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Brief history

First Algorithms Polynomial Algorithms

Solving systems of linear equations

• Babylonians 1700BC
• Gauss 1801

• Edmonds 1967

Solving systems of linear inequalities

• Fourier 1822
• Dantzig 1951

• Khachyan 1979
• Karmarkar 1984

Solving systems of linear inequalities in integers

• Gomory 1958 • Lenstra 1983



Improvements in MILP software

in the last 15 years

Based on Bixby, Gu, Rothberg, Wunderling 2004
and Laundy, Perregaard, Tavares, Tipi, Vazacopoulos 2007

Instances that would have required years of computing time
15 years ago can be solved in seconds today.

• LP Algorithms
• MILP Algorithms
• Computers

1000 times faster
1000 times faster
1000 times faster

◮ Overall speedup 1 000 000 000

Sources of improvement for MILP :

◮ Preprocessors Factor 2

◮ Heuristics Factor 1,5

◮ Cutting Planes Factor 300



Mixed Integer Linear Programming

min cx

x ∈ S

where S := {x ∈ Z
p
+ × R

n−p
+ : Ax ≥ b}
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x ∈ P
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n
+ : Ax ≥ b}
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cut

0 1 2

Ax ≥ b

x1

x2
objective

Cutting Planes



Polyhedral Theory

P := {x ∈ R
n
+ : Ax ≥ b} Polyhedron

S := P ∩ (Zp
+ × R

n−p
+ ) Mixed Integer Linear Set

Conv S := {x ∈ R
n : ∃x1, . . . , xk ∈ S , λ ≥ 0,

∑

λi = 1
such that x = λ1x

1 + . . . + λkxk}

THEOREM Meyer 1974
If A, b have rational entries, then Conv S is a polyhedron.

Proof Using a theorem of Minkowski, Weyl :
P is a polyhedron if and only if P = Q + C where Q is a polytope
and C is a polyhedral cone.

P
ConvS

S

P S ConvS



Thus
min cx

x ∈ S

0

Ax ≥ b

1 2
x1

x2
objective

can be rewritten as the LP

min cx

x ∈ Conv S

0

Ax ≥ b

1 2
x1

x2
objective

We are interested in the constructive aspects of Conv S .

REMARK The number of constraints of Conv S can be
exponential in the size of Ax ≥ b, BUT
1) sometimes a partial representation of Conv S suffices
(Example : Dantzig, Fulkerson, Johnson 1954) ;
2) Conv S can sometimes be obtained as the projection of a
polyhedron with a polynomial number of variables and constraints.



Projections

Let P := {(x , y) ∈ R
n × R

k : Ax + Gy ≥ b}

DEFINITION
Projx(P) := {x ∈ R

n : ∃y ∈ R
k such that Ax + Gy ≥ b}

y

x

Projx(P)

P

THEOREM
Projx(P) = {x ∈ R

n : vAx ≥ vb for all v ∈ Q}
where Q := {v ∈ R

m : vG = 0, v ≥ 0}.

PROOF
Let x ∈ R

n. Farkas’s lemma implies that
Gy ≥ b − Ax has a solution y if and only if
v(b − Ax) ≤ 0 for all v ≥ 0 such that vG = 0. �



Lift-and-Project
Sherali-Adams 1990
Lovász-Schrijver 1991
Balas-Ceria-Cornuéjols 1993

Let
S := {x ∈ {0, 1}p × R

n−p
+ : Ax ≥ b}

P := {x ∈ R
n
+ : Ax ≥ b}

LIFT-AND-PROJECT PROCEDURE

STEP 0 Choose an index j ∈ {1, . . . , p} .

STEP 1 Generate the nonlinear system
xj(Ax − b) ≥ 0

(1 − xj)(Ax − b) ≥ 0

STEP 2 Linearize the system by substituting xixj by yi for i 6= j ,
and x2

j by xj . Denote this polyhedron by Mj .

STEP 3 Project Mj on the x-space. Denote this polyhedron by Pj .

PROPOSITION Conv(S) ⊆ Pj ⊆ P .



THEOREM Pj = Conv{

(

Ax ≥ b

xj = 0

)

∪

(

Ax ≥ b

xj = 1

)

}.

0 1

Ax ≥ b

Pj

Ax ≥ b
xj = 0

Ax ≥ b
xj = 1 xj

THEOREM Balas 1979 Conv(P) = Pp(. . . P2(P1) . . .).

LIFT-AND-PROJECT CUT
Given a fractional solution x̄ of the linear relaxation Ax ≥ b, find a
cutting plane αx ≥ β (namely αx̄ < β) that is valid for Pj (and
therefore for S ).

DEEPEST CUT
max β − αx̄

αx ≥ β valid for Pj



CUT GENERATION LINEAR PROGRAM

Mj := {x ∈ R
n
+, y ∈ R

n
+ :

Ay − bxj ≥ 0,
Ax + bxj − Ay ≥ b,

yj = xj}

The first two constraints come from
the linearization in STEP 1.

