Scarf's Lemma and the Stable Paths Problem

Penny Haxell

University of Waterloo

Scarf's Lemma

Let A be an $m \times t$ matrix where $m \leq t$. A set of columns S is called dominating if

for every column c there exists a row r such that $a_{rc} \leq a_{rs}$ for EVERY column $s \in S$.

Scarf's Lemma

Let *B* and *C* be $m \times t$ matrices where m < t, and let $b \in R^m_+$ with the following properties:

- The first m columns of B form an identity matrix,
- the set of non-negative solutions $x \in R^t_+$ to Bx = b is bounded,
- $c_{ii} < c_{ik} < c_{ij}$ for each k > m and $j \le m$, $i \ne j$.

Then the number of non-negative solutions x to Bx = b whose support supp(x) is dominating in C (and is an independent *m*-set of columns of *B*) is ODD. In particular, there is at least one.

Note that if *b* has all positive entries then the set consisting of first *m* columns IS the support of a solution *x* to Bx = b, but is NOT a dominating set in *C*.

An example of a dominating set of columns in C: the first m-1 columns, together with the column indexed k > m with the LARGEST entry in row m.

Scarf's Lemma

Let *B* and *C* be matrices satisfying the conditions of Scarf's Lemma. Let *V* denote the set of column indices of *B* and *C*. We define two *m*-uniform hypergraphs on the vertex set *V* as follows:

 \mathcal{B} : those *m*-sets of columns that are the support of a solution *x* to Bx = b

C: those *m*-sets of columns that are dominating in C TOGETHER WITH the single *m*-set consisting of the first *m* columns.

Then $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

Restricted Triangulations

Sperner's Lemma for Restricted Triangulations

The number of multicoloured elementary simplices in an (n + 1)-colouring of a nontrivial restricted triangulation is EVEN.

Sperner's Lemma

Consider a triangulation of the n-dimensional simplex T.

Consider any Sperner colouring of the points with n + 1 colours.

Then the number of multicoloured elementary simplices is ODD. (In particular there is at least one.)

Sperner's Lemma for restricted triangulations implies the usual formulation of Sperner's Lemma:

The Sperner colouring guarantees that the only "extra" multicoloured simplex added by this construction is the exterior one.

Sperner's Lemma for Restricted Triangulations

Let m = (n + 1), and let an *m*-coloured restricted triangulation *T* of an *n*-simplex be given. Let *V* denote the set of points of *T*. We define two *m*-uniform hypergraphs on the vertex set *V* as follows:

 \mathcal{B} : those *m*-sets that are multicoloured

C: those *m*-sets that are the vertices of an elementary simplex.

Then $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

A General Theorem

THEOREM: Let \mathcal{B} and \mathcal{C} be *m*-uniform hypergraphs on the same vertex set *V*. Suppose

- B has the UNIQUE ADD property: for each B ∈ B and each u ∉ B there exists a unique v ∈ B such that B \ {v} ∪ {u} ∈ B.
- C has the UNIQUE REMOVE property: for each $C \in C$ and each $v \in C$ there exists a unique $u \notin C$ such that $C \setminus \{v\} \cup \{u\} \in C$.

Then $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

Implicit in the proofs of Sperner and Scarf, this link also interpreted/rediscovered by several authors in different formulations, including Kuhn (1968), Aharoni and Fleiner (2003).

Sperner's Lemma for Restricted Triangulations

Let m = (n + 1), and let an *m*-coloured restricted triangulation *T* of an *n*-simplex be given. Let *V* denote the set of points of *T*. We define two *m*-uniform hypergraphs on the vertex set *V* as follows:

 \mathcal{B} : those *m*-sets that are multicoloured. Then \mathcal{B} has the UNIQUE ADD property.

C: those *m*-sets that are the vertices of an elementary simplex. Then C has the UNIQUE REMOVE property.

Therefore $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

Scarf's Lemma

Let *B* and *C* be matrices satisfying the conditions of Scarf's Lemma. Let *V* denote the set of column indices of *B* and *C*. We define two *m*-uniform hypergraphs on the vertex set *V* as follows:

 \mathcal{B} : those *m*-sets of columns that are the support of some solution *x* to Bx = b. Then \mathcal{B} has the UNIQUE ADD property.

C: those *m*-sets of columns that are dominating in C TOGETHER WITH the single *m*-set consisting of the first *m* columns. Then C has the UNIQUE REMOVE property.

Therefore $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

The General Theorem

THEOREM: Let \mathcal{B} and \mathcal{C} be *m*-uniform hypergraphs on the same vertex set *V*. Suppose

- *B* has the UNIQUE ADD property,
- C has the UNIQUE REMOVE property.

