Valid Inequalities
 for
 Mixed Integer Linear Programs

Gérard Cornuéjols

Laboratoire d'Informatique Fondamentale
Université de la Méditerranée
Marseille

Brief history

First Algorithms

Polynomial Algorithms

Solving systems of linear equations

- Babylonians 1700BC
- Gauss 1801
- Edmonds 1967

Solving systems of linear inequalities

- Fourier 1822
- Dantzig 1951
- Khachyan 1979
- Karmarkar 1984

Solving systems of linear inequalities in integers

- Gomory 1958
- Lenstra 1983

Improvements in MILP software

in the last 15 years

Based on Bixby, Gu, Rothberg, Wunderling 2004 and Laundy, Perregaard, Tavares, Tipi, Vazacopoulos 2007

Instances that would have required years of computing time 15 years ago can be solved in seconds today.

- LP Algorithms
- MILP Algorithms
- Computers
- Overall speedup

1000 times faster 1000 times faster 1000 times faster

1000000000

Sources of improvement for MILP :

- Preprocessors Factor 2
- Heuristics Factor 1,5
- Cutting Planes Factor 300

Mixed Integer Linear Programming

$$
\begin{aligned}
\min & c x \\
& x \in S
\end{aligned}
$$

where $S:=\left\{x \in \mathbb{Z}_{+}^{p} \times \mathbb{R}_{+}^{n-p}: A x \geq b\right\}$

$$
\begin{aligned}
\text { Linear } & \text { Relaxation } \\
\min & c x \\
& x \in P \\
\text { where } & P:=\left\{x \in \mathbb{R}_{+}^{n}: A x \geq b\right\}
\end{aligned}
$$

Branch-and-bound

Cutting Planes

Polyhedral Theory

$$
\begin{aligned}
& P:=\left\{x \in \mathbb{R}_{+}^{n}: A x \geq b\right\} \quad \text { Polyhedron } \\
& S:=P \cap\left(\mathbb{Z}_{+}^{p} \times \mathbb{R}_{+}^{n-p}\right) \quad \text { Mixed Integer Linear Set } \\
& \text { Conv } S:=\left\{x \in \mathbb{R}^{n}: \begin{array}{l}
\quad \exists x^{1}, \ldots, x^{k} \in S, \lambda \geq 0, \sum \lambda_{i}=1 \\
\text { such that } \left.x=\lambda_{1} x^{1}+\ldots+\lambda_{k} x^{k}\right\}
\end{array}\right.
\end{aligned}
$$

THEOREM Meyer 1974
If A, b have rational entries, then Conv S is a polyhedron.
Proof Using a theorem of Minkowski, Weyl :
P is a polyhedron if and only if $P=Q+C$ where Q is a polytope and C is a polyhedral cone.

Thus $\quad \min \begin{aligned} & c x \\ & \\ & \\ & x \in S\end{aligned}$

can be rewritten as the LP

$$
\begin{array}{ll}
\min & c x \\
& x \in \operatorname{Conv} S
\end{array}
$$

We are interested in the constructive aspects of Conv S.
REMARK The number of constraints of Conv S can be exponential in the size of $A x \geq b$, BUT

1) sometimes a partial representation of Conv S suffices
(Example: Dantzig, Fulkerson, Johnson 1954) ;
2) Conv S can sometimes be obtained as the projection of a polyhedron with a polynomial number of variables and constraints.

Projections

Let $P:=\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{k}: A x+G y \geq b\right\}$
DEFINITION
$\operatorname{Proj}_{x}(P):=\left\{x \in \mathbb{R}^{n}: \exists y \in \mathbb{R}^{k}\right.$ such that $\left.A x+G y \geq b\right\}$

THEOREM
$\operatorname{Proj}_{x}(P)=\left\{x \in \mathbb{R}^{n}: v A x \geq v b\right.$ for all $\left.v \in Q\right\}$ where $Q:=\left\{v \in \mathbb{R}^{m}: v G=0, v \geq 0\right\}$.

