On the complexity of finding large odd induced

subgraphs and odd colorings

Ignasi Sau
LIRMM, Université de Montpellier, CNRS, Montpellier, France

Joint work with Rémy Belmonte
University of Electro-Communications, Chofu, Japan

LIMDA Joint Seminar, UPC, Barcelona
April 7th, 2020

@ OLIRMM

Outline of the talk

© Introduction
© Our results
© Some proofs

@ Further research

@ Introduction

A graph is even/odd if all its vertex degrees are even/odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph G, V(G) can be partitioned into two sets
e Vj and V, such that both G[V4] and G[V>] are even,

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph G, V(G) can be partitioned into two sets
e Vj and V, such that both G[V4] and G[V>] are even, and
e V| and V} such that G[V]] is even and G[V}] is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph G, V(G) can be partitioned into two sets
e Vj and V, such that both G[V4] and G[V>] are even, and
e V| and V} such that G[V]] is even and G[V}] is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph G, V(G) can be partitioned into two sets
e Vj and V, such that both G[V4] and G[V>] are even, and
e V| and V} such that G[V]] is even and G[V}] is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph G, V(G) can be partitioned into two sets
e Vj and V, such that both G[V4] and G[V>] are even, and
e V| and V} such that G[V]] is even and G[V}] is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph G, V(G) can be partitioned into two sets
e Vi and V, such that both G[V4] and G[V>] are even, and
e V| and V} such that G[V]] is even and G[V}] is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph G, V(G) can be partitioned into two sets
e Vi and V, such that both G[V4] and G[V>] are even, and
e V| and V} such that G[V]] is even and G[V}] is odd.

A graph is even/odd if all its vertex degrees are even/odd.

Theorem (Gallai ~1960)

For every graph G, V/(G) can be partitioned into two sets
e Vi and V, such that both G[V4] and G[V»] are even, and
e V| and V} such that G[V]] is even and G[V}] is odd.

Every graph G contains an even induced subgraph with at least |V (G)|/2
vertices.

Are similar properties true for odd subgraphs?

Are similar properties true for odd subgraphs?

For a graph G, let
mos(G): order of a largest odd induced subgraph of G.

Are similar properties true for odd subgraphs?

For a graph G, let
mos(G): order of a largest odd induced subgraph of G.

Xodd(G): minimum number of odd induced subgraphs of G
that partition V/(G).

Are similar properties true for odd subgraphs?

For a graph G, let
mos(G): order of a largest odd induced subgraph of G.

Xodd(G): minimum number of odd induced subgraphs of G
that partition V/(G).

For Xodd(G) to be well-defined, each connected component of G must
have even order.

Are similar properties true for odd subgraphs?

For a graph G, let
mos(G): order of a largest odd induced subgraph of G.

Xodd(G): minimum number of odd induced subgraphs of G
that partition V/(G).

For Xodd(G) to be well-defined, each connected component of G must
have even order.

mes(G) and Yeven(G): symmetric parameters for the even version.

Are similar properties true for odd subgraphs?

For a graph G, let
mos(G): order of a largest odd induced subgraph of G.

Xodd(G): minimum number of odd induced subgraphs of G
that partition V/(G).

For Xodd(G) to be well-defined, each connected component of G must
have even order.

mes(G) and Yeven(G): symmetric parameters for the even version.

Hence, for every graph G on n vertices: mes(G) > n/2 and Yeven(G) < 2.

Are similar properties true for odd subgraphs?

For a graph G, let
mos(G): order of a largest odd induced subgraph of G.

Xodd(G): minimum number of odd induced subgraphs of G
that partition V/(G).

For Xodd(G) to be well-defined, each connected component of G must
have even order.

mes(G) and Yeven(G): symmetric parameters for the even version.

Hence, for every graph G on n vertices: mes(G) > n/2 and Yeven(G) < 2.

‘What about mos(G) and Xodd(G)?‘

“Part of the graph theory folklore” [Caro. 1994]

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

“Part of the graph theory folklore” [Caro. 1994]

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

e For every “good” G, mos(G) > (1 — o(1))+/n/6. [Caro. 1994]

“Part of the graph theory folklore” [Caro. 1994]

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

e For every “good” G, mos(G) > (1 — o(1))+/n/6. [Caro. 1994]

cn
logn

e For every “good” G, mos(G) > for some ¢ > 0. [Scott. 1992]

“Part of the graph theory folklore” [Caro.

