The number of labeled graphs of bounded treewidth

Julien Baste1 Marc Noy2 Ignasi Sau1

Séminaire COATI
Sophia Antipolis, May 18, 2016

1 CNRS, LIRMM, Université de Montpellier, Montpellier, France

2 Department of Mathematics of Universitat Politècnica de Catalunya and Barcelona Graduate School in Mathematics, Barcelona, Catalonia

[arXiv 1604.07273]
1. Introduction

2. The construction

3. Analysis

4. Further research
A \textit{k-tree} is a graph that can be built starting from a \((k + 1)\)-clique and then iteratively adding a vertex connected to a \(k\)-clique.

Example of a 2-tree:
k-trees and partial k-trees

Example of a 2-tree:

A k-tree is a graph that can be built starting from a $(k+1)$-clique and then iteratively adding a vertex connected to a k-clique.
A \textit{k-tree} is a graph that can be built starting from a \((k + 1)\)-clique and then iteratively adding a vertex connected to a \(k\)-clique.

Example of a 2-tree:
A *k-tree* is a graph that can be built starting from a \((k + 1)\)-clique and then iteratively adding a vertex connected to a \(k\)-clique.

Example of a 2-tree:
k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built starting from a $(k + 1)$-clique and then iteratively adding a vertex connected to a k-clique.
Example of a 2-tree: A k-tree is a graph that can be built starting from a $(k + 1)$-clique and then iteratively adding a vertex connected to a k-clique.
k-trees and partial k-trees

Example of a 2-tree:

A k-tree is a graph that can be built starting from a $(k + 1)$-clique and then iteratively adding a vertex connected to a k-clique.
A \textit{k-tree} is a graph that can be built starting from a \((k + 1)\)-clique and then iteratively adding a vertex connected to a \(k\)-clique.

Example of a 2-tree:
A k-tree is a graph that can be built starting from a $(k + 1)$-clique and then iteratively adding a vertex connected to a k-clique.

Example of a 2-tree:
A *k-tree* is a graph that can be built starting from a \((k + 1)\)-clique and then iteratively adding a vertex connected to a \(k\)-clique.

Example of a 2-tree:
k-trees and partial k-trees

A k-tree is a graph that can be built starting from a $(k + 1)$-clique and then iteratively adding a vertex connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

A graph has treewidth at most k if and only if it is a partial k-tree.
What is known about the number of (partial) k-trees?

Labeled k-trees

![Diagram of labeled k-trees]

The number of n-vertex labeled trees is n^{n-2}.

[Cayley. 1889]

The number of n-vertex labeled k-trees is $\left(\frac{n}{k}\right) \left(\frac{n}{k} - 1\right)^{n-k-2}$.

[Beineke, Pippert. 1969]

Labeled partial k-trees for $k=1$: The number of n-vertex labeled forests is $\sim c \cdot n^{n-2}$ for some constant $c > 1$.

[Takács. 1990]

$k=2$: The number of n-vertex labeled series-parallel graphs is $\sim g \cdot n^{n-5/2}$ for some constants $g, \gamma > 0$.

[Bohman, Giménez, Kang, Noy. 2005]

Nothing was known for general k.

\[\frac{4}{23} \]
What is known about the number of (partial) k-trees?

Labeled k-trees

- The number of n-vertex labeled trees is n^{n-2}.

[Cayley, 1889]
What is known about the number of (partial) k-trees?

Labeled k-trees

- The number of n-vertex labeled trees is n^{n-2}. \[\text{[Cayley. 1889]} \]
- The number of n-vertex labeled k-trees is $\binom{n}{k} (kn - k^2 + 1)^{n-k-2}$. \[\text{[Beineke, Pippert. 1969]} \]
What is known about the number of (partial) k-trees?

Labeled k-trees

- The number of n-vertex labeled trees is n^{n-2}. \[\text{[Cayley, 1889]}\]
- The number of n-vertex labeled k-trees is $\left(\begin{array}{c} n \\ k \end{array}\right) (kn - k^2 + 1)^{n-k-2}$. \[\text{[Beineke, Pippert, 1969]}\]

Labeled partial k-trees
What is known about the number of (partial) k-trees?

Labeled k-trees

- The number of n-vertex labeled trees is n^{n-2}.

 [Cayley, 1889]

- The number of n-vertex labeled k-trees is $\binom{n}{k}(kn - k^2 + 1)^{n-k-2}$.

 [Beineke, Pippert, 1969]

Labeled partial k-trees

- $k = 1$: The number of n-vertex labeled forests is $\sim c \cdot n^{n-2}$ for some constant $c > 1$.

 [Takács, 1990]
What is known about the number of (partial) k-trees?

Labeled k-trees

- The number of n-vertex labeled trees is n^{n-2}.
 [Cayley, 1889]
- The number of n-vertex labeled k-trees is $\binom{n}{k}(kn - k^2 + 1)^{n-k-2}$.
 [Beineke, Pippert, 1969]

Labeled partial k-trees

- $k = 1$: The number of n-vertex labeled forests is $\sim c \cdot n^{n-2}$ for some constant $c > 1$.
 [Takács, 1990]
- $k = 2$: The number of n-vertex labeled series-parallel graphs is $\sim g \cdot n^{-\frac{5}{2}} \gamma^n n!$ for some constants $g, \gamma > 0$.
 [Bodirsky, Giménez, Kang, Noy, 2005]
What is known about the number of (partial) k-trees?

