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A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ∼1960)
For every graph G, V (G) can be partitioned into two sets

V1 and V2 such that both G [V1] and G [V2] are even, and
V ′1 and V ′2 such that G [V ′1] is even and G [V ′2] is odd.
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A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ∼1960)
For every graph G, V (G) can be partitioned into two sets

V1 and V2 such that both G [V1] and G [V2] are even, and
V ′1 and V ′2 such that G [V ′1] is even and G [V ′2] is odd.

Corollary
Every graph G contains an even induced subgraph with at least |V (G)|/2
vertices.
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Are similar properties true for odd subgraphs?

For a graph G , let

mos(G): order of a largest odd induced subgraph of G .

χodd(G): minimum number of odd induced subgraphs of G
aaaaaaaarthat partition V (G).

For χodd(G) to be well-defined, each connected component of G must
have even order.

mes(G) and χeven(G): symmetric parameters for the even version.

Hence, for every graph G on n vertices: mes(G) ≥ n/2 and χeven(G) ≤ 2.

What about mos(G) and χodd(G)?
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“Part of the graph theory folklore” [Caro. 1994]

Conjecture
There exists a constant c > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) ≥ c · n.

For every “good” G , mos(G) ≥ (1− o(1))
√

n/6. [Caro. 1994]

For every “good” G , mos(G) ≥ cn
log n for some c > 0. [Scott. 1992]

The conjecture has been proved for particular graph classes:
Trees. [Radcliffe, Scott. 1995]
Graphs G with bounded χ(G). [Scott. 1992]
Graphs G with ∆(G) ≤ 3. [Berman, Wang, Wargo. 1997]
Graphs G with tw(G) ≤ 2. [Hou, Yu, Li, Liu. 2018]

In these articles, they obtain best possible constants c > 0.

The conjecture is still open.
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What about χodd(G)?

For χodd(G) to be well-defined, each connected component of G must
have even order.
This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on χodd(G): [Scott. 2001]

For every “good” graph G on n vertices,

χodd(G) ≤ cn√
log log n

= o(n).

There are “good” graphs G on n vertices for which

χodd(G) ≥ (1 + o(1))
√
2n = Ω(

√
n).

some spG = subdivided n-clique with n ≡ 0, 3 (mod 4)

7



What about χodd(G)?

For χodd(G) to be well-defined, each connected component of G must
have even order.

This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on χodd(G): [Scott. 2001]

For every “good” graph G on n vertices,

χodd(G) ≤ cn√
log log n

= o(n).

There are “good” graphs G on n vertices for which

χodd(G) ≥ (1 + o(1))
√
2n = Ω(

√
n).

some spG = subdivided n-clique with n ≡ 0, 3 (mod 4)

7



What about χodd(G)?

For χodd(G) to be well-defined, each connected component of G must
have even order.
This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on χodd(G): [Scott. 2001]

For every “good” graph G on n vertices,

χodd(G) ≤ cn√
log log n

= o(n).

There are “good” graphs G on n vertices for which

χodd(G) ≥ (1 + o(1))
√
2n = Ω(

√
n).

some spG = subdivided n-clique with n ≡ 0, 3 (mod 4)

7



What about χodd(G)?

For χodd(G) to be well-defined, each connected component of G must
have even order.
This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on χodd(G): [Scott. 2001]

For every “good” graph G on n vertices,

χodd(G) ≤ cn√
log log n

= o(n).

There are “good” graphs G on n vertices for which

χodd(G) ≥ (1 + o(1))
√
2n = Ω(

√
n).

some spG = subdivided n-clique with n ≡ 0, 3 (mod 4)

7



What about χodd(G)?

For χodd(G) to be well-defined, each connected component of G must
have even order.
This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on χodd(G): [Scott. 2001]

For every “good” graph G on n vertices,

χodd(G) ≤ cn√
log log n

= o(n).

There are “good” graphs G on n vertices for which

χodd(G) ≥ (1 + o(1))
√
2n = Ω(

√
n).

some spG = subdivided n-clique with n ≡ 0, 3 (mod 4)

7



What about χodd(G)?

For χodd(G) to be well-defined, each connected component of G must
have even order.
This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on χodd(G): [Scott. 2001]

For every “good” graph G on n vertices,

χodd(G) ≤ cn√
log log n

= o(n).

There are “good” graphs G on n vertices for which

χodd(G) ≥ (1 + o(1))
√
2n = Ω(

√
n).

some spG = subdivided n-clique with n ≡ 0, 3 (mod 4)

7



What about χodd(G)?

For χodd(G) to be well-defined, each connected component of G must
have even order.
This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on χodd(G): [Scott. 2001]

For every “good” graph G on n vertices,

χodd(G) ≤ cn√
log log n

= o(n).

