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I. Polyhedral approach

Given a finite set E = {e1, e2, . . . , en}. Let F be a family of some particular
subsets of E (feasible solutions), and let c be a cost function, a mapping

c : E −→ IR.

The problem

(P ) : minimize {c(F )
def
=

∑

e∈F

c(e) : F ∈ F},

is called a combinatorial optimization problem.

Examples: Traveling Salesman problem, Maximum-Weight Matching
problem, Minimum Spanning Tree problem, ...
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Integer Polyhedra

For every element F ∈ F , associate a 0,1 vector xF ∈ {0, 1}E, defined as
follows:

xF (e) =

{

1 if e ∈ F

0 otherwise,

xF is called the incidence vector of F .
(P ) may be rewritten as

(P ) : minimize {cTxF : xF ∈ S},

where S is the set of incidence vectors of the elements of F .
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Convex hulls: The convex hull of a finite set S, denoted by conv(S), is the
set of all points that are a convex combination of points in S.

Proposition 1. Let S ⊆ IRn be a finite set and let c ∈ IRn. Then

min{cTx : x ∈ S} = min{cTx : x ∈ conv(S)}.

The set S
Conv(S)
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Polytopes:

• P = {x ∈ IRn : Ax ≤ b} where A is an m × n matrix and b ∈ IRm, is
called a polyhedron.

• A polytope is a bounded polyhedron.

• An inequality αTx ≤ α0 is valid for a polytope P if P ⊆ {x : αTx ≤ α0}.

• The dimension of a polytope P , dim(P ), is equal to the maximum
number of affinely independent points in P minus one.

• Let αTx ≤ α0 be a valid inequality for the polytope P . F = {x ∈
P : αTx = α0} is called a face of P . F is a facet of P if dim(F ) =
dim(P ) − 1.
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• x ∈ P is an extreme point of P if x is a face of P of dimension 0.

A valid inequality
that is a face

extreme point

A valid inequality

A facet
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Two useful characterizations of extreme points are:

Characterization 1. x ∈ P is an extreme point of P if and only if there

do not exist x1, x2 ∈ P , x1 6= x2, such that x = 1
2x

1 + 1
2x

2.

Characterization 2. x ∈ P is an extreme point of P if x is the

unique solution of a subsystem of inequalities defining P when replaced

by equalities.

Theorem 1. A set P is a polytope if and only if there exists a finite set

S such that P is the convex hull of S.

By this theorem, the optimization over conv(S) is equivalent to the
optimization over a polytope.
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An example

Consider the following combinatorial optimization problem (P ) formulated
as an integer linear program:

max x1 + x2

subject to

P1 =































−13x1 + 28x2 ≤ 72
−5x1 + 4x2 ≤ 4

9x1 − 4x2 ≤ 24
6x1 − 5x2 ≤ 9

x1 ≥ 0
x2 ≥ 0

x1 and x2 integers

D =































−x1 + x2 ≤ 1
−x1 + 2x2 ≤ 4

x1 − x2 ≤ 1
x1 ≤ 4
x1 ≥ 0
x2 ≥ 0

Theorem 1 says that the convex hull of the solutions of (P ) is also a
polytope; in our example this polytope is denoted D.
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5

24
5

x*violated by 

A valid inequality  of D

D

x*=( ),
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The p-median problem

Given a direct graph G = (V, A) where each arc (u, v) is associated with
a cost c(u, v). The problem is to select p nodes, and assign to them the
non-selected one such that the assignment cost is minimized.

9



Selected nodes
Non−Selected nodes

3

5
6

2

9

18

6
1

5

23 3

The  costof this solution is : 

1

2

2+3+1+6+2

p=3
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The relation with the stable set problem

An instance of the p-median problem : a directed graph G = (V,A), a cost
function c associatend with the arc set A and a fixed integer p ≤ |V |.

- From G = (V, A) define an undirected graph I(G) = (A,E) called the
intersection graph of G.

- The nodes of I(G) are the arcs of G,

- The edges of I(G) are defined as below:
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- The p-median problem reduces to find a stable set of size |V | − p with

minimum cost in I(G)

p=3
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p=3
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- The p-median problem reduces to find a stable set of size |V | − p with

minimum cost in I(G)
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- The p-median problem reduces to find a stable set of size |V | − p with

minimum cost in I(G)

p=3

In green a stable set of size |V|−p=5
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- The p-median problem may be formulated by the following linear integer
program:

minimize
∑

(u,v)∈A c(u, v)x(u, v)

Pp(G) =































































∑

v∈V y(v) = p,

∑

v:(u,v)∈A x(u, v) = 1 − y(u) ∀u ∈ V,

x(u, v) ≤ y(v) ∀(u, v) ∈ A,

y(v) ≤ 1 ∀v ∈ V,

x(u, v) ≥ 0 ∀(u, v) ∈ A,

x and y are integer.
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- The following four figures give four fractional extreme points of Pp(G).

