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Traffic Grooming
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Introduction

WDM (Wavelength Division Multiplexing) networks
I 1 wavelength (or frequency) = up to 40 Gb/s
I 1 fiber = hundreds of wavelengths = Tb/s

Idea
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

−→ we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

Objectives
I Better use of bandwidth
I Reduce the equipment cost (mostly given by electronics)

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming WG 2008 4 / 28



Introduction

WDM (Wavelength Division Multiplexing) networks
I 1 wavelength (or frequency) = up to 40 Gb/s
I 1 fiber = hundreds of wavelengths = Tb/s

Idea
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

−→ we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

Objectives
I Better use of bandwidth
I Reduce the equipment cost (mostly given by electronics)

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming WG 2008 4 / 28



Introduction

WDM (Wavelength Division Multiplexing) networks
I 1 wavelength (or frequency) = up to 40 Gb/s
I 1 fiber = hundreds of wavelengths = Tb/s

Idea
Traffic grooming consists in packing low-speed traffic flows into
higher speed streams

−→ we allocate the same wavelength to several low-speed
requests (TDM, Time Division Multiplexing)

Objectives
I Better use of bandwidth
I Reduce the equipment cost (mostly given by electronics)

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming WG 2008 4 / 28



ADM and OADM

OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber
ADM (Add/Drop Multiplexer)= insert/extract an OC/STM
(electric low-speed signal) to/from a wavelength

ADM ADM ADM

OADMOADM OADM

−→ we want to minimize the number of ADMs
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Definitions
Request (i , j): a pair of vertices i , j that want to exchange
(low-speed) traffic
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Definitions
Request (i , j): a pair of vertices (i , j) that want to exchange
(low-speed) traffic
Grooming factor C:

For each wavelenght and each  
 arc between 2 nodes, there can be 

only C requests routed through this arc

C=5
node i node j

requests
in λk

Example:
Capacity of one wavelength = 2400 Mb/s
Capacity used by a request = 600 Mb/s ⇒ C = 4
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Definitions
Request (i , j): a pair of vertices (i , j) that want to exchange
(low-speed) traffic
Grooming factor C:

For each wavelenght and each  
 arc between 2 nodes, there can be 

only C requests routed through this arc

C=5
node i node j

requests
in λk

load of an arc in a wavelength: number of requests using this arc
in this wavelength (≤ C)
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ADM and OADM
OADM (Optical Add/Drop Multiplexer)= insert/extract a wavelength
to/from an optical fiber
ADM (Add/Drop Multiplexer)= insert/extract an OC/STM (electric
low-speed signal) to/from a wavelength

ADM ADM ADM

OADMOADM OADM

Idea: Use an ADM only at the endpoints of a request
(lightpaths) in order to save as many ADMs as possible
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To fix ideas...

Model:

Topology → graph G
Request set → graph R
Grooming factor → integer C
Requests in a wavelength → edges in a subgraph of R
ADM in a wavelength → node in a subgraph of R

We study the case when G =
−→
C n (unidirectional ring)

We assume that the requests are symmetric
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Unidirectional Ring with Symmetric Requests

Symmetric requests: whenever there is the request (i , j), there is
also the request (j , i).

(i,j)

(j,i)

i
j

i
j

W.l.o.g. the requests (i , j) and (j , i) can be in the same subgraph
→ each pair of symmetric requests induces load 1
→ grooming factor C ⇔ each subgraph has at most C edges.
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Statement of the ”old” problem

Traffic Grooming in Unidirectional Rings

Input A cycle Cn on n nodes (network);
An undirected graph R on n nodes (request set);
A grooming factor C.

Output A partition of E(R) into subgraphs
R1, . . . , RW with |E(Ri)| ≤ C, i=1. . . ,W.

Objective Minimize
∑W

ω=1 |V (Rω)|.
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Example: n = 4, R = K4, and C = 3

8 ADMs

7 ADMs

1 2

34

1 2

34

1 2

3

1 2

34

1 2

34

a

b
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New model
Non-exhaustive previous work (a lot!):

I Bermond, Coudert and Muñoz - ONDM 2003.
I Bermond and Coudert - ICC 2003.
I Bermond, Braud and Coudert - SIROCCO 2005.
I Bermond et al. - SIAM J. on Disc. Maths 2005.
I Flammini, Moscardelli, Shalom and Zaks - ISAAC 2005.
I Flammini, Monaco, Moscardelli, Shalom and Zaks - WG 2006.
I Amini, Pérennes and S. - ISAAC 2007.
I Bermond, Muñoz and S. - Manusc. 2008.
I Bermond, Colbourn, Gionfriddo, Quattrocchi and S.- Manusc. 2008.