1994]

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

e For every “good” G, mos(G) > (1 — o(1))+/n/6. [Caro.

cn
logn

e For every “good” G, mos(G) >

@ The conjecture has been proved for particular graph classes:

o Trees. [Radcliffe, Scott.
o Graphs G with bounded x(G). [Scott.
e Graphs G with A(G) < 3. [Berman, Wang, Wargo.
o Graphs G with tw(G) < 2. [Hou, Yu, Li, Liu.

for some ¢ > 0. [Scott.

1994]

1992]

1995]
1992]
1997]
2018]

“Part of the graph theory folklore” [Caro. 1994]

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

e For every “good” G, mos(G) > (1 — o(1))+/n/6. [Caro. 1994]

cn
logn

e For every “good” G, mos(G) > for some ¢ > 0. [Scott. 1992]

@ The conjecture has been proved for particular graph classes:

o Trees. [Radcliffe, Scott. 1995]
o Graphs G with bounded x(G). [Scott. 1992]
e Graphs G with A(G) < 3. [Berman, Wang, Wargo. 1997]
o Graphs G with tw(G) < 2. [Hou, Yu, Li, Liu. 2018]

In these articles, they obtain best possible constants ¢ > 0.

“Part of the graph theory folklore” [Caro. 1994]

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

e For every “good” G, mos(G) > (1 — o(1))+/n/6. [Caro. 1994]

cn
logn

e For every “good” G, mos(G) > for some ¢ > 0. [Scott. 1992]

@ The conjecture has been proved for particular graph classes:

o Trees. [Radcliffe, Scott. 1995]
o Graphs G with bounded x(G). [Scott. 1992]
e Graphs G with A(G) < 3. [Berman, Wang, Wargo. 1997]
o Graphs G with tw(G) < 2. [Hou, Yu, Li, Liu. 2018]

In these articles, they obtain best possible constants ¢ > 0.

The conjecture is still open. ‘

What about Xodd(G)?‘

‘What about Xodd(G)?‘

For Xodd(G) to be well-defined, each connected component of G must
have even order.

‘What about Xodd(G)?‘

For Xodd(G) to be well-defined, each connected component of G must
have even order.

This necessary condition is also sufficient. [Scott. 2001]

‘What about Xodd(G)?‘

For Xodd(G) to be well-defined, each connected component of G must
have even order.

This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on Xodd(G): [Scott. 2001]

‘What about Xodd(G)?‘

For Xodd(G) to be well-defined, each connected component of G must
have even order.

This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on Xodd(G): [Scott. 2001]

@ For every “good” graph G on n vertices,

cn

Xodd(G) < W = o(n).

‘What about Xodd(G)?‘

For Xodd(G) to be well-defined, each connected component of G must
have even order.

This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on Xodd(G): [Scott. 2001]

@ For every “good” graph G on n vertices,

cn
G <— = .
Xodd() = Iog Iog n O(n)

@ There are “good” graphs G on n vertices for which

Xodd(G) = (1 + o(1))v2n = Q(v/n).

‘What about Xodd(G)?‘

For Xodd(G) to be well-defined, each connected component of G must
have even order.

This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on Xodd(G): [Scott. 2001]

@ For every “good” graph G on n vertices,

cn

Xodd(G) < W = o(n).

@ There are “good” graphs G on n vertices for which

Xodd(G) = (1 + o(1))v2n = Q(v/n).

G = subdivided n-clique with n =0,3.(mod 4)

‘What about Xodd(G)?‘

For Xodd(G) to be well-defined, each connected component of G must
have even order.

This necessary condition is also sufficient. [Scott. 2001]

Upper and lower bounds on Xodd(G): [Scott. 2001]

@ For every “good” graph G on n vertices,

cn

Xodd(G) < W = o(n).

@ There are “good” graphs G on n vertices for which

Xodd(G) = (1 + o(1))v2n = Q(v/n).
N

®——0 ® G = subdivided n-clique with n = 0,3 (mod 4)

And what about the complexity of computing these parameters?

And what about the complexity of computing these parameters?‘

Computing mes(G) and mos(G) is NP-hard. [Cai, Yang. 2011]

And what about the complexity of computing these parameters?‘

Computing mes(G) and mos(G) is NP-hard. [Cai, Yang. 2011]

For every graph G, Xeven(G) < 2, so it is easy.

And what about the complexity of computing these parameters?‘

Computing mes(G) and mos(G) is NP-hard. [Cai, Yang. 2011]
For every graph G, Xeven(G) < 2, so it is easy.

As for xodd(G), no complexity results were known so far.

