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|. Polyhedral approach

Given a finite set £ = {e1,es,...,e,}. Let F be a family of some particular
subsets of F (feasible solutions), and let ¢ be a cost function, a mapping

c: F— IR.
The problem
(P): minimize {c(F) =) c(e) : F € F},

ec I

is called a combinatorial optimization problem.

Examples:  Traveling Salesman problem, Maximum-Weight Matching
problem, Minimum Spanning Tree problem, ...



Integer Polyhedra

For every element F' € F, associate a 0,1 vector z!" € {0, 1}E, defined as

follows: ; F
7" (e) = { 0 otherwise,

z! is called the incidence vector of F .
(P) may be rewritten as

(P) : minimize {c'z" : 2" € S},

where S is the set of incidence vectors of the elements of F.



Convex hulls: The convex hull of a finite set S, denoted by conv(S), is the
set of all points that are a convex combination of points in S.

Proposition 1. Let S C IR" be a finite set and let c € IR". Then

min{c'z : x € S} = min{c'z : x € conv/(S)}.



Polytopes:

e P={x € R": Ax < b} where A is an m x n matrix and b € IR™, is
called a polyhedron.

e A polytope is a bounded polyhedron.
e Aninequality o’z < oy is valid for a polytope P if P C {z : o’z < ag}.

e The dimension of a polytope P, dim(P), is equal to the maximum
number of affinely independent points in P minus one.

o Let '’z < ap be a valid inequality for the polytope P. F = {x €
P :alz = ap} is called a face of P. F is a facet of P if dim(F) =
dim(P) — 1.



e r € Pis an extreme point of P if x is a face of P of dimension O.

A valid inequality

7N

Avalid inequality extreme point

that isa face



Two useful characterizations of extreme points are:

Characterization 1. = € P is an extreme point of P if and only if there
do not exist xt, x> € P, x! # 22, such that x = %Zb’l -+ %562.

Characterization 2.  «x € P 1is an extreme point of P if x is the
unique solution of a subsystem of inequalities defining P when replaced
by equalities.

Theorem 1. A set P is a polytope if and only if there exists a finite set
S such that P is the convex hull of S.

By this theorem, the optimization over conv(S) is equivalent to the
optimization over a polytope.



An example

Consider the following combinatorial optimization problem (P) formulated
as an integer linear program:

max ri + o

subject to .
— <
(1321 + 28z, < T2 B 5’71:25’72 - 111
5z 44wy < 4 nTeE
Or; —4dzy < 24 D=/ Lo =
Py = < 1 < 4
6331—5332 S 9
2 > 0 x1 = 0
\ . g 0 \ x2 = 0

x1 and xo integers

Theorem 1 says that the convex hull of the solutions of (P) is also a
polytope; in our example this polytope is denoted D.



A valid inequality of D
violated by x*




The p-median problem

Given a direct graph G = (V, A) where each arc (u,v) is associated with
a cost c(u,v). The problem is to select p nodes, and assign to them the
non-selected one such that the assignment cost is minimized.



p=3

R

® Selected nodes
® Non-Selected nod

The costof this solution is :

2+3+1+6+2
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The relation with the stable set problem

An instance of the p-median problem : a directed graph G = (V, A), a cost
function ¢ associatend with the arc set A and a fixed integer p < |V/|.

- From G = (V, A) define an undirected graph I(G) = (A, E) called the
intersection graph of G.

- The nodes of I(G) are the arcs of G,
- The edges of I(G) are defined as below:

OAO
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- The p-median problem reduces to find a stable set of size |V'| — p with
mainimum cost in I(Q)

| I

p=3
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- The p-median problem reduces to find a stable set of size |V'| — p with
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- The p-median problem reduces to find a stable set of size |V'| — p with

minimum cost in I(G)
GO
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p=3
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- The p-median problem reduces to find a stable set of size |V'| — p with

minimum cost in I(G)
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- The p-median problem reduces to find a stable set of size |V'| — p with

minimum cost in I(G)
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- The p-median problem reduces to find a stable set of size |V'| — p with

minimum cost in I(G)
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- The p-median problem reduces to find a stable set of size |V| — p with

mainimum cost in I(Q)
@

p=3

In green a stable set of size |V|-p=5
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- The p-median problem may be formulated by the following linear integer

program:

minimize >, yea ¢(u, v)2(u, v)

/

\

Z’UEV y(’l)) = D,
2o (uvyea T v) =1 —y(u)

z(u,v) < y(v)

x and y are integer.