Labeled k-trees

- The number of n-vertex labeled trees is n^{n-2}. [Cayley, 1889]
- The number of n-vertex labeled k-trees is $\binom{n}{k}(kn - k^2 + 1)^{n-k-2}$. [Beineke, Pippert, 1969]

Labeled partial k-trees

- $k = 1$: The number of n-vertex labeled forests is $\sim c \cdot n^{n-2}$ for some constant $c > 1$. [Takács, 1990]
- $k = 2$: The number of n-vertex labeled series-parallel graphs is $\sim g \cdot n^{-\frac{5}{2}} \gamma^n n!$ for some constants $g, \gamma > 0$. [Bodirsky, Giménez, Kang, Noy, 2005]
- Nothing was known for general k.

Let $T_{n,k}$ be the number of n-vertex labeled partial k-trees.

Objective We want to obtain accurate bounds for $T_{n,k}$.

As an n-vertex k-tree has $kn - k(k+1)/2$ edges, we get the upper bound:

$$T_{n,k} \leq \binom{n}{k} \cdot (kn - k^2 + 1) n - k - 2 \cdot 2^{kn - k(k+1)/2} \leq \binom{k}{2} \cdot 2^{k} \cdot n^{2} - k(k+1)/2 \cdot 2^{k} - k$$
$T_{n,k}$ and an easy upper bound

Let $T_{n,k}$ be the number of n-vertex labeled partial k-trees.

Objective We want to obtain accurate bounds for $T_{n,k}$.

As an n-vertex k-tree has $kn - \frac{k(k+1)}{2}$ edges, we get the upper bound:

$$T_{n,k} \leq \binom{n}{k} \cdot (kn - k^2 + 1)^{n-k-2} \cdot 2^{kn - \frac{k(k+1)}{2}}$$
Let $T_{n,k}$ be the number of n-vertex labeled partial k-trees.

Objective We want to obtain accurate bounds for $T_{n,k}$.

As an n-vertex k-tree has $kn - \frac{k(k+1)}{2}$ edges, we get the upper bound:

$$T_{n,k} \leq \binom{n}{k} \cdot (kn - k^2 + 1)^{n-k-2} \cdot 2^{kn - \frac{k(k+1)}{2}}$$

$$\leq (k \cdot 2^k \cdot n)^n \cdot 2^{-\frac{k(k+1)}{2}} \cdot k^{-k}$$
An easy lower bound

Take a forest on $n - (k - 1)$ vertices:

$(n - k + 1)^{n-k-1}$ possibilities
An easy lower bound

Take a forest on \(n - (k - 1) \) vertices:
\[
(n - k + 1)^{(n-k-1)}
\]
possibilities

Add a vertex arbitrarily connected to the forest:
\[
2^{n-(k-1)}
\]
possibilities
An easy lower bound

Take a forest on \(n - (k - 1) \) vertices:
\[(n - k + 1)^{(n-k-1)}\] possibilities

Add a vertex arbitrarily connected to the forest:
\[2^{n-(k-1)}\] possibilities
An easy lower bound

Add a vertex arbitrarily connected to the forest: \(2^{n-(k-1)}\) possibilities

Take a forest on \(n-(k-1)\) vertices: \((n-k+1)^{(n-k-1)}\) possibilities
An easy lower bound

Take a forest on $n - (k - 1)$ vertices:
$(n - k + 1)^{n-k-1}$ possibilities

Add $k - 1$ vertices connected to the forest:
$2^{(k-1)(n-(k-1))}$ possibilities
An easy lower bound

Take a forest on \(n - (k - 1) \) vertices:
\[
(n - k + 1)^{(n-k-1)} \text{ possibilities}
\]

Add \(k - 1 \) vertices connected to the forest:
\[
2^{(k-1)(n-(k-1))} \text{ possibilities}
\]

\[
T_{n,k} \geq (n - k + 1)^{(n-k-1)} \cdot 2^{(k-1)(n-k+1)}
\]
An easy lower bound

Take a forest on \(n - (k - 1) \) vertices:
\[(n - k + 1)^{(n-k-1)} \text{ possibilities}\]

Add \(k - 1 \) vertices connected to the forest:
\[2^{(k-1)(n-(k-1))} \text{ possibilities}\]

\[
T_{n,k} \geq (n - k + 1)^{(n-k-1)} \cdot 2^{(k-1)(n-k+1)} \geq \left(\frac{1}{4} \cdot 2^k \cdot n\right)^n \cdot 2^{-k^2}
\]
Our results

Summarizing, so far we have:

\[T_{n,k} \leq (k \cdot 2^k \cdot n)^n \cdot 2^{\frac{k(k+1)}{2}} \cdot k^{-k} \]

\[T_{n,k} \geq \left(\frac{1}{4} \cdot 2^k \cdot n\right)^n \cdot 2^{-k^2} \]
Summarizing, so far we have:

\[T_{n,k} \leq (k \cdot 2^k \cdot n)^n \cdot 2^{\frac{k(k+1)}{2}} \cdot k^{-k} \]

\[T_{n,k} \geq \left(\frac{1}{4} \cdot 2^k \cdot n\right)^n \cdot 2^{-k^2} \]

Gap in the dominant term: \((4 \cdot k)^n\)
Our results

Summarizing, so far we have:

\[T_{n,k} \leq (k \cdot 2^k \cdot n)^n \cdot 2^{-\frac{k(k+1)}{2}} \cdot k^{-k} \]

\[T_{n,k} \geq \left(\frac{1}{4} \cdot 2^k \cdot n \right)^n \cdot 2^{-k^2} \]

Gap in the dominant term: \((4 \cdot k)^n\)

Theorem (Baste, Noy, S.)