And what about the complexity of computing these parameters?‘

Computing mes(G) and mos(G) is NP-hard. [Cai, Yang. 2011]
For every graph G, Xeven(G) < 2, so it is easy.

As for xodd(G), no complexity results were known so far.

Computational aspects of the parameters mos and Yodd-

© Our results

For an integer g > 1, we prove that deciding whether xo44(G) < q is

10

For an integer g > 1, we prove that deciding whether xo44(G) < q is
@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

10

For an integer g > 1, we prove that deciding whether xo44(G) < q is
@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

Since computing mos(G) and xodd(G) are NP-hard, we focus on its
parameterized complexity,

10

For an integer g > 1, we prove that deciding whether xo44(G) < q is
@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

Since computing mos(G) and xodd(G) are NP-hard, we focus on its
parameterized complexity, in particular on structural parameters.

10

For an integer g > 1, we prove that deciding whether xo44(G) < q is
@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

Since computing mos(G) and xodd(G) are NP-hard, we focus on its
parameterized complexity, in particular on structural parameters.

cliquewidth / rankwidth

e —

treewidth
modular-width ‘

pathwidth

neighborhood ‘
diversity treedepth

\/

vertex cover number

10

For an integer g > 1, we prove that deciding whether xo44(G) < q is
@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

Since computing mos(G) and xodd(G) are NP-hard, we focus on its
parameterized complexity, in particular on structural parameters.

cliquewidth / rankwidth

treewidth

modular-width ‘
pathwidth

neighborhood ‘
diversity treedepth

\/

vertex cover number

10

We present FPT algorithms parameterized by rankwidth, in time:
o 20(m) . nO) for computing mes(G) and mos(G),
o 20(aw) . nO() for deciding whether yo4q(G) < g,

for an n-vertex graph G, given a decomposition tree of width at most rw.

11

We present FPT algorithms parameterized by rankwidth, in time:
o 20(m) . nO) for computing mes(G) and mos(G),
o 20(aw) . nO() for deciding whether yo4q(G) < g,

for an n-vertex graph G, given a decomposition tree of width at most rw.

@ Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]

11

We present FPT algorithms parameterized by rankwidth, in time:
o 20(m) . nO) for computing mes(G) and mos(G),
o 20(aw) . nO() for deciding whether yo4q(G) < g,

for an n-vertex graph G, given a decomposition tree of width at most rw.
@ Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]

o First algorithms in time 20(w?) . () for an NP-hard problem.

11

We present FPT algorithms parameterized by rankwidth, in time:
o 20(m) . nO) for computing mes(G) and mos(G),
o 20(aw) . nO() for deciding whether yo4q(G) < g,

for an n-vertex graph G, given a decomposition tree of width at most rw.
@ Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
o First algorithms in time 20(w?) . () for an NP-hard problem.

o Is the function 2°("™) optimal under the ETH? (#2°(" algo for 3-SAT)

11

We present FPT algorithms parameterized by rankwidth, in time:
o 20(m) . nO) for computing mes(G) and mos(G),
o 20(aw) . nO() for deciding whether yo4q(G) < g,

for an n-vertex graph G, given a decomposition tree of width at most rw.
@ Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
o First algorithms in time 20(w?) . () for an NP-hard problem.

o Is the function 2°("™) optimal under the ETH? (#2°(" algo for 3-SAT)

o For deciding whether xodd(G) < g, our NP-hardness reduction implies
that 7 2°(") algo under the ETH

11

We present FPT algorithms parameterized by rankwidth, in time:
o 20(m) . nO) for computing mes(G) and mos(G),
o 20(aw) . nO() for deciding whether yo4q(G) < g,

for an n-vertex graph G, given a decomposition tree of width at most rw.
@ Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
o First algorithms in time 20(w?) . () for an NP-hard problem.

o Is the function 2°("™) optimal under the ETH? (#2°(" algo for 3-SAT)

o For deciding whether xo4d(G) < g, our NP-hardness reduction implies
that 7 20(n) algo under the ETH = 7 20(w) . nO()

11

We present FPT algorithms parameterized by rankwidth, in time:
o 20(m) . nO) for computing mes(G) and mos(G),
o 20(aw) . nO() for deciding whether yo4q(G) < g,

for an n-vertex graph G, given a decomposition tree of width at most rw.
@ Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]
o First algorithms in time 20(w?) . () for an NP-hard problem.

o Is the function 2°("™) optimal under the ETH? (#2°(" algo for 3-SAT)

o For deciding whether xo4d(G) < g, our NP-hardness reduction implies
that 7 20(n) algo under the ETH = 7 20(w) . nO()

o For computing mes(G) and mos(G), existing NP-hardness reduction
implies only that 7 2°(v") algo under the ETH. [Cai, Yang. 2011]