In fact, one does
not use the
variable yj

Mj := {x ∈ R
n
+, y ∈ R

n−1
+ :

Bjx + Ajy ≥ 0,
Djx − Ajy ≥ b}

To project onto the x-space,
we use the cone
Q := {u, v ≥ 0 : uAj − vAj = 0}

Pj = {x ∈ R
n
+ : (uBj + vDj)x ≥ vb

for all (u, v) ∈ Q}

DEEPEST CUT

max vb − (uBj + vDj)x̄
uAj − vAj = 0
u ≥ 0, v ≥ 0

∑

ui +
∑

vi = 1



SIZE OF THE CUT GENERATION LP

max vb − (uBj + vDj)x̄
uAj − vAj = 0

∑

ui +
∑

vi = 1
u ≥ 0, v ≥ 0

Number of variables : 2m
Number of constraints : n + nonnegativity

Balas and Perregaard 2003 give a
precise correspondance between the
basic feasible solutions of the cut
generation LP and the basic

solutions of the LP
min cx

Ax ≥ b

0 1

xj

Ax ≥ b



LIFT-AND-PROJECT CLOSURE OF P

F :=
⋂p

j=1 Pj

0 1

1

F

P

x2

x1

P2

P1

REMARK Balas and Jeroslow 1980 show how to strengthen
cutting planes by using the integrality of the other integer variables
(lift-and-project only considers the integrality of one variable xj at
a time).

Experiments of Bonami and Minoux 2005 on MIPLIB 3 instances
give the amount of duality gap = minx∈Scx − minx∈Pcx closed by
strengthening P :

Lift-and-project closure

37 %

Lift-and-project + strengthening

45 %



Mixed Integer Cuts Gomory 1963

Consider a single constraint : S := {x ∈ Z
p
+ × R

n−p
+ :

∑n
j=1 ajxj = b}.

Let b = ⌊b⌋ + f0 where 0 < f0 < 1,
and aj = ⌊aj⌋ + fj where 0 ≤ fj < 1.

THEOREM

j≤p:
∑

fj≤f0

fj

f0
xj +

j≤p:
∑

fj>f0

1 − fj

1 − f0
xj +

j≥p+1:
∑

aj>0

aj

f0
xj −

j≥p+1:
∑

aj<0

aj

1 − f0
xj ≥ 1

is a valid inequality for S .

APPLICATION

objective

x10

1

2

3 x2

max z = x1 + 2x2

−x1 + x2 ≤ 2
x1 + x2 ≤ 5

x1 ∈ Z+

x2 ∈ R+

z + 0.5s1 + 1.5s2 = 8.5
x1 − 0.5s1 + 0.5s2 = 1.5
x2 + 0.5s1 + 0.5s2 = 3.5

Cut s1 + s2 ≥ 1.
Or x2 ≤ 3.



HOW GOOD ARE GOMORY CUTS
GENERATED FROM THE OPTIMAL BASIS ?

Bonami and Minoux 2005 MIPLIB 3

Gomory cuts
(optimal basis)

24 %

Lift-and-project
closure

37 %

Lift-and-project +
strengthening

45 %

0 1

Gomory cut

xj

Ax ≥ b

CAN ONE IMPROVE GOMORY
CUTS BY GENERATING THEM
FROM OTHER BASES
(Balas, Perregaard 2003)
(Balas, Bonami 2007)
OR OTHER EQUATIONS ?
(Andersen, Cornuéjols, Li 2005)



Reduce-and-split cuts

Andersen, Cornuéjols, Li 2005

Perform linear combinaisons of the constraints
∑n

j=1 ajxj = b

in order to reduce the coefficients of the continuous variables,
and generate the corresponding Gomory cuts.

Why ?
Remember the Gomory cut formula :

j≤p:
∑

fj≤f0

fj

f0
xj +

j≤p:
∑

fj>f0

1 − fj

1 − f0
xj +

j≥p+1:
∑

aj>0

aj

f0
xj −

j≥p+1:
∑

aj<0

aj

1 − f0
xj ≥ 1

ALGORITHM Consider the lines L of the optimal simplex tableau
for the basic variables xi such that i ≤ p.
For every line ℓ ∈ L , reduce the norm ‖(aℓ

p+1, . . . , a
ℓ
n)‖ by

performing integer combinaisons of the other lines of L.



COMPUTATIONAL RESULTS ON MIPLIB INSTANCES

◮ Reduce-and-split cuts are often very different from Gomory
cuts generated directly from the optimal basis.

◮ Their quality is typically at least as good.

