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Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex
connected to a k-clique.

AN

3/23



k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex
connected to a k-clique.

AN

3/23



k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex
connected to a k-clique.

3/23



k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex
connected to a k-clique.

N

3/23



k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex
connected to a k-clique.

N

3/23



k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex
connected to a k-clique.

%

3/23



k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex

/T connected to a k-clique.

N

3/23



k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex

/. connected to a k-clique.
oQ—0 °
N

3/23



k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex

/‘ connected to a k-clique.

3/23



k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex

/. connected to a k-clique.

N
%

3/23



k-trees and partial k-trees

Example of a 2-tree: A k-tree is a graph that can be built
starting from a (k + 1)-clique
and then iteratively adding a vertex

/. connected to a k-clique.

‘\‘/‘ A partial k-tree is a subgraph of a k-tree.
7
o

A graph has treewidth at most k
if and only if it is a partial k-tree.
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constant ¢ > 1. [Takacs. 1990]

@ k = 2: The number of n-vertex labeled series-parallel graphs is
5
~ -n 2 "n! fOI’ some constants > 0 [Bodirsky, Giménez, Kang, Noy. 2005]
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@ Nothing was known for general k.
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Let T, be the number of n-vertex labeled partial k-trees.

Objective | We want to obtain accurate bounds for T, 4.

As an n-vertex k-tree has kn — k(kﬂ) edges, we get the upper bound:
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A construction to get a “good” lower bound

Trade-off | creating many graphs vs. bounding the number of duplicates
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A construction to get a “good” lower bound

Trade-off | creating many graphs vs. bounding the number of duplicates

Some ingredients of the construction:

© labeling function o: permutation of {1,...,n} with (1) = 1.
@ We will introduce vertices {vi, va,...,v,} one by one following the
order Vo(1)s Vo(2)s - -+ Vo (n)-

© If j <, the vertex v, ;) is said to be to the left of v, ;.
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Proper-pathwidth

Another graph invariant: proper-pathwidth. [Takahashi, Ueno, Kajitani. 1094]
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(k 4 1)-clique and iteratively adding a vertex v; connected to a clique K,
of size k (called the active vertices), with the constraints that

@ Vi1 € Kv,--
° KV/’ \ {Vl'*l} - KVi—l'

Proper-pathwidth of a graph G, denoted ppw(G):
smallest k such that G is a subgraph of a proper linear k-tree.

For any graph G it holds that
tw(G) < pw(G) < ppw(G)

The graphs G we will construct satisfy tw(G) < pw(G) < ppw(G) < k.
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For every i > k + 1 we define:

QO Aset A; C{j|j < i} with |A;| = k of active vertices
(as in the definition of proper linear k-trees).
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For every i > k + 1 we define:

QO Aset A; C{j|j < i} with |A;| = k of active vertices
(as in the definition of proper linear k-trees).

@ Aset N(i) C A; with [N(i)| > X5L: neighbors of v, to the left.

© An element (i) € Ain1 N(i — 1), called the forgotten vertex:

a vertex that will not be active anymore.

© We insert the vertices by consecutive blocks of size s = s(n, k).

We will fix the value of s later.

Q A vertex a; € A;, called the anchor:

all vertices of the same block are adjacent to the same anchor a;.

TS

e e

oo eee

<+—> ¢+ 4+—>
k+1 S S

>

S
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Description of the construction

@ Choose o, a permutation of {1,..., n} such that o(1) = 1.
@ Choose the first (k + 1)-clique, with 1 € N(/) for 2 </ < k + 1.

© Define a1 = 1.
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Description of the construction

Q If i = k+2 (mod s) (that is, at the beginning of a block):

Define (i) = aj_1.
Define A; = (A1 \ {f(N})U{i—1}.
Define a; = min A;.

Choose N(i) C A; such that a; € N(i) and |N(i)| > “31.

Vo(i) @

Vo (in)

Vo (is)

Vo (i)

Vo(ia) @ 0000000000

Voo block of s vertices
o(is)
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Description of the construction

Q If i # k+2 (mod s) (that is, at the middle of a block):

Choose f(i) € (Ai—1 \ {ai—1}) N N(i —1).
Define A; = (Ai—1 \ {f()}) U {i —1}.
Define a; = a;_1.

Choose N(i) C A; such that a; € N(i) and |N(i)| > “31.

Vo (ir)
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Analysis of the construction

First note that the graphs G we construct indeed satisfy ppw(G) < k.
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Analysis of the construction

@ How many graphs are created by the construction?

The choices in the construction are the following:

@ Choices for the permutation o: (n—1)!

k(k—1)

o Choices for the neighborhoods N(/): 277z . (= (k1)) (k=2)

(u)mf(kHH%U

o Choices for the forgotten vertices f(/): >

That is, we create

(n—(k+1)—[ =T
(n—1)1- ("gl> D (- (k1)) (k-2)

graphs.
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How many times the same graph may have been created?

Note that a triple (o, N, f) uniquely defines a graph H = G(o, N, ).

16/23



How many times the same graph may have been created?

Note that a triple (o, N, f) uniquely defines a graph H = G(o, N, ).

So given an arbitrary constructible graph H, we want to upper-bound the
number of triples (o, N, f) such that H = G(o, N, f).