PROOF

Let $x \in \mathbb{R}^{n}$. Farkas's lemma implies that $G y \geq b-A x$ has a solution y if and only if $v(b-A x) \leq 0$ for all $v \geq 0$ such that $v G=0$

Sherali-Adams 1990

Lift-and-Project Lovász-Schrijver 1991
Balas-Ceria-Cornuéjols 1993

Let

$$
\begin{aligned}
& S:=\left\{x \in\{0,1\}^{p} \times \mathbb{R}_{+}^{n-p}: A x \geq b\right\} \\
& P:=\left\{x \in \mathbb{R}_{+}^{n}: A x \geq b\right\}
\end{aligned}
$$

LIFT-AND-PROJECT PROCEDURE

STEP 0 Choose an index $j \in\{1, \ldots, p\}$.
STEP 1 Generate the nonlinear system

$$
\begin{aligned}
x_{j}(A x-b) & \geq 0 \\
\left(1-x_{j}\right)(A x-b) & \geq 0
\end{aligned}
$$

STEP 2 Linearize the system by substituting $x_{i} x_{j}$ by y_{i} for $i \neq j$, and x_{j}^{2} by x_{j}. Denote this polyhedron by M_{j}.
STEP 3 Project M_{j} on the x-space. Denote this polyhedron by P_{j}.
PROPOSITION $\operatorname{Conv}(S) \subseteq P_{j} \subseteq P$.

THEOREM $\quad P_{j}=\operatorname{Conv}\left\{\binom{A x \geq b}{x_{j}=0} \cup\binom{A x \geq b}{x_{j}=1}\right\}$.

THEOREM Balas $1979 \operatorname{Conv}(P)=P_{p}\left(\ldots P_{2}\left(P_{1}\right) \ldots\right)$.
LIFT-AND-PROJECT CUT
Given a fractional solution \bar{x} of the linear relaxation $A x \geq b$, find a cutting plane $\alpha x \geq \beta$ (namely $\alpha \bar{x}<\beta$) that is valid for P_{j} (and therefore for S).
DEEPEST CUT $\begin{gathered}\max \beta-\alpha \bar{x} \\ \alpha x \geq \beta \text { valid for } P_{j}\end{gathered}$

CUT GENERATION LINEAR PROGRAM

$$
\begin{aligned}
& M_{j}:=\left\{x \in \mathbb{R}_{+}^{n}, y \in \mathbb{R}_{+}^{n}:\right. \\
& A y-b x_{j} \geq 0, \\
& A x+b x_{j}-A y \geq b, \\
& y_{j}\left.=x_{j}\right\}
\end{aligned}
$$

The first two constraints come from the linearization in STEP 1.

$$
\begin{array}{r}
M_{j}:=\left\{x \in \mathbb{R}_{+}^{n}, y \in \mathbb{R}_{+}^{n-1}:\right. \\
B_{j} x+A_{j} y \geq 0, \\
\left.D_{j} x-A_{j} y \geq b\right\}
\end{array}
$$

To project onto the x-space, we use the cone

$$
Q:=\left\{u, v \geq 0: u A_{j}-v A_{j}=0\right\}
$$

$$
\begin{array}{r}
P_{j}=\left\{x \in \mathbb{R}_{+}^{n}:\left(u B_{j}+v D_{j}\right) x \geq v b\right. \\
\\
\text { for all }(u, v) \in Q\}
\end{array}
$$

DEEPEST CUT

$$
\begin{gathered}
\max v b-\left(u B_{j}+v D_{j}\right) \bar{x} \\
u A_{j}-v A_{j}=0 \\
u \geq 0, v \geq 0 \\
\sum u_{i}+\sum v_{i}=1
\end{gathered}
$$

SIZE OF THE CUT GENERATION LP

$$
\begin{array}{r}
\max v b-\left(u B_{j}+v D_{j}\right) \bar{x} \\
u A_{j}-v A_{j}=0 \\
\sum u_{i}+\sum v_{i}=1 \\
u \geq 0, v \geq 0
\end{array}
$$

Number of variables: $2 m$
Number of constraints : $n+$ nonnegativity

Balas and Perregaard 2003 give a precise correspondance between the basic feasible solutions of the cut generation LP and the basic solutions of the LP

$$
\min c x
$$

$$
A x \geq b
$$

LIFT-AND-PROJECT CLOSURE OF P

$$
F:=\bigcap_{j=1}^{p} P_{j}
$$

REMARK Balas and Jeroslow 1980 show how to strengthen cutting planes by using the integrality of the other integer variables (lift-and-project only considers the integrality of one variable x_{j} at a time).

Experiments of Bonami and Minoux 2005 on MIPLIB 3 instances give the amount of duality gap $=\min _{x \in S} C x-\min _{x \in P} C x$ closed by strengthening P :

Lift-and-project closure
37 \%
Lift-and-project + strengthening
45%

Mixed Integer Cuts Gomory 1963

Consider a single constraint : $S:=\left\{x \in \mathbb{Z}_{+}^{p} \times \mathbb{R}_{+}^{n-p}: \sum_{j=1}^{n} a_{j} x_{j}=b\right\}$.
Let $b=\lfloor b\rfloor+f_{0}$ where $0<f_{0}<1$, and $a_{j}=\left\lfloor a_{j}\right\rfloor+f_{j}$ where $0 \leq f_{j}<1$.