11

We present FPT algorithms parameterized by rankwidth, in time:
o 20(m) . nO) for computing mes(G) and mos(G),
o 20(aw) . nO() for deciding whether yo4q(G) < g,

for an n-vertex graph G, given a decomposition tree of width at most rw.
@ Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]

o First algorithms in time 20(w?) . () for an NP-hard problem.

o Is the function 2°("™) optimal under the ETH? (#2°(" algo for 3-SAT)

o For deciding whether xo4d(G) < g, our NP-hardness reduction implies
that 7 20(n) algo under the ETH = 7 20(w) . nO()

o For computing mes(G) and mos(G), existing NP-hardness reduction
implies only that 7 2°(v") algo under the ETH. [Cai, Yang. 2011]

We provide a linear NP-hardness reduction for mes(G) and mos(G),

11

We present FPT algorithms parameterized by rankwidth, in time:
o 20(m) . nO) for computing mes(G) and mos(G),
o 20(aw) . nO() for deciding whether yo4q(G) < g,

for an n-vertex graph G, given a decomposition tree of width at most rw.
@ Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]

o First algorithms in time 20(w?) . () for an NP-hard problem.

o Is the function 2°("™) optimal under the ETH? (#2°(" algo for 3-SAT)

o For deciding whether xo4d(G) < g, our NP-hardness reduction implies
that 7 20(n) algo under the ETH = 7 20(w) . nO()

o For computing mes(G) and mos(G), existing NP-hardness reduction
implies only that 7 2°(v") algo under the ETH. [Cai, Yang. 2011]

We provide a linear NP-hardness reduction for mes(G) and mos(G),
hence 7 2°(") algo under ETH

11

We present FPT algorithms parameterized by rankwidth, in time:
o 20(m) . nO) for computing mes(G) and mos(G),
o 20(aw) . nO() for deciding whether yo4q(G) < g,

for an n-vertex graph G, given a decomposition tree of width at most rw.
@ Inspired by algorithms of [Bui-Xuan, Telle, Vatshelle. 2010-2011-2013]

o First algorithms in time 20(w?) . () for an NP-hard problem.

o Is the function 2°("™) optimal under the ETH? (#2°(" algo for 3-SAT)

o For deciding whether xo4d(G) < g, our NP-hardness reduction implies
that 7 20(n) algo under the ETH = 7 20(w) . nO()

o For computing mes(G) and mos(G), existing NP-hardness reduction
implies only that 7 2°(v") algo under the ETH. [Cai, Yang. 2011]

We provide a linear NP-hardness reduction for mes(G) and mos(G),
hence 3 2°(") algo under ETH = % 20(w) . nO(1)

11

Finally, we provide bounds on the parameters xod4d(G) and mos(G).

12

Finally, we provide bounds on the parameters xod4d(G) and mos(G).

@ We prove that, for every graph G with all components of even order,

Xodd(G) < tw(G) + 1.

12

Finally, we provide bounds on the parameters xod4d(G) and mos(G).

@ We prove that, for every graph G with all components of even order,
Xodd(G) < tW(G) + 1.

This bound is tight and has some consequences.

12

Finally, we provide bounds on the parameters xod4d(G) and mos(G).
@ We prove that, for every graph G with all components of even order,
Xodd(G) < tW(G) + 1.

This bound is tight and has some consequences.

Recall the “folklore” conjecture about mos(G):

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

12

Finally, we provide bounds on the parameters xod4d(G) and mos(G).
@ We prove that, for every graph G with all components of even order,
Xodd(G) < tW(G) + 1.

This bound is tight and has some consequences.

Recall the “folklore” conjecture about mos(G):

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

o Gy graphs of treewidth at most k without isolated vertices.

12

Finally, we provide bounds on the parameters xod4d(G) and mos(G).
@ We prove that, for every graph G with all components of even order,
Xodd(G) < tW(G) + 1.

This bound is tight and has some consequences.

Recall the “folklore” conjecture about mos(G):

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

o Gy graphs of treewidth at most k without isolated vertices.

R mos(G)
@ Cx = MINGeg, m

12

Finally, we provide bounds on the parameters xod4d(G) and mos(G).
@ We prove that, for every graph G with all components of even order,
Xodd(G) < tW(G) + 1.

This bound is tight and has some consequences.