For any two integers \(n, k\) with \(1 < k \leq n\), the number \(T_{n,k}\) of \(n\)-vertex labeled graphs with treewidth at most \(k\) satisfies

\[T_{n,k} \geq \left(\frac{1}{128e} \cdot \frac{k \cdot 2^k \cdot n}{\log k} \right)^n \cdot 2^{-\frac{k(k+3)}{2}} \cdot k^{-2k-2}. \]
Our results

Summarizing, so far we have:

\[T_{n,k} \leq (k \cdot 2^k \cdot n)^n \cdot 2^{-\frac{k(k+1)}{2}} \cdot k^{-k} \]

\[T_{n,k} \geq \left(\frac{1}{4} \cdot 2^k \cdot n\right)^n \cdot 2^{-k^2} \]

Gap in the dominant term: \((4 \cdot k)^n\)

Theorem (Baste, Noy, S.)

For any two integers \(n, k\) with \(1 < k \leq n\), the number \(T_{n,k}\) of \(n\)-vertex labeled graphs with treewidth at most \(k\) satisfies

\[T_{n,k} \geq \left(\frac{1}{128e} \cdot \frac{k \cdot 2^k \cdot n}{\log k}\right)^n \cdot 2^{-\frac{k(k+3)}{2}} \cdot k^{-2k-2}. \]

Gap in the dominant term: \((128e \cdot \log k)^n\)
A construction to get a “good” lower bound

Trade-off

creating many graphs vs. bounding the number of duplicates
A construction to get a “good” lower bound

Trade-off creating many graphs vs. bounding the number of duplicates

Some ingredients of the construction:

1. Labeling function σ: permutation of $\{1, \ldots, n\}$ with $\sigma(1) = 1$.

2. We will introduce vertices $\{v_1, v_2, \ldots, v_n\}$ one by one following the order $v_{\sigma(1)}, v_{\sigma(2)}, \ldots, v_{\sigma(n)}$.

3. If $j < i$, the vertex $v_{\sigma(j)}$ is said to be to the left of $v_{\sigma(i)}$.
Another graph invariant: **proper-pathwidth**.

[Takahashi, Ueno, Kajitani. 1994]
Another graph invariant: proper-pathwidth.

Proper linear k-trees: graphs that can be constructed starting from a $(k + 1)$-clique and iteratively adding a vertex v_i connected to a clique K_{v_i} of size k (called the active vertices), with the constraints that

- $v_{i-1} \in K_{v_i}$.
- $K_{v_i} \setminus \{v_{i-1}\} \subseteq K_{v_{i-1}}$.
Proper-pathwidth

Another graph invariant: proper-pathwidth. \[\text{[Takahashi, Ueno, Kajitani. 1994]}\]

Proper linear k-trees: graphs that can be constructed starting from a $(k + 1)$-clique and iteratively adding a vertex v_i connected to a clique K_{v_i} of size k (called the active vertices), with the constraints that

- $v_{i-1} \in K_{v_i}$.
- $K_{v_i} \setminus \{v_{i-1}\} \subseteq K_{v_{i-1}}$.

Proper-pathwidth of a graph G, denoted $\text{ppw}(G)$: smallest k such that G is a subgraph of a proper linear k-tree.
Proper-pathwidth

Another graph invariant: **proper-pathwidth**.

[Takahashi, Ueno, Kajitani. 1994]

Proper linear \(k \)-trees: graphs that can be constructed starting from a \((k + 1)\)-clique and iteratively adding a vertex \(v_i \) connected to a clique \(K_{v_i} \) of size \(k \) (called the **active vertices**), with the constraints that

- \(v_{i-1} \in K_{v_i} \).
- \(K_{v_i} \setminus \{v_{i-1}\} \subseteq K_{v_{i-1}} \).

Proper-pathwidth of a graph \(G \), denoted \(\text{ppw}(G) \): smallest \(k \) such that \(G \) is a subgraph of a proper linear \(k \)-tree.

For any graph \(G \) it holds that

\[
\text{tw}(G) \leq \text{pw}(G) \leq \text{ppw}(G)
\]
Proper-pathwidth

Another graph invariant: proper-pathwidth. [Takahashi, Ueno, Kajitani. 1994]

Proper linear k-trees: graphs that can be constructed starting from a $(k + 1)$-clique and iteratively adding a vertex v_i connected to a clique K_{v_i} of size k (called the active vertices), with the constraints that

- $v_{i-1} \in K_{v_i}$.
- $K_{v_i} \setminus \{v_{i-1}\} \subseteq K_{v_{i-1}}$.

Proper-pathwidth of a graph G, denoted $\text{ppw}(G)$: smallest k such that G is a subgraph of a proper linear k-tree.

