^{W} V(R_{\omega}) $.		

Example: n = 4, $R = K_4$, and C = 3



• Non-exhaustive previous work (a lot!):

- Bermond, Coudert and Muñoz ONDM 2003.
- Bermond and Coudert ICC 2003.
- Bermond, Braud and Coudert SIROCCO 2005.
- Bermond et al. SIAM J. on Disc. Maths 2005.
- Flammini, Moscardelli, Shalom and Zaks ISAAC 2005.
- Flammini, Monaco, Moscardelli, Shalom and Zaks WG 2006.
- Amini, Pérennes and S. ISAAC 2007.
- Bermond, Muñoz and S. Manusc. 2008.
- Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2008.

In all of them: place ADMs at nodes for a fixed request graph.
 → placement of ADMs a posteriori.

 New model: place the ADMs at nodes such that the network can support any request graph with maximum degree at most △.
 → placement of ADMs a priori.

• Non-exhaustive previous work (a lot!):

- Bermond, Coudert and Muñoz ONDM 2003.
- Bermond and Coudert ICC 2003.
- Bermond, Braud and Coudert SIROCCO 2005.
- Bermond et al. SIAM J. on Disc. Maths 2005.
- Flammini, Moscardelli, Shalom and Zaks ISAAC 2005.
- Flammini, Monaco, Moscardelli, Shalom and Zaks WG 2006.
- Amini, Pérennes and S. ISAAC 2007.
- Bermond, Muñoz and S. Manusc. 2008.
- Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2008.

In all of them: place ADMs at nodes for a fixed request graph. → placement of ADMs a posteriori.

 New model: place the ADMs at nodes such that the network can support any request graph with maximum degree at most △.
 → placement of ADMs a priori.

• Non-exhaustive previous work (a lot!):

- Bermond, Coudert and Muñoz ONDM 2003.
- Bermond and Coudert ICC 2003.
- Bermond, Braud and Coudert SIROCCO 2005.
- Bermond et al. SIAM J. on Disc. Maths 2005.
- Flammini, Moscardelli, Shalom and Zaks ISAAC 2005.
- Flammini, Monaco, Moscardelli, Shalom and Zaks WG 2006.
- Amini, Pérennes and S. ISAAC 2007.
- Bermond, Muñoz and S. Manusc. 2008.
- Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2008.

In all of them: place ADMs at nodes for a fixed request graph. → placement of ADMs a posteriori.

 New model: place the ADMs at nodes such that the network can support any request graph with maximum degree at most △.
 → placement of ADMs a priori.

• Non-exhaustive previous work (a lot!):

- Bermond, Coudert and Muñoz ONDM 2003.
- Bermond and Coudert ICC 2003.
- Bermond, Braud and Coudert SIROCCO 2005.
- Bermond et al. SIAM J. on Disc. Maths 2005.
- Flammini, Moscardelli, Shalom and Zaks ISAAC 2005.
- Flammini, Monaco, Moscardelli, Shalom and Zaks WG 2006.
- Amini, Pérennes and S. ISAAC 2007.
- Bermond, Muñoz and S. Manusc. 2008.
- Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2008.
- In all of them: place ADMs at nodes for a fixed request graph.
 → placement of ADMs a posteriori.
- New model: place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ.

→ placement of ADMs a priori.

• Non-exhaustive previous work (a lot!):

- Bermond, Coudert and Muñoz ONDM 2003.
- Bermond and Coudert ICC 2003.
- Bermond, Braud and Coudert SIROCCO 2005.
- Bermond et al. SIAM J. on Disc. Maths 2005.
- Flammini, Moscardelli, Shalom and Zaks ISAAC 2005.
- Flammini, Monaco, Moscardelli, Shalom and Zaks WG 2006.
- Amini, Pérennes and S. ISAAC 2007.
- Bermond, Muñoz and S. Manusc. 2008.
- Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2008.
- In all of them: place ADMs at nodes for a fixed request graph.
 → placement of ADMs a posteriori.
- New model: place the ADMs at nodes such that the network can support any request graph with maximum degree at most Δ.
 - \rightarrow placement of ADMs **a priori**.