Recall the “folklore” conjecture about mos(G):

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

o Gy graphs of treewidth at most k without isolated vertices.
R mos(G)
@ Cx = MINGeg, m

e So, ¢, > 0 if and only if the conjecture is true for G.

12

Finally, we provide bounds on the parameters xod4d(G) and mos(G).
@ We prove that, for every graph G with all components of even order,
Xodd(G) < tW(G) + 1.

This bound is tight and has some consequences.

Recall the “folklore” conjecture about mos(G):

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

o Gy: graphs of treewidth at most k without isolated vertices.
R mos(G)
@ Cx = MINGeg, m
e So, ¢, > 0 if and only if the conjecture is true for G.
: 1
o It is known that ¢, > 57745 [Scott. 1992]

12

Finally, we provide bounds on the parameters xod4d(G) and mos(G).
@ We prove that, for every graph G with all components of even order,
Xodd(G) < tW(G) + 1.

This bound is tight and has some consequences.

Recall the “folklore” conjecture about mos(G):

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

o Gy graphs of treewidth at most k without isolated vertices.

R mos(G)
@ Cx = MINGeg, m

e So, ¢, > 0 if and only if the conjecture is true for G.

o It is known that ¢, > m [Scott. 1992]

T 1
e Our bound implies that ¢, > o1
12

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

13

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

Proved for particular graph classes, with best possible constant ¢ > 0:

o Trees. [Radcliffe, Scott. 1995]
e Graphs G with bounded x(G). [Scott. 1992]
e Graphs G with A(G) < 3. [Berman, Wang, Wargo. 1997]

e Graphs G with tw(G) < 2. [Hou, Yu, Li, Liu. 2018]

13

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

Proved for particular graph classes, with best possible constant ¢ > 0:

o Trees. [Radcliffe, Scott. 1995]
e Graphs G with bounded x(G). [Scott. 1992]
e Graphs G with A(G) < 3. [Berman, Wang, Wargo. 1997]
e Graphs G with tw(G) < 2. [Hou, Yu, Li, Liu. 2018]

e We prove that if cw(G) < 2 (cographs), then

mos(G) > 2 - {nzz-‘,

13

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

Proved for particular graph classes, with best possible constant ¢ > 0:

o Trees. [Radcliffe, Scott. 1995]
e Graphs G with bounded x(G). [Scott. 1992]
e Graphs G with A(G) < 3. [Berman, Wang, Wargo. 1997]
e Graphs G with tw(G) < 2. [Hou, Yu, Li, Liu. 2018]

e We prove that if cw(G) < 2 (cographs), then

n—2

mos(G) > 2 - { -‘, and this bound is tight.

13

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

Proved for particular graph classes, with best possible constant ¢ > 0:

o Trees. [Radcliffe, Scott. 1995]
e Graphs G with bounded x(G). [Scott. 1992]
e Graphs G with A(G) < 3. [Berman, Wang, Wargo. 1997]
e Graphs G with tw(G) < 2. [Hou, Yu, Li, Liu. 2018]

e We prove that if cw(G) < 2 (cographs), then

n—2

mos(G) > 2 - { -‘, and this bound is tight.

@ We prove that, if G is a cograph, then xo44(G) < 3, and this is tight.

13

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

Proved for particular graph classes, with best possible constant ¢ > 0:

o Trees. [Radcliffe, Scott. 1995]
e Graphs G with bounded x(G). [Scott. 1992]
e Graphs G with A(G) < 3. [Berman, Wang, Wargo. 1997]
e Graphs G with tw(G) < 2. [Hou, Yu, Li, Liu. 2018]

We prove that if cw(G) < 2 (cographs), then

n—2

mos(G) > 2 - { -‘, and this bound is tight.

We prove that, if G is a cograph, then xo44(G) < 3, and this is tight.

Note that cographs are exactly P,-free graphs.

13

There exists a constant ¢ > 0 such that, for every n-vertex graph G
without isolated vertices, mos(G) > c - n.

Proved for particular graph classes, with best possible constant ¢ > 0:

o Trees. [Radcliffe, Scott. 1995]
e Graphs G with bounded x(G). [Scott. 1992]
e Graphs G with A(G) < 3. [Berman, Wang, Wargo. 1997]
e Graphs G with tw(G) < 2. [Hou, Yu, Li, Liu. 2018]

We prove that if cw(G) < 2 (cographs), then

n—2

mos(G) > 2 - { -‘, and this bound is tight.

We prove that, if G is a cograph, then xo44(G) < 3, and this is tight.

Note that cographs are exactly P,-free graphs.
We show that Yoq4q is unbounded for Ps-free graphs.

