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k-trees and partial k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex

connected to a k-clique.

Example of a 2-tree:
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k-trees and partial k-trees

A k-tree is a graph that can be built
starting from a (k + 1)-clique

and then iteratively adding a vertex

connected to a k-clique.

A partial k-tree is a subgraph of a k-tree.

A graph has treewidth at most k

if and only if it is a partial k-tree.

Example of a 2-tree:
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What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n
k

)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees

k = 1: The number of n-vertex labeled forests is ∼ c · nn−2 for some
constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is

∼ g · n− 5
2γnn! for some constants g , γ > 0. [Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k .

4/23



What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n
k

)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees

k = 1: The number of n-vertex labeled forests is ∼ c · nn−2 for some
constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is

∼ g · n− 5
2γnn! for some constants g , γ > 0. [Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k .

4/23



What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n
k

)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees

k = 1: The number of n-vertex labeled forests is ∼ c · nn−2 for some
constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is

∼ g · n− 5
2γnn! for some constants g , γ > 0. [Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k .

4/23



What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n
k

)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees

k = 1: The number of n-vertex labeled forests is ∼ c · nn−2 for some
constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is

∼ g · n− 5
2γnn! for some constants g , γ > 0. [Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k .

4/23



What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n
k

)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees

k = 1: The number of n-vertex labeled forests is ∼ c · nn−2 for some
constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is

∼ g · n− 5
2γnn! for some constants g , γ > 0. [Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k .

4/23



What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n
k

)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees

k = 1: The number of n-vertex labeled forests is ∼ c · nn−2 for some
constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is

∼ g · n− 5
2γnn! for some constants g , γ > 0. [Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k .

4/23



What is known about the number of (partial) k-trees?

Labeled k-trees 6=
1 2 3 1 3 2

The number of n-vertex labeled trees is nn−2. [Cayley. 1889]

The number of n-vertex labeled k-trees is
(n
k

)
(kn − k2 + 1)n−k−2.

[Beineke, Pippert. 1969]

Labeled partial k-trees

k = 1: The number of n-vertex labeled forests is ∼ c · nn−2 for some
constant c > 1. [Takács. 1990]

k = 2: The number of n-vertex labeled series-parallel graphs is

∼ g · n− 5
2γnn! for some constants g , γ > 0. [Bodirsky, Giménez, Kang, Noy. 2005]

Nothing was known for general k .

4/23



Tn,k and an easy upper bound

Let Tn,k be the number of n-vertex labeled partial k-trees.

Objective We want to obtain accurate bounds for Tn,k .

As an n-vertex k-tree has kn − k(k+1)
2

edges, we get the upper bound:

Tn,k ≤
(
n

k

)
· (kn − k2 + 1)n−k−2 · 2kn−

k(k+1)
2

≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k
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Take a forest on n − (k − 1) vertices:
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Our results

Summarizing, so far we have:

Tn,k ≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k

Tn,k ≥
(
1

4
· 2k · n

)n

· 2−k2

Gap in the dominant term: (4 · k)n

Theorem (Baste, Noy, S.)

For any two integers n, k with 1 < k ≤ n, the number Tn,k of n-vertex
labeled graphs with treewidth at most k satis�es

Tn,k ≥
(

1

128e
· k · 2

k · n
log k

)n

· 2−
k(k+3)

2 · k−2k−2.

Gap in the dominant term: (128e · log k)n
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A construction to get a �good� lower bound

Trade-o� creating many graphs vs. bounding the number of duplicates

Some ingredients of the construction:

1 labeling function σ: permutation of {1, . . . , n} with σ(1) = 1.

2 We will introduce vertices {v1, v2, . . . , vn} one by one following the
order vσ(1), vσ(2), . . . , vσ(n).

3 If j < i , the vertex vσ(j) is said to be to the left of vσ(i).
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Proper-pathwidth

Another graph invariant: proper-pathwidth. [Takahashi, Ueno, Kajitani. 1994]

Proper linear k-trees: graphs that can be constructed starting from a
(k + 1)-clique and iteratively adding a vertex vi connected to a clique Kvi

of size k (called the active vertices), with the constraints that

vi−1 ∈ Kvi .

Kvi \ {vi−1} ⊆ Kvi−1
.

Proper-pathwidth of a graph G , denoted ppw(G ):
smallest k such that G is a subgraph of a proper linear k-tree.

For any graph G it holds that

tw(G ) ≤ pw(G ) ≤ ppw(G )

The graphs G we will construct satisfy tw(G ) ≤ pw(G ) ≤ ppw(G ) ≤ k .
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Ingredients of the construction

For every i ≥ k + 1 we de�ne:

1 A set Ai ⊆ {j | j < i} with |Ai | = k of active vertices
(as in the de�nition of proper linear k-trees).

2 A set N(i) ⊆ Ai with |N(i)| > k+1
2

: neighbors of vσ(i) to the left.

3 An element f (i) ∈ Ai ∩ N(i − 1), called the forgotten vertex:
a vertex that will not be active anymore.

4 We insert the vertices by consecutive blocks of size s = s(n, k).
We will �x the value of s later.

5 A vertex ai ∈ Ai , called the anchor:
all vertices of the same block are adjacent to the same anchor ai .

k + 1 s s ss
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Description of the construction

1 Choose σ, a permutation of {1, . . . , n} such that σ(1) = 1.

2 Choose the �rst (k + 1)-clique, with 1 ∈ N(i) for 2 ≤ i ≤ k + 1.

3 De�ne ak+1 = 1.

12/23



Description of the construction

1 If i ≡ k + 2 (mod s) (that is, at the beginning of a block):

De�ne f (i) = ai−1.

