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A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph G, V/(G) can be partitioned into two sets
e Vi and V, such that both G[V4] and G[V»] are even, and
e V| and V} such that G[V]] is even and G[V}] is odd.

Every graph G contains an even induced subgraph with at least |V (G)|/2
vertices.
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‘What about mos(G) and Xodd(G)?‘
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We prove that, if G is a cograph, then xo44(G) < 3, and this is tight.

Note that cographs are exactly P,-free graphs.
We show that Yoq4q is unbounded for Ps-free graphs.
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xij: indicates whether v;v; is monochromatic (1) or not (0).

xi+xi+xj=1 for every edge viv; € E(G)
Yjven(v) Xij =1 for every vertex v; € V(G)

® Xodd(G) <2 <= the above system is feasible. O

15



Deciding whether Xo44(G) < g is NP-complete if g > 3.

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING.

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

\

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

16



Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

®
y

16



Deciding whether x,44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

[ ]

16



Deciding whether x,44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V/, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

*—e

At

16



Deciding whether xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V/, E) such that |V| + |E| is even admits an orientation
of E such that all vertex in-degrees are odd.  [Frank, Jordan, Szigeti. 1999]

*—e

At

Thus, G is 3-colorable <= x,44(G’) < 3. O
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For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.
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% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

(7
S

Given G, consider a partition of V(G) into induced odd trees.
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For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

Let G’ be obtained from G by contracting each tree to a single vertex.
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For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

Consider a proper vertex coloring of G’ using x(G’) colors.
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We have that xo4d(G) < x(G')
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For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

Bound is tight: let G be subdivided n-clique with n = 0,3 (mod 4).
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If cw(G) < 2 (cograph), then mos(G) > 2 - [

] and this bound is tight.

Every n-vertex graph G that admits a join satisfies mos(G) > 2 - {"‘

even

even

odd ><

odd

This bound is tight even for cographs:

§ z K99 @C

Odd graphs on four vertices: Kj, K13, and 2K>.
Thus, mos(Kz22) = mos(C+) =2=2. [7W —9. [%W

|
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