13

© Some proofs

14

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

15

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

For g = 1 the problem is trivial: G needs to be an odd graph itself.

15

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

For g = 2 = feasibility of a system of linear equations over GF|[2]:

15

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

For g = 2 = feasibility of a system of linear equations over GF|[2]:
o V(G)={vi,...,vn}.

15

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

For g = 2 = feasibility of a system of linear equations over GF|[2]:
o V(G)={vi,...,vp}. Want V(G) = Vo & V; with G[V],G[V4] odd.

15

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

For g = 2 = feasibility of a system of linear equations over GF|[2]:
o V(G)={vi,...,vp}. Want V(G) = Vo & V; with G[V],G[V4] odd.
@ For every vertex v;, create a binary variable x;.
For every edge v;v;, create a binary variable x; ;.

15

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

For g = 2 = feasibility of a system of linear equations over GF|[2]:
o V(G)={vi,...,vp}. Want V(G) = Vo & V; with G[V],G[V4] odd.
@ For every vertex v;, create a binary variable x;.
For every edge v;v;, create a binary variable x; ;.

@ x;: indicates whether v; € V or v; € V;.

15

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

For g = 2 = feasibility of a system of linear equations over GF|[2]:
o V(G)={vi,...,vp}. Want V(G) = Vo & V; with G[V],G[V4] odd.
@ For every vertex v;, create a binary variable x;.
For every edge v;v;, create a binary variable x; ;.

@ x;: indicates whether v; € V or v; € V;.
xij: indicates whether v;v; is monochromatic (1) or not (0).

15

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

For g = 2 = feasibility of a system of linear equations over GF|[2]:
o V(G)={vi,...,vp}. Want V(G) = Vo & V; with G[V],G[V4] odd.
@ For every vertex v;, create a binary variable x;.
For every edge v;v;, create a binary variable x; ;.

@ x;: indicates whether v; € V or v; € V;.
xij: indicates whether v;v; is monochromatic (1) or not (0).

{ xi+xi+xj=1 for every edge viv; € E(G)

15

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and
o NP-complete if g > 3.

For g = 2 = feasibility of a system of linear equations over GF|[2]:
o V(G)={vi,...,vp}. Want V(G) = Vo & V; with G[V],G[V4] odd.
@ For every vertex v;, create a binary variable x;.
For every edge v;v;, create a binary variable x; ;.

@ x;: indicates whether v; € V or v; € V;.
xij: indicates whether v;v; is monochromatic (1) or not (0).

xi+xi+xj=1 for every edge viv; € E(G)
Yjven(v) Xij =1 for every vertex v; € V(G)

15

For an integer q > 1, deciding whether Xo4d4(G) < q is

@ polynomial-time solvable if g < 2, and

o NP-complete if g > 3.

For g = 2 = feasibility of a system of linear equations over GF|[2]:
o V(G)={vi,...,vp}. Want V(G) = Vo & V; with G[V],G[V4] odd.
@ For every vertex v;, create a binary variable x;.
For every edge v;v;, create a binary variable x; ;.

@ x;: indicates whether v; € V or v; € V;.
xij: indicates whether v;v; is monochromatic (1) or not (0).

xi+xi+xj=1 for every edge viv; € E(G)
Yjven(v) Xij =1 for every vertex v; € V(G)

® Xodd(G) <2 <= the above system is feasible. O

15

Deciding whether Xo44(G) < g is NP-complete if g > 3.

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING.

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

\

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

16

Deciding whether Xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

®
y

16

Deciding whether x,44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

[]

16

Deciding whether x,44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V/, E) such that |V|+ |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

*—e

At

16

Deciding whether xo44(G) < g is NP-complete if g > 3.

We reduce from g-COLORING. Suppose g = 3.

% Any graph G = (V/, E) such that |V| + |E| is even admits an orientation
of E such that all vertex in-degrees are odd. [Frank, Jordan, Szigeti. 1999]

*—e

At

Thus, G is 3-colorable <= x,44(G’) < 3. O

16

For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

17

For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

17

For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

(7
S

Given G, consider a partition of V(G) into induced odd trees.

17

For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

Let G’ be obtained from G by contracting each tree to a single vertex.

17

For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

Consider a proper vertex coloring of G’ using x(G’) colors.

17

For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

We have that xo4d(G) < x(G')

17

For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

We have that xodd(G) < x(G') < tw(G') +1

17

For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

We have that xodd(G) < x(G') <tw(G') +1 <tw(G) + 1. O

17

For every graph G with all components of even order we have that
Xodd(G) < tw(G) + 1, and this bound is tight.