There are “good” graphs G on n vertices for which

χodd(G) ≥ (1 + o(1))
√
2n = Ω(

√
n).

some spG = subdivided n-clique with n ≡ 0, 3 (mod 4)
7



What about χodd(G)?

For χodd(G) to be well-defined, each connected component of G must
have even order.
This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on χodd(G): [Scott. 2001]

For every “good” graph G on n vertices,

χodd(G) ≤ cn√
log log n

= o(n).

There are “good” graphs G on n vertices for which

χodd(G) ≥ (1 + o(1))
√
2n = Ω(

√
n).

some spG = subdivided n-clique with n ≡ 0, 3 (mod 4)
7



And what about the complexity of computing these parameters?

Computing mes(G) and mos(G) is NP-hard. [Cai, Yang. 2011]

For every graph G , χeven(G) ≤ 2, so it is easy.

As for χodd(G), no complexity results were known so far.

Our goal Computational aspects of the parameters mos and χodd.
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For an integer q ≥ 1, we prove that deciding whether χodd(G) ≤ q is

polynomial-time solvable if q ≤ 2, and
NP-complete if q ≥ 3.

Since computing mos(G) and χodd(G) are NP-hard, we focus on its
parameterized complexity, in particular on structural parameters.

cliquewidth / rankwidth

treewidth

pathwidth

treedepth

vertex cover number

neighborhood
diversity

modular-width

10



For an integer q ≥ 1, we prove that deciding whether χodd(G) ≤ q is
polynomial-time solvable if q ≤ 2, and
NP-complete if q ≥ 3.

Since computing mos(G) and χodd(G) are NP-hard, we focus on its
parameterized complexity, in particular on structural parameters.

cliquewidth / rankwidth

treewidth

pathwidth

treedepth

vertex cover number

neighborhood
diversity

modular-width

10



For an integer q ≥ 1, we prove that deciding whether χodd(G) ≤ q is
polynomial-time solvable if q ≤ 2, and
NP-complete if q ≥ 3.

Since computing mos(G) and χodd(G) are NP-hard, we focus on its
parameterized complexity,

in particular on structural parameters.

cliquewidth / rankwidth

treewidth

pathwidth

treedepth

vertex cover number

neighborhood
diversity

modular-width

10



For an integer q ≥ 1, we prove that deciding whether χodd(G) ≤ q is
polynomial-time solvable if q ≤ 2, and
NP-complete if q ≥ 3.

Since computing mos(G) and χodd(G) are NP-hard, we focus on its
parameterized complexity, in particular on structural parameters.

cliquewidth / rankwidth

treewidth

pathwidth

treedepth

vertex cover number

neighborhood
diversity

modular-width

10



For an integer q ≥ 1, we prove that deciding whether χodd(G) ≤ q is
polynomial-time solvable if q ≤ 2, and
NP-complete if q ≥ 3.

Since computing mos(G) and χodd(G) are NP-hard, we focus on its
parameterized complexity, in particular on structural parameters.

cliquewidth / rankwidth

treewidth

pathwidth

treedepth

vertex cover number

neighborhood
diversity

modular-width

10



For an integer q ≥ 1, we prove that deciding whether χodd(G) ≤ q is
polynomial-time solvable if q ≤ 2, and
NP-complete if q ≥ 3.

Since computing mos(G) and χodd(G) are NP-hard, we focus on its
parameterized complexity, in particular on structural parameters.

cliquewidth / rankwidth

treewidth

pathwidth

treedepth

vertex cover number

neighborhood
diversity

modular-width

10



We present FPT algorithms parameterized by rankwidth, in time:
2O(rw) · nO(1) for computing mes(G) and mos(G),
2O(q·rw) · nO(1) for deciding whether χodd(G) ≤ q,

for an n-vertex graph G , given a decomposition tree of width at most rw.

Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]

First algorithms in time 2o(rw2) · nO(1) for an NP-hard problem.

Is the function 2O(rw) optimal under the ETH? (@2o(n) algo for 3-Sat)

For deciding whether χodd(G) ≤ q, our NP-hardness reduction implies
that @ 2o(n) algo under the ETH ⇒ @ 2o(rw) · nO(1) X

For computing mes(G) and mos(G), existing NP-hardness reduction
implies only that @ 2o(

√
n) algo under the ETH. [Cai, Yang. 2011]

We provide a linear NP-hardness reduction for mes(G) and mos(G),
hence @ 2o(n) algo under ETH ⇒ @ 2o(rw) · nO(1) X

11
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Finally, we provide bounds on the parameters χodd(G) and mos(G).

1 We prove that, for every graph G with all components of even order,

χodd(G) ≤ tw(G) + 1.