Vu eV,
V(u,v) € A,
Vv eV,

V(u,v) € A,

22



- The following four figures give four fractional extreme points of P,(G).

1 1
2 2 11 1 1
7 2 2 2 2 2
5 O
2
1 ) 1 A
1 W 2 2 2
2Q L 1
1 2 5 1
4 2 4
2 g 2
10 1
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And also



Definitions

- The parity of a cycle is the number of green nodes+red nodes.
@

An Odd cycle
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Definitions

- The parity of a cycle is the number of green nodes+red nodes.

N

An Odd Y -cycle
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Definitions

- The parity of a cycle is the number of green nodes+red nodes.
@

An Odd cycle which is not a Y -cycle
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The main result

Theorem 2. Let G = (V, A) be a directed graph, then P,(G) is integral
for any p if and only if it does not contain as a subgraph none of the graphs

\

LV @ X{

O O

and does not contain an odd Y -cycle plus an arc (u,v) with u and v not in
the cycle.
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To prove Theorem 2, we need the following two results.

Theorem 3. Let G = (V, A) be an oriented graph. If G does not contain

an odd directed cycle and as a subgraph, then P,(G) is integral,
for any p.

Theorem 4. Let G = (V, A) be an oriented graph, then P,(G) is integral
for any p if and only if it does not contain as subgraph one of the graphs

Yoy

O O
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and an odd Y -cycle plus an arc (u,v) with u and v not in the cycle.
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A case in the proof of Theorem 2

- Let G = (V, A) be a directed graph that does not contain the subgraphs
of Theorem 2.

- Assume that (z,y) is an extreme fractional point of P,(G).

An extreme point is the unique solution of a system of inequalities when
replaced by equalities.

To arrive to a contradiction, we plan to show that (z,y) is not the unique
solution of the set of inequalities that are satisfied as equalities by (x,y).

- We can assume that z(u,v) > 0 for all (u,v) € A.

- We may assume that [§~(v)| < 1 for every pendent node v in G. (a node
v is pendent if 07 (v) = (), there is no arc leaving v).
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The case : G does not contain an odd Y-cycle.

Lemma 1. z(u,v) = y(v) for all (u,v) with v not a pendent node.

Lemma 2. G does not contain a cycle.
Proof:

- If G contains a cycle, then it contains a Y-cycle:
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A labeling function [ assign to each node and variable the value +1, -1 or
0.

From a labeling function [ and a solution (x,%y) we define a new solution
(2',4y’) as follows: z'(u,v) = x(u,v) + l(u,v)e and y'(u) = y(u) + l(u)e,
for each arc and node.
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A labeling procedure for the cycle.
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A labeling procedure for the cycle.
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A labeling procedure for the cycle.
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- >§.

A labeling procedure for the cycle.
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Extending the labeling procedure.
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The end of the proof

- Assume the contrary : G is a directed graph with no odd Y-cycle
and does not contain none of the four following graphs as a subgraph:

Y oy

b s

- Denote by Pair(G) the set of pair of nodes {u,v} with (u,v) and (v, u)
in A.

- The proof is by induction on |Pair(G)|. If |Pair(G)| = 0 then G is an

oriented graph that satisfies the hypothesis of our theorem , so P,(G) is
integral.
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From G define the graph G’ with |Pair(G’)| < |Pair(G)|, as follows:

G G

w

- It is clear that G’ does not contain none of the forbiden subgraphs. Also
since by Lemma 2 GG does not contain a cycle, so G’ too. Thus GG’ satisfies
the induction hypothesis.
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From the extreme point (x,y) of P,(G) define (z',y')€ P,11(G’) as follows:

o 2'(u,v) =x(u,v) for all arc (u,v) in G’ different from (u, w),
/ _ . / .
e y/'(u) = y(u) for all node in G’ different from w,

o r'(u,w)=x(u,v) and y'(w) =1

(X,y) (X’1y’)
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- By the induction hypothesis, P, 1(G’) is integral, we have that (z/,y’) is
not an extreme point of Pyi1(G’).

- Thus (2/,4) is a convex combination of 0-1 vectors in P,1(G’), (2%, y")
i=1,... .t
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- Each of the (a',y") satisfies the same equalities as (2/,7'). Since
2'(v,u) > 0, there is at least of these vectors, say (z',y'), such that
zvl(v,u) = 1.

- In the last step, as shown in the figure below, we construct from (xl,yl)
a solution (z*,y*) € P,(G) that satifies the same equalities as (x,y). This
contradicts the fact that (x,y) is an extreme point of P,(G).

u u
1 o“o 0 1
1 0
G X G
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