For any graph G it holds that

$$\text{tw}(G) \leq \text{pw}(G) \leq \text{ppw}(G)$$

The graphs G we will construct satisfy $\text{tw}(G) \leq \text{pw}(G) \leq \text{ppw}(G) \leq k$.
Ingredients of the construction

For every $i \geq k + 1$ we define:

1. A set $A_i \subseteq \{j \mid j < i\}$ with $|A_i| = k$ of active vertices (as in the definition of proper linear k-trees).
Ingredients of the construction

For every $i \geq k + 1$ we define:

1. A set $A_i \subseteq \{j \mid j < i\}$ with $|A_i| = k$ of active vertices (as in the definition of proper linear k-trees).

2. A set $N(i) \subseteq A_i$ with $|N(i)| > \frac{k+1}{2}$: neighbors of $v_{\sigma(i)}$ to the left.
Ingredients of the construction

For every \(i \geq k + 1 \) we define:

1. A set \(A_i \subseteq \{j \mid j < i\} \) with \(|A_i| = k \) of active vertices (as in the definition of proper linear \(k \)-trees).

2. A set \(N(i) \subseteq A_i \) with \(|N(i)| > k + 1 \): neighbors of \(v_{\sigma(i)} \) to the left.

3. An element \(f(i) \in A_i \cap N(i - 1) \), called the frozen vertex: a vertex that will not be active anymore.
Ingredients of the construction

For every $i \geq k + 1$ we define:

1. A set $A_i \subseteq \{j \mid j < i\}$ with $|A_i| = k$ of active vertices (as in the definition of proper linear k-trees).

2. A set $N(i) \subseteq A_i$ with $|N(i)| > \frac{k+1}{2}$: neighbors of $v_{\sigma(i)}$ to the left.

3. An element $f(i) \in A_i \cap N(i - 1)$, called the frozen vertex: a vertex that will not be active anymore.

4. We insert the vertices by consecutive blocks of size $s = s(n, k)$. We will fix the value of s later.
Ingredients of the construction

For every $i \geq k + 1$ we define:

1. A set $A_i \subseteq \{j \mid j < i\}$ with $|A_i| = k$ of active vertices (as in the definition of proper linear k-trees).

2. A set $N(i) \subseteq A_i$ with $|N(i)| > \frac{k+1}{2}$: neighbors of $v_{\sigma(i)}$ to the left.

3. An element $f(i) \in A_i \cap N(i - 1)$, called the frozen vertex: a vertex that will not be active anymore.

4. We insert the vertices by consecutive blocks of size $s = s(n, k)$. We will fix the value of s later.

5. A vertex $a_i \in A_i$, called the anchor: all vertices of the same block are adjacent to the same anchor a_i.

\[
\begin{array}{cccccc}
\bullet & \bullet & \bullet & \ldots & \bullet & \bullet \\
\bullet & \bullet & \bullet & \ldots & \bullet & \bullet \\
\bullet & \bullet & \bullet & \ldots & \bullet & \bullet \\
\bullet & \bullet & \bullet & \ldots & \bullet & \bullet \\
\bullet & \bullet & \bullet & \ldots & \bullet & \bullet \\
\end{array}
\]

\[k + 1 \quad S \quad S \quad S \quad S\]
1. Choose σ, a permutation of $\{1, \ldots, n\}$ such that $\sigma(1) = 1$.

2. Choose the first $(k + 1)$-clique, with $1 \in N(i)$ for $2 \leq i \leq k + 1$.

3. Define $a_{k+1} = 1$.
If $i \equiv k + 2 \pmod{s}$ (that is, at the beginning of a block):

- Define $f(i) = a_{i-1}$.
- Define $A_i = (A_{i-1} \setminus \{f(i)\}) \cup \{i - 1\}$.
- Define $a_i = \min A_i$.
- Choose $N(i) \subseteq A_i$ such that $a_i \in N(i)$ and $|N(i)| > \frac{k+1}{2}$.
If $i \not\equiv k + 2 \pmod{s}$ (that is, at the middle of a block):

- Choose $f(i) \in (A_{i-1} \setminus \{a_{i-1}\}) \cap N(i-1)$.
- Define $A_i = (A_{i-1} \setminus \{f(i)\}) \cup \{i-1\}$.
- Define $a_i = a_{i-1}$.
- Choose $N(i) \subseteq A_i$ such that $a_i \in N(i)$ and $|N(i)| > \frac{k+1}{2}$.

\[
\begin{align*}
|V\sigma(i_1)| & \\
|V\sigma(i_2)| & \\
|V\sigma(i_3)| & \\
|V\sigma(i_4)| & \\
|V\sigma(i_5)| & \\
A_{i-1} & \\
\text{block of } s \text{ vertices} & \\
V\sigma(i) & \\
\end{align*}
\]
Active vertices
Example of the construction (by Julien Baste)

Active vertices
Active vertices
Example of the construction

(by Julien Baste)

Active vertices

\[S \]
Example of the construction

(by Julien Baste)

Active vertices

\[S \]
Active vertices

Example of the construction
(by Julien Baste)
Example of the construction
(by Julien Baste)

Active vertices

\[S \]
Active vertices

S
Active vertices
Active vertices
Active vertices
Active vertices
Active vertices

Example of the construction (by Julien Baste)
Example of the construction

(by Julien Baste)

Active vertices
Active vertices

\(S \)
Active vertices

Example of the construction (by Julien Baste)
Active vertices

Example of the construction
(by Julien Baste)
Example of the construction
(by Julien Baste)

Active vertices
1 Introduction

2 The construction

3 Analysis

4 Further research
Analysis of the construction

First note that the graphs G we construct indeed satisfy $\text{ppw}(G) \leq k$.