THEOREM

$$
\sum_{f_{j} \leq f_{0}}^{j \leq p:} \frac{f_{j}}{f_{0}} x_{j}+\sum_{f_{j}>f_{0}}^{j \leq p:} \frac{1-f_{j}}{1-f_{0}} x_{j}+\sum_{a_{j}>0}^{j \geq p+1:} \frac{a_{j}}{f_{0}} x_{j}-\sum_{a_{j}<0}^{j \geq p+1:} \frac{a_{j}}{1-f_{0}} x_{j} \geq 1
$$

is a valid inequality for S.

APPLICATION

$$
\begin{array}{rl}
\max z=x_{1}+2 x_{2} & z+0.5 s_{1}+1.5 s_{2}=8.5 \\
-x_{1}+x_{2} \leq 2 & x_{1}-0.5 s_{1}+0.5 s_{2}=1.5 \\
x_{1}+x_{2} \leq 5 & x_{2}+0.5 s_{1}+0.5 s_{2}=3.5 \\
x_{1} \in \mathbb{Z}_{+} & \text {Cut } \quad s_{1}+s_{2} \geq 1 . \\
x_{2} \in \mathbb{R}_{+} & \text {Or } \quad x_{2} \leq 3 .
\end{array}
$$

HOW GOOD ARE GOMORY CUTS GENERATED FROM THE OPTIMAL BASIS ?
 Bonami and Minoux 2005 MIPLIB 3
 Gomory cuts
 (optimal basis)
 24 \%
 Lift-and-project closure
 37 \%
 Lift-and-project + strengthening
 45 \%

CAN ONE IMPROVE GOMORY CUTS BY GENERATING THEM FROM OTHER BASES
(Balas, Perregaard 2003)
(Balas, Bonami 2007)
OR OTHER EQUATIONS ?
(Andersen, Cornuéjols, Li 2005)

Reduce-and-split cuts

Andersen, Cornuéjols, Li 2005

Perform linear combinaisons of the constraints $\sum_{j=1}^{n} a_{j} x_{j}=b$ in order to reduce the coefficients of the continuous variables, and generate the corresponding Gomory cuts.

Why?
Remember the Gomory cut formula :

$$
\sum_{f_{j} \leq f_{0}}^{j \leq p:} \frac{f_{j}}{f_{0}} x_{j}+\sum_{f_{j}>f_{0}}^{j \leq p:} \frac{1-f_{j}}{1-f_{0}} x_{j}+\sum_{a_{j}>0}^{j \geq p+1:} \frac{a_{j}}{f_{0}} x_{j}-\sum_{a_{j}<0}^{j \geq p+1:} \frac{a_{j}}{1-f_{0}} x_{j} \geq 1
$$

ALGORITHM Consider the lines L of the optimal simplex tableau for the basic variables x_{i} such that $i \leq p$.
For every line $\ell \in L$, reduce the norm $\left\|\left(a_{p+1}^{\ell}, \ldots, a_{n}^{\ell}\right)\right\|$ by performing integer combinaisons of the other lines of L.

COMPUTATIONAL RESULTS ON MIPLIB INSTANCES

- Reduce-and-split cuts are often very different from Gomory cuts generated directly from the optimal basis.
- Their quality is typically at least as good.
- In some cases, their quality is much better :

Name	20 Times Gomory	20 Rimes	Nodes Gomory	Nodes R\&S
flugpl	14%	100%	184	0
gesa2	46%	97%	743	116
gesa2o	92%	98%	9145	75
mod008	47%	88%	1409	82
pp08a	83%	92%	7467	745
rgn	15%	100%	874	0
vpm1	44%	98%	7132	1
vpm2	41%	61%	38946	4254

GOMORY CLOSURE

$A x \geq b \quad x \in \mathbb{Z}_{+}^{p} \times \mathbb{R}_{+}^{n-p}$

- Every valid inequality for $P:=\{x \geq 0: A x \geq b\}(\neq \emptyset)$ is of the form $u A x+v x \geq u b-t$, where $u, v, t \geq 0$.
- Subtract a nonnegative surplus variable $\alpha x-s=\beta$.
- Generate a Gomory inequality.
- Eliminate $s=\alpha x-\beta$ to get the inequality in the x-space.
- The convex set obtained by intersecting all these inequalities with P is called the Gomory closure.