In all of them: place ADMs at nodes for a fixed request graph.
→ placement of ADMs a posteriori.

New model: place the ADMs at nodes such that the network can
support any request graph with maximum degree at most ∆.
→ placement of ADMs a priori.
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Statement of the ”new” problem
Traffic Grooming in Unidirectional Rings
with Bounded-Degree Request Graph

Input An integer n (size of the ring);
An integer C (grooming factor);
An integer ∆ (maximum degree).

Output An assignment of A(v) ADMs to each node v ∈ V (Cn),
in such a way that for any graph R on n nodes
with maximum degree at most ∆, it exists
a partition of E(R) into subgraphs R1, . . . , RW s.t.:

(i) |E(Bi)| ≤ C for all i = 1, . . . , W ; and
(ii) each vertex v ∈ V (Cn) appears in ≤ A(v) subgraphs.

Objective Minimize
∑

v∈V (Cn) A(v),
and the optimum is denoted A(n, C, ∆).
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M(C, ∆)

Definition
Let M(C, ∆) be the least positive number M such that, for any n ≥ 1,
the inequality A(n, C, ∆) ≤ Mn holds.

Due to symmetry, it can be seen that A(v) is the same for all
nodes v , except for a subset whose size is independent of n.

M(C, ∆) is always an integer.

Equivalently:

M(C, ∆) is the least integer M such that
the edges of any graph with maximum degree at most ∆ can be
partitioned into subgraphs with at most C edges, in such a way
that each vertex appears in at most M subgraphs.

In the sequel we focus on determining M(C, ∆).
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More formally...
Let G∆ be the class of (simple undirected) graphs with maximum degree
at most ∆.

For G ∈ G∆, let PC(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

For P ∈ PC(G), let

occ(P) = max
v∈V (G)

|{B ∈ P : v ∈ B}|

And then,

M(C, ∆) = max
G∈G∆

(
min

P∈PC(G)
occ(P)

)
—————————————————————————
For a general graph G,

min
P∈PC (G)

occ(P) = min
P∈PC (G)

(
max

v∈V (G)
|{B ∈ P : v ∈ B}|

)
→ C-Edge-PartitionWidth of G...?

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming WG 2008 17 / 28



More formally...
Let G∆ be the class of (simple undirected) graphs with maximum degree
at most ∆.

For G ∈ G∆, let PC(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

For P ∈ PC(G), let

occ(P) = max
v∈V (G)

|{B ∈ P : v ∈ B}|

And then,

M(C, ∆) = max
G∈G∆

(
min

P∈PC(G)
occ(P)

)
—————————————————————————
For a general graph G,

min
P∈PC (G)

occ(P) = min
P∈PC (G)

(
max

v∈V (G)
|{B ∈ P : v ∈ B}|

)
→ C-Edge-PartitionWidth of G...?

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming WG 2008 17 / 28



More formally...
Let G∆ be the class of (simple undirected) graphs with maximum degree
at most ∆.

For G ∈ G∆, let PC(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

For P ∈ PC(G), let

occ(P) = max
v∈V (G)

|{B ∈ P : v ∈ B}|

And then,

M(C, ∆) = max
G∈G∆

(
min

P∈PC(G)
occ(P)

)
—————————————————————————
For a general graph G,

min
P∈PC (G)

occ(P) = min
P∈PC (G)

(
max

v∈V (G)
|{B ∈ P : v ∈ B}|

)
→ C-Edge-PartitionWidth of G...?

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming WG 2008 17 / 28



More formally...
Let G∆ be the class of (simple undirected) graphs with maximum degree
at most ∆.