How many graphs are created by the construction?

The choices in the construction are the following:

Choices for the permutation σ:
$$(n-1)!$$

Choices for the neighbourhoods $N(i)$:
$$2^k(k-1)2^{n-(k+1)} \cdot 2^k(k-2)$$

Choices for the frozen vertices $f(i)$:
$$2^{(k-1)2^{n-(k+1)} - \lceil n-(k+1) \rceil}}$$

That is, we create $$(n-1)! \cdot 2^{(k-1)2^{n-(k+1)} - \lceil n-(k+1) \rceil}} \cdot 2^k(k-1)2^{n-(k+1)} \cdot 2^k(k-2)$$ graphs.
Analysis of the construction

- How many **graphs are created** by the construction?
- How many times the **same graph** may have been created?
Analysis of the construction

- How many graphs are created by the construction?
Analysis of the construction

- How many graphs are created by the construction?

The choices in the construction are the following:

- Choices for the permutation σ: $(n - 1)!$
Analysis of the construction

How many graphs are created by the construction?

The choices in the construction are the following:

- Choices for the permutation σ: $(n - 1)!$
- Choices for the neighborhoods $N(i)$: $2^{\frac{k(k-1)}{2}} \cdot 2^{n-(k+1)} \cdot 2^{k-2}$
Analysis of the construction

- How many graphs are created by the construction?

The choices in the construction are the following:

- Choices for the permutation σ: $(n - 1)!$
- Choices for the neighborhoods $N(i)$: $2^{\frac{k(k-1)}{2}} \cdot 2(n-(k+1)) \cdot 2^{k-2}$
- Choices for the frozen vertices $f(i)$: $\left(\frac{k-1}{2}\right)^{(n-(k+1)-\left\lfloor\frac{n-(k+1)}{s}\right\rfloor)}$
Analysis of the construction

- How many graphs are created by the construction?

The choices in the construction are the following:

- Choices for the permutation σ: $(n - 1)!$

- Choices for the neighborhoods $N(i)$: $2^{\frac{k(k-1)}{2}} \cdot 2(n-(k+1)) \cdot 2^{k-2}$

- Choices for the frozen vertices $f(i)$: $\left(\frac{k-1}{2}\right)^{(n-(k+1)-\left\lfloor \frac{n-(k+1)}{s} \right\rfloor)}$

That is, we create

$$(n - 1)! \cdot \left(\frac{k - 1}{2}\right)^{(n-(k+1)-\left\lfloor \frac{n-(k+1)}{s} \right\rfloor)} \cdot 2^{\frac{k(k-1)}{2}} \cdot 2^{(n-(k+1))(k-2)}$$

graphs.
How many times the same graph may have been created?

Note that a triple \((\sigma, N, f)\) uniquely defines a graph \(H = G(\sigma, N, f)\).
How many times the same graph may have been created?

Note that a triple \((\sigma, N, f)\) uniquely defines a graph \(H = G(\sigma, N, f)\).

So given an arbitrary constructible graph \(H\), we want to bound the number of triples \((\sigma, N, f)\) such that \(H = G(\sigma, N, f)\).
How many times the same graph may have been created?

Note that a triple \((\sigma, N, f)\) uniquely defines a graph \(H = G(\sigma, N, f)\).

So given an arbitrary constructible graph \(H\), we want to bound the number of triples \((\sigma, N, f)\) such that \(H = G(\sigma, N, f)\).

First we reconstruct the permutation \(\sigma\):

- \(\sigma(1) = 1\) and \(f(k + 2) = 1\):
How many times the same graph may have been created?

Note that a triple \((\sigma, N, f)\) uniquely defines a graph \(H = G(\sigma, N, f)\).

So given an arbitrary constructible graph \(H\), we want to bound the number of triples \((\sigma, N, f)\) such that \(H = G(\sigma, N, f)\).

First we reconstruct the permutation \(\sigma\):

- \(\sigma(1) = 1\) and \(f(k + 2) = 1\): images by \(\sigma\) of \(\{2, \ldots, k + 1\}\) uniquely determined: \(k!\) possibilities for ordering the first \(k + 1\) vertices.
How many times the same graph may have been created?

Note that a triple \((\sigma, N, f)\) uniquely defines a graph \(H = G(\sigma, N, f)\).

So given an arbitrary constructible graph \(H\), we want to bound the number of triples \((\sigma, N, f)\) such that \(H = G(\sigma, N, f)\).

First we reconstruct the permutation \(\sigma\):

- \(\sigma(1) = 1\) and \(f(k + 2) = 1\): images by \(\sigma\) of \(\{2, \ldots, k + 1\}\) uniquely determined: \(k!\) possibilities for ordering the first \(k + 1\) vertices.
How many times the same graph may have been created?

Note that a triple \((\sigma, N, f)\) uniquely defines a graph \(H = G(\sigma, N, f)\).

So given an arbitrary constructible graph \(H\), we want to bound the number of triples \((\sigma, N, f)\) such that \(H = G(\sigma, N, f)\).