% Every graph G with all components of even order admits a vertex
partition such that every vertex class induces an odd tree. [Scott. 2001]

Bound is tight: let G be subdivided n-clique with n = 0,3 (mod 4).

17

If cw(G) < 2 (cograph), then mos(G) > 2 - {”_2], and this bound is tight.

4

18

If cw(G) < 2 (cograph), then mos(G) > 2 - {”_2], and this bound is tight.

4

Every n-vertex graph G that admits a join satisfies mos(G) > 2 - [”221.

18

If cw(G) < 2 (cograph), then mos(G) > 2 - {”_2], and this bound is tight.

4

Every n-vertex graph G that admits a join satisfies mos(G) > 2 - [”221.

hat

18

If cw(G) < 2 (cograph), then mos(G) > 2 - {”_2], and this bound is tight.

4

Every n-vertex graph G that admits a join satisfies mos(G) > 2 - [”221.

even even

odd >< odd

18

If cw(G) < 2 (cograph), then mos(G) > 2 - {”_2], and this bound is tight.

4

Every n-vertex graph G that admits a join satisfies mos(G) > 2 - [”221.

even even

odd >< odd

This bound is tight even for cographs:

18

If cw(G) < 2 (cograph), then mos(G) > 2 - {”_2], and this bound is tight.

4

Every n-vertex graph G that admits a join satisfies mos(G) > 2 - [”221.

even even

odd >< odd

This bound is tight even for cographs:

Kaa: Cy

14y

18

If cw(G) < 2 (cograph), then mos(G) > 2 - {”_2], and this bound is tight.

4

Every n-vertex graph G that admits a join satisfies mos(G) > 2 - [”221.

even even

odd >< odd

This bound is tight even for cographs:

+
K99 Cs

Odd graphs on four vertices: Kj, K13, and 2K>.

18

If cw(G) < 2 (cograph), then mos(G) > 2 - {”22], and this bound is tight.

Every n-vertex graph G that admits a join satisfies mos(G) > 2 - [”221.

even even

odd >< odd

This bound is tight even for cographs:

+
K99 Cs

Odd graphs on four vertices: Kj, K13, and 2K>.
Thus, mos(K2,22) = mos(G5") = 2

18

If cw(G) < 2 (cograph), then mos(G) > 2 - [

] and this bound is tight.

Every n-vertex graph G that admits a join satisfies mos(G) > 2 - {"‘

even

even

odd ><

odd

This bound is tight even for cographs:

§ z K99 @C

Odd graphs on four vertices: Kj, K13, and 2K>.
Thus, mos(Kz22) = mos(C+) =2=2. [7W —9. [%W

|

18

@ Further research

19

20

@ Algo in time 20(a™) . n,O() for deciding whether xo44(G) < g.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)

20

@ Algo in time 20(a™) . n,O() for deciding whether xo44(G) < g.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)

@ We proved that xodd(G) < tw(G) + 1.

20

@ Algo in time 20(a™) . n,O() for deciding whether xo44(G) < g.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)

@ We proved that xodd(G) < tw(G) + 1.
Xodd(G) < f(rw(G)) for some f?

20

@ Algo in time 20(a™) . n,O() for deciding whether xo44(G) < g.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)

@ We proved that xodd(G) < tw(G) + 1.
Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.

20

@ Algo in time 20(a™) . n,O() for deciding whether xo44(G) < g.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)

@ We proved that xodd(G) < tw(G) + 1.
Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.

Xodd(G) < f(rw(G)) - log n for some f?

20

@ Algo in time 20(a™) . n,O() for deciding whether xo44(G) < g.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)

@ We proved that xodd(G) < tw(G) + 1.
Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.

Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.

20

@ Algo in time 20(a™) . n,O() for deciding whether xo44(G) < g.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)
@ We proved that xodd(G) < tw(G) + 1.
Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.
Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.

© The CHROMATIC NUMBER problem is W([1]-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing xodd(G)?

20

Algo in time 29(@™) . nO() for deciding whether xoq44(G) < q.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)
We proved that xo4d(G) < tw(G) + 1.

Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.
Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.

The CHROMATIC NUMBER problem is W([1]|-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing xodd(G)?

Deciding whether xo44(G) < g parameterized by tw:

20

Algo in time 29(@™) . nO() for deciding whether xoq44(G) < q.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)
We proved that xo4d(G) < tw(G) + 1.

Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.
Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.

The CHROMATIC NUMBER problem is W([1]|-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]
Can their reduction be adapted to computing xodd(G)?