Statement of the "new" problem Traffic Grooming in Unidirectional Rings with Bounded-Degree Request Graph

Input An integer n (size of the ring); An integer C (grooming factor); An integer Δ (maximum degree).

Output An assignment of A(v) ADMs to each node $v \in V(C_n)$, in such a way that for any graph R on n nodes with **maximum degree at most** Δ , it exists a partition of E(R) into subgraphs R_1, \ldots, R_W s.t.:

> (*i*) $|E(B_i)| \le C$ for all i = 1, ..., W; and (*ii*) each vertex $v \in V(C_n)$ appears in $\le A(v)$ subgraphs.

Objective Minimize
$$\sum_{v \in V(C_n)} A(v)$$
,
and the optimum is denoted $A(n, C, \Delta)$.

Ignasi Sau (UPC+INRIA/CNRS)

Traffic Grooming

$M(C, \Delta)$

Definition

Let $M(C, \Delta)$ be the least positive number M such that, for any $n \ge 1$, the inequality $A(n, C, \Delta) \le Mn$ holds.

- Due to symmetry, it can be seen that A(v) is the same for all nodes v, except for a subset whose size is independent of n.
- $M(C, \Delta)$ is always an integer.
- Equivalently:

 $M(C, \Delta)$ is the least integer M such that the edges of **any** graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges, in such a way that each vertex appears in at most M subgraphs.

• In the sequel we focus on determining $M(C, \Delta)$

 $M(C, \Delta)$ Definition

Let $M(C, \Delta)$ be the least positive number M such that, for any $n \ge 1$, the inequality $A(n, C, \Delta) \le Mn$ holds.

- Due to symmetry, it can be seen that A(v) is the same for all nodes v, except for a subset whose size is independent of n.
- $M(C, \Delta)$ is always an integer.
- Equivalently:

 $M(C, \Delta)$ is the least integer M such that the edges of **any** graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges, in such a way that each vertex appears in at most M subgraphs.

In the sequel we focus on determining M(C, Δ).

 $M(C, \Delta)$ Definition Let $M(C, \Delta)$ be the least positive number A

Let $M(C, \Delta)$ be the least positive number M such that, for any $n \ge 1$, the inequality $A(n, C, \Delta) \le Mn$ holds.

- Due to symmetry, it can be seen that A(v) is the same for all nodes v, except for a subset whose size is independent of n.
- $M(C, \Delta)$ is always an integer.
- Equivalently:

 $M(C, \Delta)$ is the least integer M such that the edges of **any** graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges, in such a way that each vertex appears in at most M subgraphs.

In the sequel we focus on determining M(C, Δ).

 $M(C, \Delta)$ Definition Let $M(C, \Delta)$ be the least positive number M such that, for any $n \ge 1$, the inequality $A(n, C, \Delta) \le Mn$ holds.

- Due to symmetry, it can be seen that A(v) is the same for all nodes v, except for a subset whose size is independent of n.
- $M(C, \Delta)$ is always an integer.
- Equivalently:

 $M(C, \Delta)$ is the least integer *M* such that the edges of **any** graph with maximum degree at most Δ can be partitioned into subgraphs with at most *C* edges, in such a way that each vertex appears in at most *M* subgraphs.

• In the sequel we focus on determining $M(C, \Delta)$.

 $M(C, \Delta)$ Definition Let $M(C, \Delta)$ be the least positive number M such that, for any $n \ge 1$, the inequality $A(n, C, \Delta) \le Mn$ holds.

- Due to symmetry, it can be seen that A(v) is the same for all nodes v, except for a subset whose size is independent of n.
- $M(C, \Delta)$ is always an integer.
- Equivalently:

 $M(C, \Delta)$ is the least integer M such that the edges of **any** graph with maximum degree at most Δ can be partitioned into subgraphs with at most C edges, in such a way that each vertex appears in at most M subgraphs.

• In the sequel we focus on determining $M(C, \Delta)$.

More formally...

- Let G_∆ be the class of (simple undirected) graphs with maximum degree at most ∆.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.
- For $P \in \mathcal{P}_{\mathcal{C}}(G)$, let

 $occ(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}$

• And then,

$$M(C, \Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{\mathcal{C}}(G)} occ(P) \right)$$

For a general graph G,

 $\min_{P \in \mathcal{P}_{\mathcal{C}}(G)} \mathit{occ}(P) = \min_{P \in \mathcal{P}_{\mathcal{C}}(G)} \left(\max_{v \in V(G)} |\{B \in P : v \in B\}|
ight)$

 \rightarrow C-Edge-PartitionWidth of G...?