First we reconstruct the permutation \(\sigma\):

- \(\sigma(1) = 1\) and \(f(k+2) = 1\): images by \(\sigma\) of \(\{2, \ldots, k+1\}\) uniquely determined: \(k!\) possibilities for ordering the first \(k+1\) vertices.
How many times the same graph may have been created?

So the number of possible permutations σ that give rise to H is at most

$$k! \cdot (s!)^\left\lceil \frac{n-(k+1)}{s} \right\rceil$$
How many times the same graph may have been created?

So the number of possible permutations σ that give rise to H is at most

$$k! \cdot (s!)^\left\lceil \frac{n-(k+1)}{s} \right\rceil$$

Secondly, we reconstruct the neighborhood $N(i)$:
How many times the same graph may have been created?

So the number of possible permutations σ that give rise to H is at most

$$k! \cdot (s!)^{\left\lceil \frac{n-(k+1)}{s} \right\rceil}$$

Secondly, we reconstruct the neighborhood $N(i)$:

uniquely determined once σ is fixed.
Reconstruction of the frozen vertex $f(i)$

We define, for $i > 1$, D_i as the set of neighbors of i that will never have any neighbor among the non-introduced vertices. $f(i) \in D_i - 1$. $|D_i| \geq 1$ and $D_i \cap D_j = \emptyset$ for $i \neq j$.

$\sum_{n_i = k + 1}^{n} |D_i| \leq n$.

Let $I = \{i \in \{k + 1, \ldots, n\} || |D_i| \geq 2\}$, and note that $|I| \leq k$.

It holds that $\sum_{i \in I} |D_i| \leq 2k$.

The number of distinct functions f is at most $n \prod_{i = k + 1}^{n} |D_i| = \prod_{i \in I} |D_i| \leq (\sum_{i \in I} |D_i|)^k \leq (2k)^k = 2k^k$.

So, the number of triples (σ, N, f) such that $H = G(\sigma, N, f)$ is at most $2k \cdot k! \cdot (s!) \lceil n - (k + 1)s \rceil$. \[18/23\]
Reconstruction of the frozen vertex $f(i)$

We define, for $i > 1$, D_i as the set of neighbors of i that will never have any neighbor among the non-introduced vertices.
Reconstruction of the frozen vertex $f(i)$

We define, for $i > 1$, D_i as the set of neighbors of i that will never have any neighbor among the non-introduced vertices.

- $f(i) \in D_{i-1}$.
- $|D_i| \geq 1$ and $D_i \cap D_j = \emptyset$ for $i \neq j$.
- $\sum_{i=k+1}^{n} |D_i| \leq n$.

Let $I = \{i \in \{k+1, \ldots, n\} \mid |D_i| \geq 2\}$, and note that $|I| \leq k$.

It holds that $\sum_{i \in I} |D_i| \leq 2k$.

The number of distinct functions f is at most $n \prod_{i=k+1}^{n} |D_i| = \prod_{i \in I} |D_i| \leq (\sum_{i \in I} |D_i|)^k \leq (2k)^k = 2k^k$.

So, the number of triples (σ, N, f) such that $H = G(\sigma, N, f)$ is at most $2k \cdot k! \cdot (s)! \lceil n - (k+1)s \rceil$.
Reconstruction of the frozen vertex $f(i)$

We define, for $i > 1$, D_i as the set of neighbors of i that will never have any neighbor among the non-introduced vertices.

- $f(i) \in D_{i-1}$.
- $|D_i| \geq 1$ and $D_i \cap D_j = \emptyset$ for $i \neq j$.
- $\sum_{i=k+1}^{n} |D_i| \leq n$.
- Let $I = \{ i \in \{k+1, \ldots, n\} | |D_i| \geq 2 \}$, and note that $|I| \leq k$.
- It holds that $\sum_{i \in I} |D_i| \leq 2k$.

So, the number of distinct functions f is at most $n \prod_{i=k+1}^{n} |D_i| = \prod_{i \in I} |D_i| \leq (\sum_{i \in I} |D_i|)^{k} \leq (2k)^{k} = 2^{k}k^{k}$.

So, the number of triples (σ, N, f) such that $H = G(\sigma, N, f)$ is at most $2^{k} \cdot k! \cdot (s!)^\lceil n - (k+1)s \rceil$.

18/23
Reconstruction of the frozen vertex $f(i)$

We define, for $i > 1$, D_i as the set of neighbors of i that will never have any neighbor among the non-introduced vertices.

- $f(i) \in D_{i-1}$.
- $|D_i| \geq 1$ and $D_i \cap D_j = \emptyset$ for $i \neq j$.
- $\sum_{i=k+1}^{n} |D_i| \leq n$.
- Let $I = \{i \in \{k+1, \ldots, n\} | |D_i| \geq 2\}$, and note that $|I| \leq k$.
- It holds that $\sum_{i \in I} |D_i| \leq 2k$.

The number of distinct functions f is at most

$$\prod_{i=k+1}^{n} |D_i|$$
Reconstruction of the frozen vertex \(f(i) \)

We define, for \(i > 1 \), \(D_i \) as the set of neighbors of \(i \) that will never have any neighbor among the non-introduced vertices.