For G ∈ G∆, let PC(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

For P ∈ PC(G), let

occ(P) = max
v∈V (G)

|{B ∈ P : v ∈ B}|

And then,

M(C, ∆) = max
G∈G∆

(
min

P∈PC(G)
occ(P)

)
—————————————————————————
For a general graph G,

min
P∈PC (G)

occ(P) = min
P∈PC (G)

(
max

v∈V (G)
|{B ∈ P : v ∈ B}|

)
→ C-Edge-PartitionWidth of G...?

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming WG 2008 17 / 28



More formally...
Let G∆ be the class of (simple undirected) graphs with maximum degree
at most ∆.

For G ∈ G∆, let PC(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

For P ∈ PC(G), let

occ(P) = max
v∈V (G)

|{B ∈ P : v ∈ B}|

And then,

M(C, ∆) = max
G∈G∆

(
min

P∈PC(G)
occ(P)

)
—————————————————————————
For a general graph G,

min
P∈PC (G)

occ(P) = min
P∈PC (G)

(
max

v∈V (G)
|{B ∈ P : v ∈ B}|

)
→ C-Edge-PartitionWidth of G...?

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming WG 2008 17 / 28



More formally...
Let G∆ be the class of (simple undirected) graphs with maximum degree
at most ∆.

For G ∈ G∆, let PC(G) be the set of partitions of E(G) into subgraphs
with at most C edges.

For P ∈ PC(G), let

occ(P) = max
v∈V (G)

|{B ∈ P : v ∈ B}|

And then,

M(C, ∆) = max
G∈G∆

(
min

P∈PC(G)
occ(P)

)
—————————————————————————
For a general graph G,

min
P∈PC (G)

occ(P) = min
P∈PC (G)

(
max

v∈V (G)
|{B ∈ P : v ∈ B}|

)
→ C-Edge-PartitionWidth of G...?

Ignasi Sau (UPC+INRIA/CNRS) Traffic Grooming WG 2008 17 / 28



Some properties of M(C, ∆)

W.l.o.g. we can assume that R has regular degree ∆.

C ≥ C′ ⇒ M(C, ∆) ≤ M(C′, ∆) for all ∆.
∆ ≥ ∆′ ⇒ M(C, ∆) ≥ M(C, ∆′) for all C.

Upper bound: M(C, ∆) ≤ M(1, ∆) = ∆.

Lower bound: M(C, ∆) ≥
⌈

C+1
C

∆
2

⌉
.

Cases according to ∆:

∆ = 1: M(C, 1) = 1 for all C (trivial).
∆ = 2: M(C, 2) = 2 for all C (not difficult).
∆ = 3: Cubic graphs. First ”interesting” case...
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Case ∆ = 3

Lower bound: M(C, 3) ≥
⌈

C+1
C

3
2

⌉
.

Upper bound: M(C, 3) ≤ 3.

Case C = 2: M(2, 3) ≥
⌈2+1

2
3
2

⌉
=
⌈9

4

⌉
= 3.

Case C = 3:

I If the request graph is 2-connected (i.e. bridgeless),
by Petersen’s Theorem (1891) it can be partitioned into a perfect
matching + disjoint cycles⇒ the graph can be partitioned into P4’s
⇒ each vertex appears in 2 subgraphs.

I If not, consider the following request graph (next slide):

A cubic graph that cannot be edge-partitioned into subgraphs with
at most 3 edges in such a way that each vertex appears in at most
2 subgraphs⇒ M(3, 3) = 3.
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Case ∆ = 3, C = 3

a

A

e

0

AA

a aa 2

1

1

1

ee

2

2
3

3

3

Consider this cubic graph (which has girth 4).
Suppose we can partition it into subgraphs with at most 3 edges in
such a way that each vertex appears in at most 2 subgraphs.
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Case ∆ = 3, C = 3

a

A

e

0

AA

a aa 2

1

1

1

ee

2

2
3

3

3

Consider the subgraphs containing a0 (i.e. containing the edges
e1, e2, e3).
At least one of them ”ends” in one of the vertices a1, a2, a3.
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Case ∆ = 3, C = 3

a

A1

1

Let w.l.o.g. a1 be this vertex.
Now we have to partition this graph into subgraphs with at most 3
edges in such a way that each vertex except a1 appears in at most
2 subgraphs and a1 appears in exactly 1 subgraph.
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Case ∆ = 3, C = 3