More formally...

- Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.

For
$$P \in \mathcal{P}_{\mathcal{C}}(G)$$
, let $occ(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}$

• And then,

$$M(C,\Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{\mathcal{C}}(G)} occ(P) \right)$$

For a general graph G,

$$\min_{P\in \mathcal{P}_{c}(G)} \mathit{occ}(P) = \min_{P\in \mathcal{P}_{c}(G)} \left(\max_{v\in V(G)} |\{B\in P: v\in B\}|
ight)$$

 \rightarrow C-Edge-PartitionWidth of G...?

More formally...

- Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.
- For $P \in \mathcal{P}_{\mathcal{C}}(G)$, let

$$occ(P) = \max_{v \in V(G)} |\{B \in P : v \in B\}|$$

• And then,

$$M(C,\Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{\mathcal{C}}(G)} occ(P)
ight)$$

For a general graph G,

$$\min_{P \in \mathcal{P}_{\mathcal{C}}(G)} \textit{occ}(P) = \min_{P \in \mathcal{P}_{\mathcal{C}}(G)} \left(\max_{v \in V(G)} |\{B \in P : v \in B\}| \right)$$

→ C-Edge-PartitionWidth of G...?

More formally...

- Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.
- For $P \in \mathcal{P}_{C}(G)$, let

$$\mathit{occ}(\mathit{P}) = \max_{\mathit{v} \in \mathit{V}(\mathit{G})} |\{\mathit{B} \in \mathit{P} : \mathit{v} \in \mathit{B}\}|$$

And then,

$$M(C, \Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{C}(G)} occ(P) \right)$$

• For a general graph G,

$$\min_{P \in \mathcal{P}_{\mathcal{C}}(G)} \textit{occ}(P) = \min_{P \in \mathcal{P}_{\mathcal{C}}(G)} \left(\max_{v \in V(G)} \left| \{B \in P : v \in B\} \right| \right)$$

 \rightarrow C-Edge-PartitionWidth of G...?

More formally...

- Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.
- For $P \in \mathcal{P}_{\mathcal{C}}(G)$, let

$$\mathit{occ}(\mathit{P}) = \max_{\mathit{v} \in \mathit{V}(\mathit{G})} |\{\mathit{B} \in \mathit{P} : \mathit{v} \in \mathit{B}\}|$$

And then,

$$M(C, \Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{C}(G)} occ(P) \right)$$

• For a general graph G,

$$\min_{P \in \mathcal{P}_{\mathcal{C}}(G)} \textit{occ}(P) = \min_{P \in \mathcal{P}_{\mathcal{C}}(G)} \left(\max_{v \in V(G)} \left| \{B \in P : v \in B\} \right| \right)$$

 \rightarrow C-Edge-PartitionWidth of G...?

More formally...

- Let G_Δ be the class of (simple undirected) graphs with maximum degree at most Δ.
- For G ∈ G_Δ, let P_C(G) be the set of partitions of E(G) into subgraphs with at most C edges.
- For $P \in \mathcal{P}_{\mathcal{C}}(G)$, let

$$\mathit{occ}(\mathit{P}) = \max_{v \in V(G)} |\{\mathit{B} \in \mathit{P} : v \in \mathit{B}\}|$$

And then,

$$M(C, \Delta) = \max_{G \in \mathcal{G}_{\Delta}} \left(\min_{P \in \mathcal{P}_{C}(G)} occ(P) \right)$$

• For a general graph G,

$$\min_{P \in \mathcal{P}_{\mathcal{C}}(G)} occ(P) = \min_{P \in \mathcal{P}_{\mathcal{C}}(G)} \left(\max_{v \in V(G)} |\{B \in P : v \in B\}| \right)$$

→ C-Edge-PartitionWidth of G ...?