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2
1
21 1

23



And also
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Definitions

- The parity of a cycle is the number of green nodes+red nodes.
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An Odd cycle
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Definitions

- The parity of a cycle is the number of green nodes+red nodes.
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An Odd Y -cycle
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Definitions

- The parity of a cycle is the number of green nodes+red nodes.
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Definitions

- The parity of a cycle is the number of green nodes+red nodes.
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Definitions

- The parity of a cycle is the number of green nodes+red nodes.
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An Odd Y -cycle
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Definitions

- The parity of a cycle is the number of green nodes+red nodes.
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An Odd cycle which is not a Y -cycle
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The main result

Theorem 2. Let G = (V,A) be a directed graph, then Pp(G) is integral

for any p if and only if it does not contain as a subgraph none of the graphs

and does not contain an odd Y -cycle plus an arc (u, v) with u and v not in

the cycle.
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To prove Theorem 2, we need the following two results.

Theorem 3. Let G = (V,A) be an oriented graph. If G does not contain

an odd directed cycle and as a subgraph, then Pp(G) is integral,

for any p.

Theorem 4. Let G = (V, A) be an oriented graph, then Pp(G) is integral

for any p if and only if it does not contain as subgraph one of the graphs
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and an odd Y -cycle plus an arc (u, v) with u and v not in the cycle.
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A case in the proof of Theorem 2

- Let G = (V, A) be a directed graph that does not contain the subgraphs
of Theorem 2.

- Assume that (x, y) is an extreme fractional point of Pp(G).

An extreme point is the unique solution of a system of inequalities when

replaced by equalities.

To arrive to a contradiction, we plan to show that (x, y) is not the unique
solution of the set of inequalities that are satisfied as equalities by (x, y).

- We can assume that x(u, v) > 0 for all (u, v) ∈ A.

- We may assume that |δ−(v)| ≤ 1 for every pendent node v in G. (a node
v is pendent if δ+(v) = ∅, there is no arc leaving v).

35



The case : G does not contain an odd Y -cycle.

Lemma 1. x(u, v) = y(v) for all (u, v) with v not a pendent node.

Lemma 2. G does not contain a cycle.

Proof:

- If G contains a cycle, then it contains a Y -cycle:

36



The cycle is in blue.
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The cycle is in blue.
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1−a

1−a

a

a

The cycle is in blue.
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The cycle is in blue.

40



In blue: a Y -cycle.
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A labeling function l assign to each node and variable the value +1, -1 or
0.

From a labeling function l and a solution (x, y) we define a new solution
(x′, y′) as follows: x′(u, v) = x(u, v) + l(u, v)ǫ and y′(u) = y(u) + l(u)ǫ,
for each arc and node.
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In blue: a Y -cycle.
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+

A labeling procedure for the cycle.
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+

A labeling procedure for the cycle.
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A labeling procedure for the cycle.
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A labeling procedure for the cycle.
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Extending the labeling procedure.
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The end of the proof

- Assume the contrary : G is a directed graph with no odd Y -cycle
and does not contain none of the four following graphs as a subgraph:

- Denote by Pair(G) the set of pair of nodes {u, v} with (u, v) and (v, u)
in A.

- The proof is by induction on |Pair(G)|. If |Pair(G)| = 0 then G is an
oriented graph that satisfies the hypothesis of our theorem , so Pp(G) is
integral.
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From G define the graph G′ with |Pair(G′)| < |Pair(G)|, as follows:

G G

u v vu

w

- It is clear that G′ does not contain none of the forbiden subgraphs. Also
since by Lemma 2 G does not contain a cycle, so G′ too. Thus G′ satisfies
the induction hypothesis.
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From the extreme point (x, y) of Pp(G) define (x′, y′)∈ Pp+1(G
′) as follows:

• x′(u, v) = x(u, v) for all arc (u, v) in G′ different from (u,w),

• y′(u) = y(u) for all node in G′ different from w,

• x′(u,w) = x(u, v) and y′(w) = 1

G

u v

1w

x(u,v)
G

u v

(x,y) (x’,y’)
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- By the induction hypothesis, Pp+1(G
′) is integral, we have that (x′, y′) is

not an extreme point of Pp+1(G
′).

- Thus (x′, y′) is a convex combination of 0-1 vectors in Pp+1(G
′), (xi, yi)

i = 1, . . . , t,

(x′, y′) =
t

∑

i=1

λi(x
i, yi),

t
∑

i=1

λi = 1,

λi ≥ 0 i = 1, . . . , t.
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- Each of the (xi, yi) satisfies the same equalities as (x′, y′). Since
x′(v, u) > 0, there is at least of these vectors, say (x1, y1), such that
x1(v, u) = 1.

- In the last step, as shown in the figure below, we construct from (x1, y1)
a solution (x∗, y∗) ∈ Pp(G) that satifies the same equalities as (x, y). This
contradicts the fact that (x, y) is an extreme point of Pp(G).

G
0

11 001
1

0

wG

u v u v
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