THEOREM Cook, Kannan, Schrijver 1990
The Gomory closure is a polyhedron.
THEOREM Caprara, Letchford 2002 et Cornuéjols, Li 2002
It is NP-hard to optimize a linear function over the Gomory closure.

Nevertheless,
Balas and Saxena 2006 and Dash, Günlück and Lodi 2007 were able to optimize over the Gomory closure by solving a sequence of parametric MILPs.

DUALITY GAP CLOSED BY DIFFERENT CUTS MIPLIB 3

Gomory cuts (optimal basis)

24 \%

Reduce-and-split (optimal basis)

30 \%

Gomory closure 80 \%

Duality gap closed by different types of cutting planes MIPLIB 3 instances

Mixed integer rounding Nemhauser-Wolsey 1990 Wolsey 1999
$S:=\left\{x \in \mathbb{Z}_{+}^{p} \times \mathbb{R}_{+}^{n-p}: A x \leq b\right\}$
AGGREGATION $u A x \leq u b, u \geq 0$, or $\bar{a} x \leq \bar{b}$.
THEOREM

$$
\sum_{i \leq p}\left(\left\lfloor\bar{a}_{i}\right\rfloor+\frac{\left(f_{i}-f_{0}\right)^{+}}{1-f_{0}}\right) x_{i}+\sum_{\substack{i \geq p+1: \\ \bar{a}_{i}<0}} \frac{\bar{a}_{i}}{1-f_{0}} x_{i} \leq\lfloor\bar{b}\rfloor
$$

is a valid inequality for S. It is called MIR.
REMARK It is the same cut as the Gomory inequality obtained from $\bar{a} x+s=\bar{b}$ where $s \geq 0$.

REMARK Stronger inequalities can be obtained by first adding slack variables to $A x \leq b$, and then aggregating the equalities $A x+s=b$ using multipliers u_{i} (positive or negative). Bonami and Cornuéjols 2007, and Dash, Günlük and Lodi 2007

Mixed integer rounding continued

$S:=\left\{x \in \mathbb{Z}_{+}^{p} \times \mathbb{R}_{+}^{n-p}: \quad A x \leq b\right\}$
AGGREGATION $u A x+u s=u b$.
Define the MIR closure as the intersection of the MIR inequalities generated from all the possible multipliers u.

THEOREM The MIR closure is identical to the Gomory closure.
Marchand-Wolsey 2001

- Several classical inequalities for structured problems are MIR inequalities, like "flow cover" inequalities.
- An aggregation heuristic to generate MIR cuts closes around 23% of the duality gap.

Split Inequalities Cook-Kannan-Schrijver 1990

$$
\begin{aligned}
& P:=\left\{x \in \mathbb{R}^{n}: A x \geq b\right\} \\
& S:=P \cap\left(\mathbb{Z}^{p} \times \mathbb{R}^{n-p}\right) .
\end{aligned}
$$

For $\pi \in \mathbb{Z}^{n}$ such that $\pi_{p+1}=\ldots=\pi_{n}=0$ and $\pi_{0} \in \mathbb{Z}$, define

$$
\begin{gathered}
\Pi_{1}:=P \cap\left\{x: \pi x \leq \pi_{0}\right\} \\
\Pi_{2}:=P \cap\left\{x: \pi x \geq \pi_{0}+1\right\}
\end{gathered}
$$

We call $c x \leq c_{0}$ a split inequality if there exists $\left(\pi, \pi_{0}\right) \in \mathbb{Z}^{p} \times \mathbb{Z}$ such that $c x \leq c_{0}$ is valid for $\Pi_{1} \cup \Pi_{2}$.

The split closure is the intersection of all split inequalities.
THEOREM Nemhauser-Wolsey 1990, Cornuéjols-Li 2002
The split closure is identical to the Gomory closure.

Chvátal Inequalities Chvátal 1973

A Chvátal inequality is a split inequality where $\Pi_{2}=\emptyset$.

The Chvátal closure is the intersection of all these inequalities.
REMARK Chvátal defined this concept in 1973 in the context of pure integer programs.

The Chvátal closure reduces the duality gap by around 63% on the pure integer MIPLIB 03 instances (Fischetti-Lodi 2006) and around 28% on the mixed instances (Bonami-Cornuéjols-Dash-Fischetti-Lodi 2007).

Duality gap closed by different types of cutting planes MIPLIB 3 instances

Paper available on http ://integer.tepper.cmu.edu/

