Polyhedral approach: the p-median polytope

Mourad Baïou
Laboratoire LIMOS, Université Clermont II

31 janvier 2008

I. Polyhedral approach

Given a finite set $E=\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$. Let \mathcal{F} be a family of some particular subsets of E (feasible solutions), and let c be a cost function, a mapping

$$
c: E \longrightarrow \mathbb{R} .
$$

The problem

$$
(P): \operatorname{minimize}\left\{c(F) \stackrel{\text { def }}{=} \sum_{e \in F} c(e): F \in \mathcal{F}\right\},
$$

is called a combinatorial optimization problem.

Examples: Traveling Salesman problem, Maximum-Weight Matching problem, Minimum Spanning Tree problem, ...

Integer Polyhedra

For every element $F \in \mathcal{F}$, associate a 0,1 vector $x^{F} \in\{0,1\}^{E}$, defined as follows:

$$
x^{F}(e)= \begin{cases}1 & \text { if } e \in F \\ 0 & \text { otherwise },\end{cases}
$$

x^{F} is called the incidence vector of F.
(P) may be rewritten as

$$
(P): \text { minimize }\left\{c^{T} x^{F}: x^{F} \in S\right\},
$$

where S is the set of incidence vectors of the elements of \mathcal{F}.

Convex hulls: The convex hull of a finite set S, denoted by $\operatorname{conv}(S)$, is the set of all points that are a convex combination of points in S.

Proposition 1. Let $S \subseteq \mathbb{R}^{n}$ be a finite set and let $c \in \mathbb{R}^{n}$. Then

$$
\min \left\{c^{T} x: x \in S\right\}=\min \left\{c^{T} x: x \in \operatorname{conv}(S)\right\} .
$$

- The set S
$=\operatorname{Conv}(S)$

Polytopes:

- $P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$ where A is an $m \times n$ matrix and $b \in \mathbb{R}^{m}$, is called a polyhedron.
- A polytope is a bounded polyhedron.
- An inequality $\alpha^{T} x \leq \alpha_{0}$ is valid for a polytope P if $P \subseteq\left\{x: \alpha^{T} x \leq \alpha_{0}\right\}$.
- The dimension of a polytope $P, \operatorname{dim}(P)$, is equal to the maximum number of affinely independent points in P minus one.
- Let $\alpha^{T} x \leq \alpha_{0}$ be a valid inequality for the polytope $P . F=\{x \in$ $\left.P: \alpha^{T} x=\alpha_{0}\right\}$ is called a face of $P . F$ is a facet of P if $\operatorname{dim}(F)=$ $\operatorname{dim}(P)-1$.
- $x \in P$ is an extreme point of P if x is a face of P of dimension 0 .

Two useful characterizations of extreme points are:

Characterization 1. $x \in P$ is an extreme point of P if and only if there do not exist $x^{1}, x^{2} \in P, x^{1} \neq x^{2}$, such that $x=\frac{1}{2} x^{1}+\frac{1}{2} x^{2}$.

Characterization 2. $x \in P$ is an extreme point of P if x is the unique solution of a subsystem of inequalities defining P when replaced by equalities.
Theorem 1. A set P is a polytope if and only if there exists a finite set S such that P is the convex hull of S.
By this theorem, the optimization over $\operatorname{conv}(S)$ is equivalent to the optimization over a polytope.

An example

Consider the following combinatorial optimization problem (P) formulated as an integer linear program:

$$
\begin{aligned}
& \max x_{1}+x_{2} \\
& \text { subject to } \\
& P_{1}=\left\{\begin{array}{rl}
-13 x_{1}+28 x_{2} & \leq 72 \\
-5 x_{1}+4 x_{2} & \leq 4 \\
9 x_{1}-4 x_{2} & \leq 24 \\
6 x_{1}-5 x_{2} & \leq 9 \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{array} \quad D=\left\{\begin{aligned}
-x_{1}+x_{2} & \leq 1 \\
-x_{1}+2 x_{2} & \leq 4 \\
x_{1}-x_{2} & \leq 1 \\
x_{1} & \leq \\
x_{1} & \geq 0 \\
x_{2} & \geq 0
\end{aligned}\right.\right. \\
& x_{1} \text { and } x_{2} \text { integers }
\end{aligned}
$$

Theorem 1 says that the convex hull of the solutions of (P) is also a polytope; in our example this polytope is denoted D.