16/23



How many times the same graph may have been created?

Note that a triple (o, N, f) uniquely defines a graph H = G(o, N, ).

So given an arbitrary constructible graph H, we want to upper-bound the
number of triples (o, N, f) such that H = G(o, N, f).

First we reconstruct the permutation o

e o(l)y=1and f(k+2)=1:

16/23



How many times the same graph may have been created?

Note that a triple (o, N, f) uniquely defines a graph H = G(o, N, ).

So given an arbitrary constructible graph H, we want to upper-bound the
number of triples (o, N, f) such that H = G(o, N, f).

First we reconstruct the permutation o

@ o(l)=1and f(k+2)=1: images by o of {2,..., k+ 1} uniquely
determined: k! possibilities for ordering the first k 4+ 1 vertices.

16/23



How many times the same graph may have been created?

Note that a triple (o, N, f) uniquely defines a graph H = G(o, N, ).
So given an arbitrary constructible graph H, we want to upper-bound the
number of triples (o, N, f) such that H = G(o, N, f).

First we reconstruct the permutation o

@ o(1)=1and f(k+2)=1: images by o of {2,..., k + 1} uniquely
determined: k! possibilities for ordering the first k 4+ 1 vertices.

% 7 = g

VAR %' i

16/23



How many times the same graph may have been created?

Note that a triple (o, N, f) uniquely defines a graph H = G(o, N, ).
So given an arbitrary constructible graph H, we want to upper-bound the
number of triples (o, N, f) such that H = G(o, N, f).

First we reconstruct the permutation o

@ o(1)=1and f(k+2)=1: images by o of {2,..., k + 1} uniquely
determined: k! possibilities for ordering the first k 4+ 1 vertices.

16/23



How many times the same graph may have been created?

So the number of possible permutations o that give rise to H is at most

—(k+1
(o=

k! (s!)

17/23



How many times the same graph may have been created?

So the number of possible permutations o that give rise to H is at most

—(k+1
(o=

k! (s!)

Secondly, we reconstruct the neighborhood N(/):

17/23



How many times the same graph may have been created?

So the number of possible permutations o that give rise to H is at most

—(k+1
(o=

k! (s!)

Secondly, we reconstruct the neighborhood N(/):

uniquely determined once o is fixed.

17/23



Reconstruction of the forgotten vertex (i)
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Reconstruction of the forgotten vertex (i)

We define, for i > 1, D; as the set of neighbors of / that will never have
any neighbor among the non-introduced vertices.

] f(l) € Dj_.

e |Di| >1and DinDj =0 fori#j.

® > k1 lDil <n.

o Let | ={ie{k+1,....n}||Dj| > 2}, and note that |/| < k.
o It holds that ), |D;| < 2k.

The number of distinct functions f is at most

I1 1o = [[Io < (== "D‘) < (2[)k _ o,

i=k+1 iel

So, the number of triples (o, N, f) such that H = G(o, N, f) is at most

n—(k+1)
— 1

2k ki (sl
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Analysis of the construction

The number of distinct graphs we have created is at least

number of created graphs

number of duplicates
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Analysis of the construction

The number of distinct graphs we have created is at least

number of created graphs

number of duplicates

(n— 1)1 (kgt) (DT M (k) (k-2)

ok k1 (sHUEH L (0= (k+ 1) — 5| 2= )y
> s (L2 e
64e ks - s
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Choice of the block size s

L 1
We want the value of s = s(n, k) that minimizes k= - s.
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Choice of the block size s

L 1
We want the value of s = s(n, k) that minimizes k= - s.

With t(n, k) := % we have
|
log (k% -s) °§ +log

1
:7+|ogt+|og|ogk.

And the minimum of ( BT log t(n, k) is reached for t(n, k) = 1.

20/23



Choice of the block size s

L 1
We want the value of s = s(n, k) that minimizes k= - s.

With t(n, k) = % we have

|
|og(k%-s) °§ +log

1
:7+|ogt+|og|ogk.

And the minimum of ( BT log t(n, k) is reached for t(n, k) = 1.

So s(n, k) = log k is the best choice for the block size.
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@ Further research
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Further research

k(k+1)

Tok < (k-25-n)". 2772 kK

1 k-2k.n\" k(k+3)
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Tok 2> (o ——— ] 272 k22
mke= (128e log k ) ’

o We believe that there exist an absolute constant ¢ > 0 and a function
f(k), with k=2k=2 < f(k) < k= for every k > 0, such that

k+1)

Tok > (c-k-25 m)m 2757 L f (k).
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Further research

k(k+1)

Tok < (k-25-n)". 2772 kK

1 k-2k.n\" k(k+3)
Tok 2> (o ——— ] 272 k22
mke= (128e log k ) ’

o We believe that there exist an absolute constant ¢ > 0 and a function
f(k), with k=2k=2 < f(k) < k= for every k > 0, such that

Tok > (c-k-25 m)m 2757 L f (k).
@ Improve the upper bound for pathwidth or proper-pathwidth?

@ Other relevant parameters: branchwidth, cliquewidth, rankwidth,
tree-cutwidth, booleanwidth, ...
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Gracies!

CATALONIA, THE NEXT STATE IN EUROPE
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