- W.I.o.g. we can assume that R has regular degree Δ .
- $C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$ for all Δ .
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.
- Lower bound: $M(C, \Delta) \ge \left| \begin{array}{c} \frac{C+1}{C} \frac{\Delta}{2} \\ \end{array} \right|$.
- Cases according to Δ:
- $\Delta = 1$: M(C, 1) = 1 for all C (trivial). $\Delta = 2$: M(C, 2) = 2 for all C (not difficult). $\Delta = 3$: Cubic graphs. First "interesting" case.

• W.I.o.g. we can assume that R has regular degree Δ .

•
$$C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$$
 for all Δ .

- $\Delta \ge \Delta' \Rightarrow M(C, \Delta) \ge M(C, \Delta')$ for all *C*.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.
- Lower bound: $M(C, \Delta) \geq \left| \frac{C+1}{C} \frac{\Delta}{2} \right|$.
- Cases according to Δ:
- $\Delta = 1$: M(C, 1) = 1 for all C (trivial). $\Delta = 2$: M(C, 2) = 2 for all C (not difficult). $\Delta = 3$: Cubic graphs. First "interesting" case

- W.I.o.g. we can assume that R has regular degree Δ .
- $C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$ for all Δ .
- $\Delta \ge \Delta' \Rightarrow M(C, \Delta) \ge M(C, \Delta')$ for all *C*.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.
- Lower bound: $M(C, \Delta) \geq \left\lfloor \frac{C+1}{C} \frac{\Delta}{2} \right\rfloor$.
- Cases according to Δ:
- $\Delta = 1$: M(C, 1) = 1 for all C (trivial). $\Delta = 2$: M(C, 2) = 2 for all C (not difficult). $\Delta = 3$: Cubic graphs. First "interesting" case

W.I.o.g. we can assume that *R* has regular degree △.

•
$$C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$$
 for all Δ .

- $\Delta \ge \Delta' \Rightarrow M(C, \Delta) \ge M(C, \Delta')$ for all *C*.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.
- Lower bound: $M(C, \Delta) \geq \left| \frac{C+1}{C} \frac{\Delta}{2} \right|$.

Cases according to Δ:

 $\Delta = 1$: M(C, 1) = 1 for all C (trivial). $\Delta = 2$: M(C, 2) = 2 for all C (not difficult). $\Delta = 3$: Cubic graphs. First "interesting" cas

• W.I.o.g. we can assume that *R* has **regular degree** Δ .

•
$$C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$$
 for all Δ .

- $\Delta \ge \Delta' \Rightarrow M(C, \Delta) \ge M(C, \Delta')$ for all *C*.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.
- Lower bound: $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
- Cases according to Δ:
- $\Delta = 1: M(C, 1) = 1 \text{ for all } C \text{ (trivial).}$ $\Delta = 2: M(C, 2) = 2 \text{ for all } C \text{ (not difficult)}$
- $\Delta = 3$: Cubic graphs. First "interesting" case...

W.I.o.g. we can assume that *R* has regular degree △.

•
$$C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$$
 for all Δ .

- $\Delta \ge \Delta' \Rightarrow M(C, \Delta) \ge M(C, \Delta')$ for all *C*.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.
- Lower bound: $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
- Cases according to Δ:

 $\Delta = 1$: M(C, 1) = 1 for all C (trivial). $\Delta = 2$: M(C, 2) = 2 for all C (not difficult). $\Delta = 3$: Cubic graphs. First "interesting" case...

• W.I.o.g. we can assume that *R* has **regular degree** Δ .

•
$$C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$$
 for all Δ .

- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all *C*.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.
- Lower bound: $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
- Cases according to Δ:
- $\Delta = 1$: M(C, 1) = 1 for all C (trivial). $\Delta = 2$: M(C, 2) = 2 for all C (not difficult). $\Delta = 3$: Cubic graphs. First "interesting" case

• W.I.o.g. we can assume that *R* has **regular degree** Δ .

•
$$C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$$
 for all Δ .

- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all *C*.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.
- Lower bound: $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
- Cases according to Δ:
- $\Delta = 1$: M(C, 1) = 1 for all C (trivial).
- $\Delta = 2$: M(C, 2) = 2 for all C (not difficult).

 $\Delta = 3$: Cubic graphs. First "interesting" case...

• W.I.o.g. we can assume that R has regular degree Δ .