◮ In some cases, their quality is much better :

Name 20 Times 20 Times Nodes Nodes
Gomory R&S Gomory R&S

flugpl 14 % 100 % 184 0
gesa2 46 % 97 % 743 116
gesa2o 92 % 98 % 9145 75
mod008 47 % 88 % 1409 82
pp08a 83 % 92 % 7467 745
rgn 15 % 100 % 874 0
vpm1 44 % 98 % 7132 1
vpm2 41 % 61 % 38946 4254



GOMORY CLOSURE

Ax ≥ b x ∈ Z
p
+ × R

n−p
+

◮ Every valid inequality for P := {x ≥ 0 : Ax ≥ b} (6= ∅) is of
the form uAx + vx ≥ ub − t, where u, v , t ≥ 0.

◮ Subtract a nonnegative surplus variable αx − s = β.

◮ Generate a Gomory inequality.

◮ Eliminate s = αx − β to get the inequality in the x-space.

◮ The convex set obtained by intersecting all these inequalities
with P is called the Gomory closure.

THEOREM Cook, Kannan, Schrijver 1990

The Gomory closure is a polyhedron.

THEOREM Caprara, Letchford 2002 et Cornuéjols, Li 2002

It is NP-hard to optimize a linear function over the Gomory closure.



Nevertheless,
Balas and Saxena 2006 and Dash, Günlück and Lodi 2007
were able to optimize over the Gomory closure by solving a
sequence of parametric MILPs.

DUALITY GAP CLOSED BY DIFFERENT CUTS
MIPLIB 3

Gomory cuts
(optimal basis)

24 %

Reduce-and-split
(optimal basis)

30 %

Gomory closure

80 %



Duality gap closed by different types of cutting planes

MIPLIB 3 instances

Lift−and−project

Reduce−and−split Lift−and−project

80 %

45 %

24%
37 %~30 %

+ strengthening

Gomory

  Gomory from

Balas−Saxena 2006
Dash−Gunluck−Lodi 2007

the optimal basis



Mixed integer rounding Nemhauser-Wolsey 1990
Wolsey 1999

S := {x ∈ Z
p
+ × R

n−p
+ : Ax ≤ b}

AGGREGATION uAx ≤ ub, u ≥ 0, or āx ≤ b̄.

THEOREM

∑

i≤p

(

⌊āi⌋ +
(fi − f0)

+

1 − f0

)

xi +
∑

i ≥ p + 1 :

āi < 0

āi

1 − f0
xi ≤ ⌊b̄⌋

is a valid inequality for S . It is called MIR.

REMARK It is the same cut as the Gomory inequality obtained
from āx + s = b̄ where s ≥ 0.

REMARK Stronger inequalities can be obtained by first adding
slack variables to Ax ≤ b, and then aggregating the equalities
Ax + s = b using multipliers ui (positive or negative).
Bonami and Cornuéjols 2007, and Dash, Günlük and Lodi 2007



Mixed integer rounding continued

S := {x ∈ Z
p
+ × R

n−p
+ : Ax ≤ b}

AGGREGATION uAx + us = ub.

Define the MIR closure as the intersection of the MIR inequalities
generated from all the possible multipliers u.

THEOREM The MIR closure is identical to the Gomory closure.

Marchand-Wolsey 2001

◮ Several classical inequalities for structured problems are MIR
inequalities, like “flow cover” inequalities.

◮ An aggregation heuristic to generate MIR cuts closes around
23 % of the duality gap.



Split Inequalities Cook-Kannan-Schrijver 1990

P := {x ∈ R
n : Ax ≥ b}

S := P ∩ (Zp × R
n−p).

P

πx ≤ π0 πx ≥ π0 + 1

Π1 Π2

split inequality

For π ∈ Z
n such that πp+1 = . . . = πn = 0 and

π0 ∈ Z, define

Π1:= P ∩ {x : πx ≤ π0}

Π2:= P ∩ {x : πx ≥ π0 + 1}

We call cx ≤ c0 a split inequality if there exists
(π, π0) ∈ Z

p × Z such that cx ≤ c0 is valid for
Π1 ∪ Π2.

The split closure is the intersection of all split inequalities.

THEOREM Nemhauser-Wolsey 1990, Cornuéjols-Li 2002

The split closure is identical to the Gomory closure.



Chvátal Inequalities Chvátal 1973

A Chvátal inequality is a split inequality where Π2 = ∅.

P

πx ≤ π0 πx ≥ π0 + 1

Π1

The Chvátal closure is the intersection of all these inequalities.

REMARK Chvátal defined this concept in 1973 in the context of
pure integer programs.

The Chvátal closure reduces the duality gap by around 63 % on
the pure integer MIPLIB 03 instances (Fischetti-Lodi 2006) and
around 28 % on the mixed instances (Bonami-Cornuéjols-
Dash-Fischetti-Lodi 2007).



Duality gap closed by different types of cutting planes

MIPLIB 3 instances

Lift−and−project

Lift−and−project

45 %

24%
37 %

~30 %

Reduce−and−split

MIR
Chvatal

80 %
28%−63%

23%MIR heuristic

+ strengthening

Gomory from

the optimal basis

         Gomory
≡ Split

Paper available on http ://integer.tepper.cmu.edu/