Deciding whether xo44(G) < g parameterized by tw:
o Natural DP algo in time (2q)™ - n®®)

20

Algo in time 29(@™) . nO() for deciding whether xoq44(G) < q.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)
We proved that xo4d(G) < tw(G) + 1.

Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.
Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.

The CHROMATIC NUMBER problem is W([1]|-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]
Can their reduction be adapted to computing xodd(G)?

Deciding whether xo44(G) < g parameterized by tw:
o Natural DP algo in time (2q)™ - nM) < (2tw + 2)® - n©1),

20

Algo in time 29(@™) . nO() for deciding whether xoq44(G) < q.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)
We proved that xo4d(G) < tw(G) + 1.

Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.

Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.

The CHROMATIC NUMBER problem is W([1]|-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing xodd(G)?

Deciding whether xo44(G) < g parameterized by tw:

o Natural DP algo in time (2q)™ - nM) < (2tw 4 2)® - n©(),
o It can be proved that # tw°(®™) . n®1) ynder the ETH v

20

Algo in time 29(@™) . nO() for deciding whether xoq44(G) < q.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)

We proved that xo4d(G) < tw(G) + 1.
Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.

Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.

The CHROMATIC NUMBER problem is W([1]|-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing xodd(G)?

Deciding whether xo44(G) < g parameterized by tw:
o Natural DP algo in time (2q)™ - nM) < (2tw 4 2)® - n©(),
o It can be proved that # tw°(®™) . n®1) ynder the ETH v
e Right constants under the SETH?

20

Algo in time 29(@™) . nO() for deciding whether xoq44(G) < q.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)
We proved that xo4d(G) < tw(G) + 1.

Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.

Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.
The CHROMATIC NUMBER problem is W([1]|-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]
Can their reduction be adapted to computing xodd(G)?
Deciding whether xo44(G) < g parameterized by tw:
o Natural DP algo in time (2q)™ - nM) < (2tw 4 2)® - n©(),

o It can be proved that # tw°(®™) . n®1) ynder the ETH v
e Right constants under the SETH?

We know mes(G) > n/2.

20

Algo in time 29(@™) . nO() for deciding whether xoq44(G) < q.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)
We proved that xo4d(G) < tw(G) + 1.

Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.

Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.
The CHROMATIC NUMBER problem is W([1]|-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]
Can their reduction be adapted to computing xodd(G)?
Deciding whether xo44(G) < g parameterized by tw:
o Natural DP algo in time (2q)™ - nM) < (2tw 4 2)® - n©(),

o It can be proved that # tw°(®™) . n®1) ynder the ETH v
e Right constants under the SETH?

We know mes(G) > n/2. Deciding mes(G) > n/2 + k with param. k?

20

Algo in time 29(@™) . nO() for deciding whether xoq44(G) < q.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)

We proved that xo4d(G) < tw(G) + 1.
Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.

Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.

The CHROMATIC NUMBER problem is W([1]|-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing xodd(G)?

Deciding whether xo44(G) < g parameterized by tw:
o Natural DP algo in time (2q)™ - nM) < (2tw 4 2)® - n©(),
o It can be proved that # tw°(®™) . n®1) ynder the ETH v
e Right constants under the SETH?

We know mes(G) > n/2. Deciding mes(G) > n/2 + k with param. k?

The problems that we considered can be seen as the “parity version”
of INDEPENDENT SET and g-COLORING.

20

Algo in time 29(@™) . nO() for deciding whether xoq44(G) < q.
Computing xodd(G) parameterized by rw is FPT, W[1]-hard? (XP)

We proved that xo4d(G) < tw(G) + 1.
Xodd(G) < f(rw(G)) for some f? Would imply FPT algorithm.

Xodd(G) < f(rw(G)) - log n for some f? Would imply XP algorithm.

The CHROMATIC NUMBER problem is W([1]|-hard param. by cw/rw.
[Fomin, Golovach, Lokshtanov, Saurabh. 2010]

Can their reduction be adapted to computing xodd(G)?

Deciding whether xo44(G) < g parameterized by tw:
o Natural DP algo in time (2q)™ - nM) < (2tw 4 2)® - n©(),
o It can be proved that # tw°(®™) . n®1) ynder the ETH v
e Right constants under the SETH?

We know mes(G) > n/2. Deciding mes(G) > n/2 + k with param. k?

The problems that we considered can be seen as the “parity version”
of INDEPENDENT SET and g-COLORING. Other problems?

20

Gracies!

21

	Introduction
	Our results
	Some proofs
	Further research