- \(f(i) \in D_{i-1} \).
- \(|D_i| \geq 1 \) and \(D_i \cap D_j = \emptyset \) for \(i \neq j \).
- \(\sum_{i=k+1}^{n} |D_i| \leq n \).
- Let \(I = \{i \in \{k+1, \ldots, n\} \mid |D_i| \geq 2\} \), and note that \(|I| \leq k \).
- It holds that \(\sum_{i \in I} |D_i| \leq 2k \).

The number of distinct functions \(f \) is at most

\[
\prod_{i=k+1}^{n} |D_i| = \prod_{i \in I} |D_i|
\]
Reconstruction of the frozen vertex $f(i)$

We define, for $i > 1$, D_i as the set of neighbors of i that will never have any neighbor among the non-introduced vertices.

- $f(i) \in D_{i-1}$.
- $|D_i| \geq 1$ and $D_i \cap D_j = \emptyset$ for $i \neq j$.
- $\sum_{i=k+1}^{n} |D_i| \leq n$.
- Let $I = \{ i \in \{k+1, \ldots, n\} \mid |D_i| \geq 2 \}$, and note that $|I| \leq k$.
- It holds that $\sum_{i \in I} |D_i| \leq 2k$.

The number of distinct functions f is at most

$$\prod_{i=k+1}^{n} |D_i| = \prod_{i \in I} |D_i| \leq \left(\frac{\sum_{i \in I} |D_i|}{k} \right)^k \leq$$
Reconstruction of the frozen vertex \(f(i) \)

We define, for \(i > 1 \), \(D_i \) as the set of neighbors of \(i \) that will never have any neighbor among the non-introduced vertices.

- \(f(i) \in D_{i-1} \).
- \(|D_i| \geq 1 \) and \(D_i \cap D_j = \emptyset \) for \(i \neq j \).
- \(\sum_{i=k+1}^{n} |D_i| \leq n \).
- Let \(I = \{ i \in \{k + 1, \ldots, n\} \mid |D_i| \geq 2 \} \), and note that \(|I| \leq k \).
- It holds that \(\sum_{i \in I} |D_i| \leq 2k \).

The number of distinct functions \(f \) is at most

\[
\prod_{i=k+1}^{n} |D_i| = \prod_{i \in I} |D_i| \leq \left(\frac{\sum_{i \in I} |D_i|}{k} \right)^k \leq \left(\frac{2k}{k} \right)^k = 2^k.
\]
Reconstruction of the frozen vertex $f(i)$

We define, for $i > 1$, D_i as the set of neighbors of i that will never have any neighbor among the non-introduced vertices.

- $f(i) \in D_{i-1}$.
- $|D_i| \geq 1$ and $D_i \cap D_j = \emptyset$ for $i \neq j$.
- $\sum_{i=k+1}^{n} |D_i| \leq n$.
- Let $I = \{i \in \{k+1, \ldots, n\} \mid |D_i| \geq 2\}$, and note that $|I| \leq k$.
- It holds that $\sum_{i \in I} |D_i| \leq 2k$.

The number of distinct functions f is at most

$$\prod_{i=k+1}^{n} |D_i| = \prod_{i \in I} |D_i| \leq \left(\frac{\sum_{i \in I} |D_i|}{k}\right)^{k} \leq \left(\frac{2k}{k}\right)^{k} = 2^{k}.$$

So, the number of triples (σ, N, f) such that $H = G(\sigma, N, f)$ is at most

$$2^{k} \cdot k! \cdot (s!)^{\lceil \frac{n-(k+1)}{s} \rceil}$$
The number of distinct graphs we have created is at least

\[
\frac{\text{number of created graphs}}{\text{number of duplicates}} \geq \frac{(n-1)!}{(k-1)^2 n - (k+1)^2 - \left\lceil n - (k+1) \right\rceil \cdot 2^k \cdot k \cdot (s!) \cdot \left\lfloor n - (k+1) \right\rfloor \cdot \left(n - (k+1) - s \left\lfloor n - (k+1) \right\rfloor \right)^{k-2} \cdot k!}}.
\]
Analysis of the construction

The number of distinct graphs we have created is at least

\[
\frac{\text{number of created graphs}}{\text{number of duplicates}} \geq (n - 1)! \cdot (\frac{k-1}{2})^{n-(k+1)} - \left\lfloor \frac{n-(k+1)}{s} \right\rfloor \cdot 2^{\frac{k(k-1)}{2}} \cdot 2^{(n-(k+1))(k-2)} \cdot 2^k \cdot k! \cdot (s!)^{\left\lfloor \frac{n-(k+1)}{s} \right\rfloor} \cdot (n - (k + 1) - s\left\lfloor \frac{n-(k+1)}{s} \right\rfloor)!.
\]
The number of distinct graphs we have created is at least

\[
\frac{\text{number of created graphs}}{\text{number of duplicates}} \geq \frac{(n - 1)! \cdot \left(\frac{k-1}{2}\right)^{n-(k+1)-\left\lfloor\frac{n-(k+1)}{s}\right\rfloor} \cdot 2^{\frac{k(k-1)}{2}} \cdot 2(n-(k+1))(k-2)}{2^k \cdot k! \cdot (s!)^{\left\lfloor\frac{n-(k+1)}{s}\right\rfloor} \cdot (n - (k + 1) - s\left\lfloor\frac{n-(k+1)}{s}\right\rfloor)!}.
\]

\[
\geq \ldots \geq \left(\frac{1}{64e} \cdot \frac{k \cdot 2^{k} \cdot n}{k^s \cdot s}\right)^n \cdot 2^{-\frac{k(k+3)}{2}} \cdot k^{-2k-2}.
\]
Choice of the block size s

We want the value of $s = s(n, k)$ that minimizes $k^{\frac{1}{s}} \cdot s$.