The p-median problem

Given a direct graph $G=(V, A)$ where each arc (u, v) is associated with a cost $c(u, v)$. The problem is to select p nodes, and assign to them the non-selected one such that the assignment cost is minimized.

- Selected nodes
- Non-Selected nodes

The costof this solution is :

$$
2+3+1+6+2
$$

The relation with the stable set problem

An instance of the p-median problem : a directed graph $G=(V, A)$, a cost function c associatend with the arc set A and a fixed integer $p \leq|V|$.

- From $G=(V, A)$ define an undirected graph $I(G)=(A, E)$ called the intersection graph of G.
- The nodes of $I(G)$ are the arcs of G,
- The edges of $I(G)$ are defined as below:

- The p-median problem reduces to find a stable set of size $|V|-p$ with minimum cost in $I(G)$

- The p-median problem reduces to find a stable set of size $|V|-p$ with minimum cost in $I(G)$

- The p-median problem reduces to find a stable set of size $|V|-p$ with minimum cost in $I(G)$

- The p-median problem reduces to find a stable set of size $|V|-p$ with minimum cost in $I(G)$

- The p-median problem reduces to find a stable set of size $|V|-p$ with minimum cost in $I(G)$

- The p-median problem reduces to find a stable set of size $|V|-p$ with minimum cost in $I(G)$

- The p-median problem reduces to find a stable set of size $|V|-p$ with minimum cost in $I(G)$

- The p-median problem reduces to find a stable set of size $|V|-p$ with minimum cost in $I(G)$

- The p-median problem reduces to find a stable set of size $|V|-p$ with minimum cost in $I(G)$

- The p-median problem reduces to find a stable set of size $|V|-p$ with minimum cost in $I(G)$

In green a stable set of size $|V|-p=5$

- The p-median problem may be formulated by the following linear integer program:
$\operatorname{minimize} \sum_{(u, v) \in A} c(u, v) x(u, v)$

$$
P_{p}(G)= \begin{cases}\sum_{v \in V} y(v)=p, & \\ \sum_{v:(u, v) \in A} x(u, v)=1-y(u) & \forall u \in V \\ x(u, v) \leq y(v) & \forall(u, v) \in A \\ y(v) \leq 1 & \forall v \in V \\ x(u, v) \geq 0 & \forall(u, v) \in A \\ x \text { and } y \text { are integer. } & \end{cases}
$$

- The following four figures give four fractional extreme points of $P_{p}(G)$.

And also

Definitions

- The parity of a cycle is the number of green nodes+red nodes.

Definitions

- The parity of a cycle is the number of green nodes+red nodes.

An Odd Y-cycle

Definitions

- The parity of a cycle is the number of green nodes+red nodes.

An Odd Y-cycle

Definitions

- The parity of a cycle is the number of green nodes+red nodes.

An Odd Y-cycle

Definitions

- The parity of a cycle is the number of green nodes+red nodes.

An Odd Y-cycle

Definitions

- The parity of a cycle is the number of green nodes+red nodes.

An Odd cycle which is not a Y-cycle

The main result

Theorem 2. Let $G=(V, A)$ be a directed graph, then $P_{p}(G)$ is integral for any p if and only if it does not contain as a subgraph none of the graphs

and does not contain an odd Y-cycle plus an arc (u, v) with u and v not in the cycle.

To prove Theorem 2, we need the following two results.
Theorem 3. Let $G=(V, A)$ be an oriented graph. If G does not contain
an odd directed cycle and
 as a subgraph, then $P_{p}(G)$ is integral, for any p.
Theorem 4. Let $G=(V, A)$ be an oriented graph, then $P_{p}(G)$ is integral for any p if and only if it does not contain as subgraph one of the graphs

and an odd Y-cycle plus an arc (u, v) with u and v not in the cycle.

A case in the proof of Theorem 2

- Let $G=(V, A)$ be a directed graph that does not contain the subgraphs of Theorem 2.
- Assume that (x, y) is an extreme fractional point of $P_{p}(G)$.