Equivalently, we have to partition this graph H into subgraphs with
at most 3 edges, in such a way that the thick edge appears in a
subgraph with at most 2 edges, and each vertex appears in at
most 2 subgraphs.
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Case ∆ = 3, C = 3

Let n1 be the total number of vertices of degree 1 in all the subgraphs of
the decomposition of H.
Since each vertex of H can appear in at most 2 subgraphs and H is
cubic, each vertex can appear with degree 1 in at most 1 subgraph.
Thus, n1 ≤ |V (H)| = 6.
Since we have to use at least 1 subgraph with at most 2 edges and
|E(H)| = 9, there are at least 1 +

⌈ 9−2
3

⌉
= 4 subgraphs in the

decomposition of H.

But each subgraph involved in the decomposition of H has at least 2
vertices of degree 1 (because H is triangle-free). Therefore, n1 ≥ 8, a
contradiction.
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Summary of results: values of M(C, ∆)

C|∆ 1 2 3 4 5 6 7 8 9 . . . ∆ even ∆ odd
1 1 2 3 4 5 6 7 8 9 . . . ∆ ∆

2 1 2 3 3 4 5 6 6 7 . . .
⌈

3∆
4

⌉ ⌈
3∆
4

⌉
3 1 2 3 3 4 4 5 6 ≥ 6 . . .

⌈
2∆
3

⌉
≥ 2∆

3

4 1 2 2 3 4 4 5 5 6 . . .
⌈

5∆
8

⌉
≥ 5∆

8

5 1 2 2 3 ≥ 3 4 5 5 6 . . .
⌈

3∆
5

⌉
≥ 3∆

5

6 1 2 2 3 ≥ 3 4 5 5 6 . . .
⌈

7∆
12

⌉
≥ 7∆

12

7 1 2 2 3 ≥ 3 4 ≥ 4 5 6 . . .
⌈

4∆
7

⌉
≥ 4∆

7

8 1 2 2 3 ≥ 3 4 ≥ 4 5 6 . . .
⌈

9∆
16

⌉
≥ 9∆

16

9 1 2 2 3 ≥ 3 4 ≥ 4 5 ≥ 5 . . .
⌈

5∆
9

⌉
≥ 5∆

9
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 1 2 2 3 ≥ 3 4 ≥ 4 5 ≥ 5 . . .
⌈

C+1
C

∆
2

⌉
≥ C+1

C
∆
2

Red cases remain open. [case M(4, 3) = 2 also with Zhentao Li].
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3∆
4

⌉
3 1 2 3 3 4 4 5 6 6 . . .

⌈
2∆
3

⌉ ⌈
2∆
3

⌉
4 1 2 2 3 4 4 5 5 6 . . .

⌈
5∆
8

⌉
≥ 5∆

8

5 1 2 2 3 3 4 5 5 6 . . .
⌈

3∆
5

⌉ ⌈
3∆
5

⌉
6 1 2 2 3 ≥ 3 4 5 5 6 . . .

⌈
7∆
12

⌉
≥ 7∆

12

7 1 2 2 3 3 4 4 5 6 . . .
⌈

4∆
7

⌉ ⌈
4∆
7

⌉
8 1 2 2 3 ≥ 3 4 ≥ 4 5 6 . . .

⌈
9∆
16

⌉
≥ 9∆

16

9 1 2 2 3 3 4 4 5 5 . . .
⌈

5∆
9

⌉ ⌈
5∆
9

⌉
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

C 1 2 2 3 3 4 4 5 5 . . .
⌈

C+1
C

∆
2

⌉
≥ C+1

C
∆
2

Red cases remain open.
Blue cases only hold if the request graph has a perfect matching.
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Conclusions and further research

We have introduced a new model for traffic grooming from a
graph-theoretical point of view→ graph partitioning.
This formulation allows the network to support dynamic traffic
without reconfiguring the electronic equipment at the nodes.

We have determined the value of M(C, ∆) when ∆ is even, and
when ∆ = 3 or C = 2.

Also the case when both ∆ and C are odd, provided that the
request graph has a perfect matching.

Further Research:
I Determine M(C, ∆) for ∆ ≥ 5 odd!
I Other classes of request graphs that make sense from the

telecommunications point of view?
I Complexity of ”C-Edge-PartitionWidth”.
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Thanks!
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