And the minimum of $1 + \log t(n, k) + \log \log k$ is reached for $t(n, k) = 1$.

So $s(n, k) = \log k$ is the best choice for the block size.
Choice of the block size s

We want the value of $s = s(n, k)$ that minimizes $k^{\frac{1}{s}} \cdot s$.

With $t(n, k) := \frac{s(n, k)}{\log k}$, we have
Choice of the block size s

We want the value of $s = s(n, k)$ that minimizes $k^{\frac{1}{s}} \cdot s$.

With $t(n, k) := \frac{s(n,k)}{\log k}$, we have

$$\log \left(k^{\frac{1}{s}} \cdot s \right) = \frac{\log k}{s} + \log s$$

$$= \frac{1}{t} + \log t + \log \log k.$$
Choice of the block size s

We want the value of $s = s(n, k)$ that minimizes $k^{\frac{1}{s}} \cdot s$.

With $t(n, k) := \frac{s(n, k)}{\log k}$, we have

$$\log \left(k^{\frac{1}{s}} \cdot s \right) = \frac{\log k}{s} + \log s$$

$$= \frac{1}{t} + \log t + \log \log k.$$

And the minimum of $\frac{1}{t(n, k)} + \log t(n, k)$ is reached for $t(n, k) = 1$.
Choice of the block size s

We want the value of $s = s(n, k)$ that minimizes $k^{\frac{1}{s}} \cdot s$.

With $t(n, k) := \frac{s(n, k)}{\log k}$, we have

$$\log \left(k^{\frac{1}{s}} \cdot s \right) = \frac{\log k}{s} + \log s$$

$$= \frac{1}{t} + \log t + \log \log k.$$

And the minimum of $\frac{1}{t(n, k)} + \log t(n, k)$ is reached for $t(n, k) = 1$.

So $s(n, k) = \log k$ is the best choice for the block size.
Next section is...

1. Introduction

2. The construction

3. Analysis

4. Further research
Further research

\[T_{n,k} \leq (k \cdot 2^k \cdot n)^n \cdot 2^{-\frac{k(k+1)}{2}} \cdot k^{-k}. \]

\[T_{n,k} \geq \left(\frac{1}{128e} \cdot \frac{k \cdot 2^k \cdot n}{\log k} \right)^n \cdot 2^{-\frac{k(k+3)}{2}} \cdot k^{-2k-2}. \]
Further research

\[T_{n,k} \leq (k \cdot 2^k \cdot n)^n \cdot 2^{-\frac{k(k+1)}{2}} \cdot k^{-k}. \]

\[T_{n,k} \geq \left(\frac{1}{128e} \cdot \frac{k \cdot 2^k \cdot n}{\log k} \right)^n \cdot 2^{-\frac{k(k+3)}{2}} \cdot k^{-2k-2}. \]

- We believe that there exist an absolute constant \(c > 0 \) and a function \(f(k) \), with \(k^{-2k-2} \leq f(k) \leq k^{-k} \) for every \(k > 0 \), such that

\[T_{n,k} \geq (c \cdot k \cdot 2^k \cdot n)^n \cdot 2^{-\frac{k(k+1)}{2}} \cdot f(k). \]
Further research

\[T_{n,k} \leq (k \cdot 2^k \cdot n)^n \cdot 2^{-\frac{k(k+1)}{2}} \cdot k^{-k}. \]

\[T_{n,k} \geq \left(\frac{1}{128e} \cdot \frac{k \cdot 2^k \cdot n}{\log k} \right)^n \cdot 2^{-\frac{k(k+3)}{2}} \cdot k^{-2k-2}. \]

- We believe that there exist an absolute constant \(c > 0 \) and a function \(f(k) \), with \(k^{-2k-2} \leq f(k) \leq k^{-k} \) for every \(k > 0 \), such that

\[T_{n,k} \geq (c \cdot k \cdot 2^k \cdot n)^n \cdot 2^{-\frac{k(k+1)}{2}} \cdot f(k). \]

- Improve the upper bound for pathwidth or proper-pathwidth?
Further research

\[T_{n,k} \leq (k \cdot 2^k \cdot n)^n \cdot 2^{- \frac{k(k+1)}{2}} \cdot k^{-k}. \]

\[T_{n,k} \geq \left(\frac{1}{128e} \cdot \frac{k \cdot 2^k \cdot n}{\log k} \right)^n \cdot 2^{- \frac{k(k+3)}{2}} \cdot k^{-2k-2}. \]

- We believe that there exist an absolute constant \(c > 0 \) and a function \(f(k) \), with \(k^{-2k-2} \leq f(k) \leq k^{-k} \) for every \(k > 0 \), such that

\[T_{n,k} \geq (c \cdot k \cdot 2^k \cdot n)^n \cdot 2^{- \frac{k(k+1)}{2}} \cdot f(k). \]

- Improve the upper bound for pathwidth or proper-pathwidth?

- Other relevant parameters: branchwidth, cliquewidth, rankwidth, tree-cutwidth, booleanwidth, ...
Gràcies!