This bound is tight and has some consequences.

Recall the “folklore” conjecture about mos(G):

Conjecture
There exists a constant c > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) ≥ c · n.

Gk : graphs of treewidth at most k without isolated vertices.

ck = minG∈Gk
mos(G)
|V (G)| .

So, ck > 0 if and only if the conjecture is true for Gk .

It is known that ck ≥ 1
2(k+1) . [Scott. 1992]

Our bound implies that ck ≥ 1
k+1 .
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Conjecture
There exists a constant c > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) ≥ c · n.

Proved for particular graph classes, with best possible constant c > 0:
Trees. [Radcliffe, Scott. 1995]
Graphs G with bounded χ(G). [Scott. 1992]
Graphs G with ∆(G) ≤ 3. [Berman, Wang, Wargo. 1997]
Graphs G with tw(G) ≤ 2. [Hou, Yu, Li, Liu. 2018]

We prove that if cw(G) ≤ 2 (cographs), then

mos(G) ≥ 2 ·
⌈n − 2

4

⌉
, and this bound is tight.

We prove that, if G is a cograph, then χodd(G) ≤ 3, and this is tight.

Note that cographs are exactly P4-free graphs.
We show that χodd is unbounded for P5-free graphs. extra space skip
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Theorem
For an integer q ≥ 1, deciding whether χodd(G) ≤ q is

polynomial-time solvable if q ≤ 2, and
NP-complete if q ≥ 3.

For q = 1 the problem is trivial: G needs to be an odd graph itself.
V (G) = {v1, . . . , vn}. Want V (G) = V0 ] V1 with G [V0],G [V1] odd.
For every vertex vi , create a binary variable xi .
For every edge vivj , create a binary variable xi ,j .
xi : indicates whether vi ∈ V0 or vi ∈ V1.
xi ,j : indicates whether vivj is monochromatic (1) or not (0).{

xi + xj + xi ,j ≡ 1 for every edge vivj ∈ E (G)∑
j:vj∈N(vi ) xi ,j ≡ 1 for every vertex vi ∈ V (G)

χodd(G) ≤ 2 ⇐⇒ the above system is feasible. extra space skip
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Deciding whether χodd(G) ≤ q is NP-complete if q ≥ 3.

We reduce from q-Coloring. Suppose q = 3.

F Any graph G = (V ,E ) such that |V |+ |E | is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

G

any
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F Any graph G = (V ,E ) such that |V |+ |E | is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordán, Szigeti. 1999]

G G′

Thus, G is 3-colorable ⇐⇒ χodd(G ′) ≤ 3. extra space skip
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Theorem
For every graph G with all components of even order we have that
χodd(G) ≤ tw(G) + 1, and this bound is tight.

F Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]
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Given G , consider a partition of V (G) into induced odd trees.
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Let G ′ be obtained from G by contracting each tree to a single vertex.
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χodd(G) ≤ tw(G) + 1, and this bound is tight.

F Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

Bound is tight: let G be subdivided n-clique with n ≡ 0, 3 (mod 4). skip
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Theorem
If cw(G) ≤ 2 (cograph), then mos(G) ≥ 2 ·

⌈
n−2

4

⌉
, and this bound is tight.

Every n-vertex graph G that admits a join satisfies mos(G) ≥ 2 ·
⌈

n−2
4

⌉
.

This bound is tight even for cographs:

K2,2,2 C+
5

Odd graphs on four vertices: K4, K1,3, and 2K2.
Thus, mos(K2,2,2) = mos(C+

5 ) = 2 = 2 ·
⌈

6−2
4

⌉
= 2 ·

⌈
5−2

4

⌉
.
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Next section is...

1 Introduction

2 Our results

3 Some proofs

4 Further research
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1 Algo in time 2O(q·rw) · nO(1) for deciding whether χodd(G) ≤ q.

Computing χodd(G) parameterized by rw is FPT, W[1]-hard? (XP)

2 We proved that χodd(G) ≤ tw(G) + 1.
χodd(G) ≤ f (rw(G)) for some f ? Would imply FPT algorithm.

χodd(G) ≤ f (rw(G)) · log n for some f ? Would imply XP algorithm.

3 The Chromatic Number problem is W[1]-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing χodd(G)?
4 Deciding whether χodd(G) ≤ q parameterized by tw:

Natural DP algo in time (2q)tw · nO(1) ≤ (2tw + 2)tw · nO(1).
It can be proved that @ two(tw) · nO(1) under the ETH X
Right constants under the SETH?

5 We know mes(G) ≥ n/2. Deciding mes(G) ≥ n/2+ k with param. k?

6 The problems that we considered can be seen as the “parity version”
of Independent Set and q-Coloring. Other problems?
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