•
$$C \ge C' \Rightarrow M(C, \Delta) \le M(C', \Delta)$$
 for all Δ .

- $\Delta \geq \Delta' \Rightarrow M(C, \Delta) \geq M(C, \Delta')$ for all *C*.
- Upper bound: $M(C, \Delta) \leq M(1, \Delta) = \Delta$.
- Lower bound: $M(C, \Delta) \geq \left\lceil \frac{C+1}{C} \frac{\Delta}{2} \right\rceil$.
- Cases according to Δ:
- $\Delta = 1$: M(C, 1) = 1 for all C (trivial).
- $\Delta = 2$: M(C, 2) = 2 for all C (not difficult).
- $\Delta = 3$: Cubic graphs. First "interesting" case...

- Lower bound: $M(C,3) \ge \left\lceil \frac{C+1}{2} \frac{3}{2} \right\rceil$.
- Upper bound: $M(C,3) \leq 3$.
- Case C = 2: $M(2,3) \ge \left\lceil \frac{2+1}{2} \frac{3}{2} \right\rceil = \left\lceil \frac{9}{4} \right\rceil = 3$.
- Case *C* = 3:
 - If the request graph is 2-connected (i.e. bridgeless), by Petersen's Theorem (1891) it can be partitioned into a perfect matching + disjoint cycles ⇒ the graph can be partitioned into P₄'s ⇒ each vertex appears in 2 subgraphs.
 - If not, consider the following request graph (next slide):

- Lower bound: $M(C,3) \ge \left\lceil \frac{C+1}{2} \frac{3}{2} \right\rceil$.
- Upper bound: $M(C,3) \leq 3$.
- Case C = 2: $M(2,3) \ge \left\lceil \frac{2+1}{2} \frac{3}{2} \right\rceil = \left\lceil \frac{9}{4} \right\rceil = 3$.

• Case *C* = 3:

- If the request graph is 2-connected (i.e. bridgeless), by Petersen's Theorem (1891) it can be partitioned into a perfect matching + disjoint cycles ⇒ the graph can be partitioned into P₄'s ⇒ each vertex appears in 2 subgraphs.
- If not, consider the following request graph (next slide):

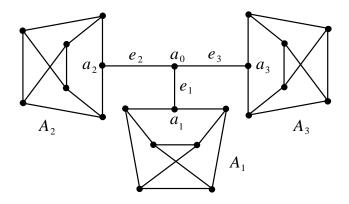
- Lower bound: $M(C,3) \ge \left\lceil \frac{C+1}{2} \frac{3}{2} \right\rceil$.
- Upper bound: $M(C,3) \leq 3$.
- Case C = 2: $M(2,3) \ge \left\lceil \frac{2+1}{2} \frac{3}{2} \right\rceil = \left\lceil \frac{9}{4} \right\rceil = 3$.

• Case *C* = 3:

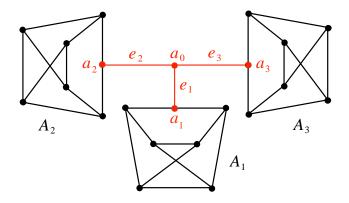
- If the request graph is 2-connected (i.e. bridgeless), by Petersen's Theorem (1891) it can be partitioned into a perfect matching + disjoint cycles ⇒ the graph can be partitioned into P₄'s ⇒ each vertex appears in 2 subgraphs.
- ▶ If **not**, consider the following request graph (*next slide*):

- Lower bound: $M(C,3) \ge \left\lceil \frac{C+1}{2} \frac{3}{2} \right\rceil$.
- Upper bound: $M(C,3) \leq 3$.
- Case C = 2: $M(2,3) \ge \left\lceil \frac{2+1}{2} \frac{3}{2} \right\rceil = \left\lceil \frac{9}{4} \right\rceil = 3$.
- Case *C* = 3:
 - If the request graph is 2-connected (i.e. bridgeless), by Petersen's Theorem (1891) it can be partitioned into a perfect matching + disjoint cycles ⇒ the graph can be partitioned into P₄'s ⇒ each vertex appears in 2 subgraphs.
 - If not, consider the following request graph (next slide):