De�ne Ai = (Ai−1 \ {f (i)}) ∪ {i − 1}.
De�ne ai = minAi .

Choose N(i) ⊆ Ai such that ai ∈ N(i) and |N(i)| > k+1

2
.

vσ(i1)

vσ(i2)

vσ(i3)

vσ(i4)

vσ(i5)

Ai−1

vσ(i)

block of s vertices
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Description of the construction

1 If i 6≡ k + 2 (mod s) (that is, at the middle of a block):

Choose f (i) ∈ (Ai−1 \ {ai−1}) ∩ N(i − 1).
De�ne Ai = (Ai−1 \ {f (i)}) ∪ {i − 1}.
De�ne ai = ai−1.

Choose N(i) ⊆ Ai such that ai ∈ N(i) and |N(i)| > k+1

2
.

vσ(i1)

vσ(i2)

vσ(i3)

vσ(i4)
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Ai−1

vσ(i)
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Example of the construction for k = 4 (by Julien Baste)

Active vertices

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Example of the construction for k = 4 (by Julien Baste)

Active vertices

s

13/23



Next section is...

1 Introduction

2 The construction

3 Analysis

4 Further research

14/23



Analysis of the construction

First note that the graphs G we construct indeed satisfy ppw(G ) ≤ k .

How many graphs are created by the construction?

The choices in the construction are the following:

Choices for the permutation σ: (n − 1)!

Choices for the neighborhoods N(i): 2
k(k−1)

2 · 2(n−(k+1))(k−2)

Choices for the forgotten vertices f (i):
(
k−1
2

)(n−(k+1)−d n−(k+1)
s
e)

That is, we create

(n − 1)! ·
(
k − 1

2

)(n−(k+1)−d n−(k+1)
s
e)
· 2

k(k−1)
2 · 2(n−(k+1))(k−2)

graphs.
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Analysis of the construction

How many graphs are created by the construction?
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How many times the same graph may have been created?

Note that a triple (σ,N, f ) uniquely de�nes a graph H = G (σ,N, f ).

So given an arbitrary constructible graph H, we want to upper-bound the
number of triples (σ,N, f ) such that H = G (σ,N, f ).

First we reconstruct the permutation σ:

σ(1) = 1 and f (k + 2) = 1: images by σ of {2, . . . , k + 1} uniquely
determined: k! possibilities for ordering the �rst k + 1 vertices.

s
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How many times the same graph may have been created?

s

So the number of possible permutations σ that give rise to H is at most

k! · (s!)d
n−(k+1)

s
e

Secondly, we reconstruct the neighborhood N(i):

uniquely determined once σ is �xed.

17/23



How many times the same graph may have been created?

s

So the number of possible permutations σ that give rise to H is at most

k! · (s!)d
n−(k+1)

s
e

Secondly, we reconstruct the neighborhood N(i):

uniquely determined once σ is �xed.

17/23



How many times the same graph may have been created?

s

So the number of possible permutations σ that give rise to H is at most

k! · (s!)d
n−(k+1)

s
e

Secondly, we reconstruct the neighborhood N(i):

uniquely determined once σ is �xed.

17/23



Reconstruction of the forgotten vertex f (i)

We de�ne, for i > 1, Di as the set of neighbors of i that will never have
any neighbor among the non-introduced vertices.

f (i) ∈ Di−1.

|Di | ≥ 1 and Di ∩ Dj = ∅ for i 6= j .∑n
i=k+1 |Di | ≤ n.

Let I = {i ∈ {k + 1, . . . , n} | |Di | ≥ 2}, and note that |I | ≤ k .

It holds that
∑

i∈I |Di | ≤ 2k .

The number of distinct functions f is at most
n∏

i=k+1

|Di | =
∏
i∈I
|Di | ≤

(∑
i∈I |Di |
k

)k

≤
(
2k

k

)k

= 2k .

So, the number of triples (σ,N, f ) such that H = G (σ,N, f ) is at most

2k · k! · (s!)d
n−(k+1)

s
e
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Analysis of the construction

The number of distinct graphs we have created is at least

number of created graphs

number of duplicates

≥ (n − 1)! ·
(
k−1
2

)n−(k+1)−d n−(k+1)
s
e · 2 k(k−1)

2 · 2(n−(k+1))(k−2)

2k · k! · (s!)b n−(k+1)
s
c · (n − (k + 1)− sbn−(k+1)

s c)!
.

≥ . . . ≥
(

1

64e
· k · 2

k · n
k

1
s · s

)n

· 2−
k(k+3)

2 · k−2k−2.
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Choice of the block size s

We want the value of s = s(n, k) that minimizes k
1
s · s.

With t(n, k) := s(n,k)
log k , we have

log
(
k

1
s · s

)
=

log k

s
+ log s

=
1

t
+ log t + log log k.

And the minimum of 1
t(n,k) + log t(n, k) is reached for t(n, k) = 1.

So s(n, k) = log k is the best choice for the block size.
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Further research

Tn,k ≤ (k · 2k · n)n · 2−
k(k+1)

2 · k−k .

Tn,k ≥
(

1

128e
· k · 2

k · n
log k

)n

· 2−
k(k+3)

2 · k−2k−2.

We believe that there exist an absolute constant c > 0 and a function
f (k), with k−2k−2 ≤ f (k) ≤ k−k for every k > 0, such that

Tn,k ≥ (c · k · 2k · n)n · 2−
k(k+1)

2 · f (k).

Improve the upper bound for pathwidth or proper-pathwidth?

Other relevant parameters: branchwidth, cliquewidth, rankwidth,
tree-cutwidth, booleanwidth, . . .
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Gràcies!

CATALONIA, THE NEXT STATE IN EUROPE
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