An extreme point is the unique solution of a system of inequalities when replaced by equalities.

To arrive to a contradiction, we plan to show that (x, y) is not the unique solution of the set of inequalities that are satisfied as equalities by (x, y).

- We can assume that $x(u, v)>0$ for all $(u, v) \in A$.
- We may assume that $\left|\delta^{-}(v)\right| \leq 1$ for every pendent node v in G. (a node v is pendent if $\delta^{+}(v)=\emptyset$, there is no arc leaving v).

The case: G does not contain an odd Y-cycle.

Lemma 1. $x(u, v)=y(v)$ for all (u, v) with v not a pendent node.
Lemma 2. G does not contain a cycle.
Proof:

- If G contains a cycle, then it contains a Y-cycle:

The cycle is in blue.

In blue: a Y-cycle.

A labeling function l assign to each node and variable the value $+1,-1$ or 0.

From a labeling function l and a solution (x, y) we define a new solution $\left(x^{\prime}, y^{\prime}\right)$ as follows: $x^{\prime}(u, v)=x(u, v)+l(u, v) \epsilon$ and $y^{\prime}(u)=y(u)+l(u) \epsilon$, for each arc and node.

In blue: a Y-cycle.

A labeling procedure for the cycle.

Extending the labeling procedure.

The end of the proof

- Assume the contrary : G is a directed graph with no odd Y-cycle and does not contain none of the four following graphs as a subgraph:

- Denote by $\operatorname{Pair}(G)$ the set of pair of nodes $\{u, v\}$ with (u, v) and (v, u) in A.
- The proof is by induction on $|\operatorname{Pair}(G)|$. If $|\operatorname{Pair}(G)|=0$ then G is an oriented graph that satisfies the hypothesis of our theorem, so $P_{p}(G)$ is integral.

From G define the graph G^{\prime} with $\left|\operatorname{Pair}\left(G^{\prime}\right)\right|<|\operatorname{Pair}(G)|$, as follows:

- It is clear that G^{\prime} does not contain none of the forbiden subgraphs. Also since by Lemma $2 G$ does not contain a cycle, so G^{\prime} too. Thus G^{\prime} satisfies the induction hypothesis.

From the extreme point (x, y) of $P_{p}(G)$ define $\left(x^{\prime}, y^{\prime}\right) \in P_{p+1}\left(G^{\prime}\right)$ as follows:

- $x^{\prime}(u, v)=x(u, v)$ for all arc (u, v) in G^{\prime} different from (u, w),
- $y^{\prime}(u)=y(u)$ for all node in G^{\prime} different from w,
- $x^{\prime}(u, w)=x(u, v)$ and $y^{\prime}(w)=1$

G

- By the induction hypothesis, $P_{p+1}\left(G^{\prime}\right)$ is integral, we have that $\left(x^{\prime}, y^{\prime}\right)$ is not an extreme point of $P_{p+1}\left(G^{\prime}\right)$.
- Thus $\left(x^{\prime}, y^{\prime}\right)$ is a convex combination of $0-1$ vectors in $P_{p+1}\left(G^{\prime}\right),\left(x^{i}, y^{i}\right)$ $i=1, \ldots, t$,

$$
\begin{aligned}
& \left(x^{\prime}, y^{\prime}\right)=\sum_{i=1}^{t} \lambda_{i}\left(x^{i}, y^{i}\right) \\
& \sum_{i=1}^{t} \lambda_{i}=1 \\
& \quad \lambda_{i} \geq 0 \quad i=1, \ldots, t
\end{aligned}
$$

- Each of the $\left(x^{i}, y^{i}\right)$ satisfies the same equalities as $\left(x^{\prime}, y^{\prime}\right)$. Since $x^{\prime}(v, u)>0$, there is at least of these vectors, say $\left(x^{1}, y^{1}\right)$, such that $x^{1}(v, u)=1$.
- In the last step, as shown in the figure below, we construct from $\left(x^{1}, y^{1}\right)$ a solution $\left(x^{*}, y^{*}\right) \in P_{p}(G)$ that satifies the same equalities as (x, y). This contradicts the fact that (x, y) is an extreme point of $P_{p}(G)$.