- Lower bound: $M(C,3) \ge \left\lceil \frac{C+1}{2} \frac{3}{2} \right\rceil$.
- Upper bound: $M(C,3) \leq 3$.
- Case C = 2: $M(2,3) \ge \left\lceil \frac{2+1}{2} \frac{3}{2} \right\rceil = \left\lceil \frac{9}{4} \right\rceil = 3$.
- Case *C* = 3:
 - If the request graph is 2-connected (i.e. bridgeless), by Petersen's Theorem (1891) it can be partitioned into a perfect matching + disjoint cycles ⇒ the graph can be partitioned into P₄'s ⇒ each vertex appears in 2 subgraphs.
 - If not, consider the following request graph (next slide):



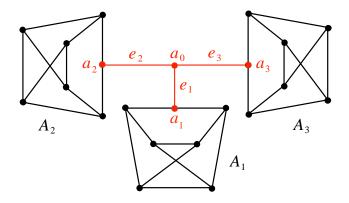
- Consider this cubic graph (which has girth 4).
- Suppose we can partition it into subgraphs with at most 3 edges in such a way that each vertex appears in at most 2 subgraphs.



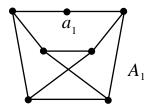
Consider the subgraphs containing *a*₀ (i.e. containing the edges *e*₁, *e*₂, *e*₃).

• At least one of them "ends" in one of the vertices a_1, a_2, a_3 .

Case $\Delta = 3$, C = 3

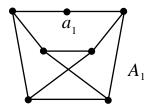


- Consider the subgraphs containing a₀ (i.e. containing the edges e₁, e₂, e₃).
- At least one of them "ends" in one of the vertices *a*₁, *a*₂, *a*₃.

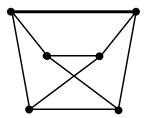


• Let w.l.o.g. a_1 be this vertex.

Now we have to partition this graph into subgraphs with at most 3 edges in such a way that each vertex except a₁ appears in at most 2 subgraphs and a₁ appears in exactly 1 subgraph.



- Let w.l.o.g. *a*₁ be this vertex.
- Now we have to partition this graph into subgraphs with at most 3 edges in such a way that each vertex except a₁ appears in at most 2 subgraphs and a₁ appears in exactly 1 subgraph.



 Equivalently, we have to partition this graph *H* into subgraphs with at most 3 edges, in such a way that the **thick edge appears in a subgraph with at most 2 edges**, and each vertex appears in at most 2 subgraphs.

 Let n₁ be the total number of vertices of degree 1 in all the subgraphs of the decomposition of *H*.

- Since each vertex of *H* can appear in at most 2 subgraphs and *H* is cubic, each vertex can appear with degree 1 in at most 1 subgraph. Thus, n₁ ≤ |V(H)| = 6.
- Since we have to use at least 1 subgraph with at most 2 edges and |E(H)| = 9, there are at least 1 + ∫⁹⁻²/₃ = 4 subgraphs in the decomposition of H.
- But each subgraph involved in the decomposition of *H* has at least 2 vertices of degree 1 (because *H* is triangle-free). Therefore, *n*₁ ≥ 8, a contradiction.

- Let n₁ be the total number of vertices of degree 1 in all the subgraphs of the decomposition of *H*.
- Since each vertex of *H* can appear in at most 2 subgraphs and *H* is cubic, each vertex can appear with degree 1 in at most 1 subgraph. Thus, n₁ ≤ |V(H)| = 6.
- Since we have to use at least 1 subgraph with at most 2 edges and |*E*(*H*)| = 9, there are at least 1 + ∫⁹⁻²/₃ = 4 subgraphs in the decomposition of *H*.
- But each subgraph involved in the decomposition of *H* has at least 2 vertices of degree 1 (because *H* is triangle-free). Therefore, $n_1 \ge 8$, a **contradiction**.

- Let n₁ be the total number of vertices of degree 1 in all the subgraphs of the decomposition of *H*.
- Since each vertex of *H* can appear in at most 2 subgraphs and *H* is cubic, each vertex can appear with degree 1 in at most 1 subgraph. Thus, n₁ ≤ |V(H)| = 6.
- Since we have to use at least 1 subgraph with at most 2 edges and |*E*(*H*)| = 9, there are at least 1 + ∫⁹⁻²/₃] = 4 subgraphs in the decomposition of *H*.
- But each subgraph involved in the decomposition of *H* has at least 2 vertices of degree 1 (because *H* is triangle-free). Therefore, $n_1 \ge 8$, a **contradiction**.