Then $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

FOR EXAMPLE for graphs (m = 2): Any complete bipartite graph has the UNIQUE ADD property. Any 2-regular graph has the UNIQUE REMOVE property. Therefore

"Any 2-regular graph has an even number of edges crossing any cut."

```
FOR EXAMPLE for m = 3:
```

- Any complete tripartite 3-uniform hypergraph W has the UNIQUE ADD property.
- Any disjoint union U of two Steiner triple systems has the UNIQUE REMOVE property.
- Therefore the intersection of any such U and any such W has even size.

Every (m+1)-set has degree 0 or 2 into \mathcal{B} .

Every (m-1)-set has degree 0 or 2 into C.

Fix a vertex $v_0 \in V$. We define a directed graph D with vertex set $\mathcal{B} \cup \mathcal{C}$ as follows: put an arc from C to B if there exists $v \in C$, $v \neq v_0$ such that $C \setminus \{v\} = B \setminus \{v_0\}$.

For $C \in C$: if $v_0 \in C$ then $d^+(C) = 0$. If $v_0 \notin C$ then $d^+(C) = 0$ or 2,

unless $C \in \mathcal{B} \cap \mathcal{C}$,

in which case $d^+(C) = 1$.

For $B \in \mathcal{B}$: if $v_0 \notin B$ then $d^-(B) = 0$.

If $v_0 \in B$ then $d^-(B) = 0$ or 2,

unless $B \in \mathcal{B} \cap \mathcal{C}$,

in which case $d^{-}(B) = 1$.

Thus in the underlying graph of D, the vertices of degree 1 are those in $\mathcal{B} \cap \mathcal{C}$, all other vertices have degree 0 or 2.

Therefore $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

More generally

THEOREM: Let \mathcal{B} and \mathcal{C} be *m*-uniform hypergraphs on the same vertex set *V*. Suppose

- each (m+1)-set contains an EVEN number of elements of \mathcal{B} .
- each (m-1)-set is contained in an EVEN number of elements of C.

Then $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

Application of Scarf's Lemma: Fractional Kernels

A fractional kernel in D is a non-negative function f on the vertices of a directed graph, such that

- $\sum_{u \in N(v)} f(u) \ge 1$ for every vertex v, where N(v) denotes the set $\{v\} \cup \{u : (v, u) \in D\}$ (*f* is fractionally absorbing)
- $\sum_{u \in K} f(u) \le 1$ for each clique K (f is fractionally independent).

THEOREM (Aharoni, Holzman 1995): Every clique-acyclic directed graph has a fractional kernel.

PROOF: Uses Scarf's Lemma.

The matrix B encodes fractional independence

The matrix C encodes fractional absorption

Application: The Stable Paths problem INSTANCE:

- A graph G with a distinguished vertex d (the destination),
- an ordered list $\pi(v)$ of paths from v to d for each vertex v (the preference list of v).

SOLUTION: a tree *T* in *G*, rooted at *d*, such that for every vertex *v* and path $P \in \pi(v)$, either

- v prefers its path in T to P, or
- there is a **PROPER** final segment of P that is not contained in T.

Motivation: internet routing protocols (Border Gateway Protocol)

NOT EVERY instance of SPP has a solution:

A fractional version

SOLUTION: A function that assigns a weight w(P) to each path $P \in \bigcup_v \pi(v)$ such that

- for each v, $\sum_{P \in \pi(v)} w(P) \le 1$,
- (tree condition) for each vertex v and path S, $\sum_{P \in \pi(v,S)} w(P) \leq w(S)$, where $\pi(v,S)$ denotes the set of paths in $\pi(v)$ that end with the segment S,

(stability condition) for each v and each $P \in \pi(v)$, either

- $\sum_{Q \in \pi(v)} w(Q) = 1$ AND v prefers ALL its paths $Q \in \pi(v)$ for which w(Q) > 0 to P, or
- there exists a PROPER final segment S of P such that $\sum_{Q \in \pi(v,S)} w(Q) = w(S)$ AND v prefers ALL paths $Q \in \pi(v,S)$ for which w(Q) > 0 to P.

THEOREM (PH, Wilfong): Every instance of SPP has a fractional solution.

PROOF: Uses Scarf's Lemma.

- The matrix *B* encodes the tree condition.
- The matrix C encodes the stability condition.
- The solution x gives the weight function on paths that is the fractional solution to SPP.

The ((v, S), P) entry is -1 if P = S, 1 if $P \in \pi(v, S)$, and 0 otherwise.

The ((v, S), P) entry is the rank of P in $\pi(v, S)$, if $P \in \pi(v, S)$, and M otherwise, where M is larger than any rank.

The solution x from Scarf's Lemma gives a weight function w on all paths in $\cup_v \pi(v)$.

The matrix *B* ensures that the tree condition is satisfied.

The dominating property of supp(x) ensures that the stability condition is satisfied.