- Let n₁ be the total number of vertices of degree 1 in all the subgraphs of the decomposition of *H*.
- Since each vertex of *H* can appear in at most 2 subgraphs and *H* is cubic, each vertex can appear with degree 1 in at most 1 subgraph. Thus, n₁ ≤ |V(H)| = 6.
- Since we have to use at least 1 subgraph with at most 2 edges and |*E*(*H*)| = 9, there are at least 1 + ∫⁹⁻²/₃] = 4 subgraphs in the decomposition of *H*.
- But each subgraph involved in the decomposition of *H* has at least 2 vertices of degree 1 (because *H* is triangle-free). Therefore, n₁ ≥ 8, a contradiction.

Summary of results: values of $M(C, \Delta)$

$C \Delta$	1	2	3	4	5	6	7	8	9	 Δ even	Δ odd
1	1	2	3	4	5	6	7	8	9	 Δ	Δ
2	1	2	3	3	4	5	6	6	7	 $\begin{bmatrix} \underline{3\Delta} \\ 4 \end{bmatrix}$	$\left[\frac{3\Delta}{4}\right]$
3	1	2	3	3	4	4	5	6	≥ 6	 $\frac{2\Delta}{3}$	$\geq \frac{2\Delta}{3}$
4	1	2	2	3	4	4	5	5	6	 5 <u></u> 8	$\geq \frac{5\Delta}{8}$
5	1	2	2	3	≥ 3	4	5	5	6	 $\begin{bmatrix} \underline{3\Delta} \\ 5 \end{bmatrix}$	$\geq \frac{3\Delta}{5}$
6	1	2	2	3	≥ 3	4	5	5	6	 $\begin{bmatrix} \frac{7\Delta}{12} \end{bmatrix}$	$\geq \frac{7\Delta}{12}$
7	1	2	2	3	≥ 3	4	≥ 4	5	6	 $\frac{4\Delta}{7}$	$\geq \frac{4\Delta}{7}$
8	1	2	2	3	≥ 3	4	≥ 4	5	6	 9 <u></u> 16	$\geq \frac{9\Delta}{16}$
9	1	2	2	3	≥ 3	4	≥ 4	5	≥5	 $\begin{bmatrix} \underline{5\Delta} \\ 9 \end{bmatrix}$	$\geq \frac{5\Delta}{9}$
C	1	2	2	3	≥ 3	4	≥ 4	5	≥5	 $\left[\frac{C+1}{C}\frac{\Delta}{2}\right]$	$\geq \frac{C+1}{C} \frac{\Delta}{2}$

• Red cases remain open. [case M(4,3) = 2 also with Zhentao Li].

Summary of results: values of $M(C, \Delta)$

$C \Delta$	1	2	3	4	5	6	7	8	9	 Δ even	Δ odd
1	1	2	3	4	5	6	7	8	9	 Δ	Δ
2	1	2	3	3	4	5	6	6	7	 $\left[\frac{3\Delta}{4}\right]$	$\left[\frac{3\Delta}{4}\right]$
3	1	2	3	3	4	4	5	6	6	 $\left[\frac{2\Delta}{3}\right]$	$\left[\frac{2\Delta}{3}\right]$
4	1	2	2	3	4	4	5	5	6	 5 <u></u> 8	$\geq \frac{5\Delta}{8}$
5	1	2	2	3	3	4	5	5	6	 $\frac{3\Delta}{5}$	$\frac{3\Delta}{5}$
6	1	2	2	3	≥ 3	4	5	5	6	 $\begin{bmatrix} \frac{7\Delta}{12} \end{bmatrix}$	$\geq \frac{7\Delta}{12}$
7	1	2	2	3	3	4	4	5	6	 $\frac{4\Delta}{7}$	$\left[\frac{4\Delta}{7}\right]$
8	1	2	2	3	≥ 3	4	≥ 4	5	6	 9 <u></u> 16	$\geq \frac{9\Delta}{16}$
9	1	2	2	3	3	4	4	5	5	 $\left[\frac{5\Delta}{9}\right]$	$\left[\frac{5\Delta}{9}\right]$
										 •••	
С	1	2	2	3	3	4	4	5	5	 $\left[\frac{C+1}{C}\frac{\Delta}{2}\right]$	$\geq \frac{C+1}{C} \frac{\Delta}{2}$

• Red cases remain open.

• Blue cases only hold if the request graph has a perfect matching.

- We have introduced a new model for traffic grooming from a graph-theoretical point of view → graph partitioning.
- This formulation allows the network to support dynamic traffic without reconfiguring the electronic equipment at the nodes.
- We have determined the value of *M*(*C*, Δ) when Δ is even, and when Δ = 3 or *C* = 2.
- Also the case when both \triangle and *C* are odd, provided that the request graph has a perfect matching.
- Further Research:
 - Determine $M(C, \Delta)$ for $\Delta \geq 5$ odd!
 - Other classes of request graphs that make sense from the telecommunications point of view?
 - Complexity of "C-Edge-PartitionWidth".

- We have introduced a new model for traffic grooming from a graph-theoretical point of view → graph partitioning.
- This formulation allows the network to support dynamic traffic without reconfiguring the electronic equipment at the nodes.
- We have determined the value of *M*(*C*, Δ) when Δ is even, and when Δ = 3 or *C* = 2.
- Also the case when both \triangle and *C* are odd, provided that the request graph has a perfect matching.
- Further Research:
 - Determine $M(C, \Delta)$ for $\Delta \geq 5$ odd!
 - Other classes of request graphs that make sense from the telecommunications point of view?
 - ▶ Complexity of "C-Edge-PartitionWidth".

- We have introduced a new model for traffic grooming from a graph-theoretical point of view → graph partitioning.
- This formulation allows the network to support dynamic traffic without reconfiguring the electronic equipment at the nodes.
- We have determined the value of *M*(*C*, Δ) when Δ is even, and when Δ = 3 or *C* = 2.
- Also the case when both △ and *C* are odd, provided that the request graph has a perfect matching.
- Further Research:
 - Determine $M(C, \Delta)$ for $\Delta \ge 5$ odd!
 - Other classes of request graphs that make sense from the telecommunications point of view?
 - ► Complexity of "C-Edge-PartitionWidth".

- We have introduced a new model for traffic grooming from a graph-theoretical point of view → graph partitioning.
- This formulation allows the network to support dynamic traffic without reconfiguring the electronic equipment at the nodes.
- We have determined the value of *M*(*C*, Δ) when Δ is even, and when Δ = 3 or *C* = 2.
- Also the case when both △ and *C* are odd, provided that the request graph has a perfect matching.

• Further Research:

- Determine $M(C, \Delta)$ for $\Delta \geq 5$ odd!
- Other classes of request graphs that make sense from the telecommunications point of view?
- ► Complexity of "C-Edge-PartitionWidth".

- We have introduced a new model for traffic grooming from a graph-theoretical point of view → graph partitioning.
- This formulation allows the network to support dynamic traffic without reconfiguring the electronic equipment at the nodes.
- We have determined the value of *M*(*C*, Δ) when Δ is even, and when Δ = 3 or *C* = 2.
- Also the case when both △ and *C* are odd, provided that the request graph has a perfect matching.

• Further Research:

- Determine $M(C, \Delta)$ for $\Delta \geq 5$ odd!
- Other classes of request graphs that make sense from the telecommunications point of view?
- Complexity of "C-Edge-PartitionWidth".

- We have introduced a new model for traffic grooming from a graph-theoretical point of view → graph partitioning.
- This formulation allows the network to support dynamic traffic without reconfiguring the electronic equipment at the nodes.
- We have determined the value of *M*(*C*, Δ) when Δ is even, and when Δ = 3 or *C* = 2.
- Also the case when both △ and *C* are odd, provided that the request graph has a perfect matching.

• Further Research:

- Determine $M(C, \Delta)$ for $\Delta \geq 5$ odd!
- Other classes of request graphs that make sense from the telecommunications point of view?
- Complexity of "C-Edge-PartitionWidth".

Thanks!