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Scarf’s Lemma
Let A be an m × t matrix where m ≤ t. A set of columns S is called
dominating if

for every column c there exists a row r such that arc ≤ ars for EVERY
column s ∈ S.
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Scarf’s Lemma

Let B and C be m × t matrices where m < t, and let b ∈ Rm
+ with the

following properties:

• The first m columns of B form an identity matrix,

• the set of non-negative solutions x ∈ Rt
+ to Bx = b is bounded,

• cii < cik < cij for each k > m and j ≤ m, i 6= j.

Then the number of non-negative solutions x to Bx = b whose support
supp(x) is dominating in C (and is an independent m-set of columns of
B) is ODD. In particular, there is at least one.
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Note that if b has all positive entries then the set consisting of first
m columns IS the support of a solution x to Bx = b, but is NOT a
dominating set in C.

An example of a dominating set of columns in C: the first m−1 columns,
together with the column indexed k > m with the LARGEST entry in row
m.
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Scarf’s Lemma

Let B and C be matrices satisfying the conditions of Scarf’s Lemma.
Let V denote the set of column indices of B and C. We define two
m-uniform hypergraphs on the vertex set V as follows:

B: those m-sets of columns that are the support of a solution x to Bx = b

C: those m-sets of columns that are dominating in C TOGETHER WITH
the single m-set consisting of the first m columns.

Then |B ∩ C| is EVEN.
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Restricted Triangulations
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Sperner’s Lemma for Restricted Triangulations

The number of multicoloured elementary simplices in an (n + 1)-
colouring of a nontrivial restricted triangulation is EVEN.
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Sperner’s Lemma

Consider a triangulation of the n-dimensional simplex T .

Consider any Sperner colouring of the points with n + 1 colours.

Then the number of multicoloured elementary simplices is ODD. (In
particular there is at least one.)
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Sperner’s Lemma for restricted triangulations implies the usual
formulation of Sperner’s Lemma:

The Sperner colouring guarantees that the only “extra” multicoloured
simplex added by this construction is the exterior one.
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Sperner’s Lemma for Restricted Triangulations

Let m = (n + 1), and let an m-coloured restricted triangulation T of an
n-simplex be given. Let V denote the set of points of T . We define two
m-uniform hypergraphs on the vertex set V as follows:

B: those m-sets that are multicoloured

C: those m-sets that are the vertices of an elementary simplex.

Then |B ∩ C| is EVEN.
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A General Theorem

THEOREM: Let B and C be m-uniform hypergraphs on the same vertex
set V . Suppose

• B has the UNIQUE ADD property: for each B ∈ B and each u /∈ B
there exists a unique v ∈ B such that B \ {v} ∪ {u} ∈ B.

• C has the UNIQUE REMOVE property: for each C ∈ C and each
v ∈ C there exists a unique u /∈ C such that C \ {v} ∪ {u} ∈ C.

Then |B ∩ C| is EVEN.

Implicit in the proofs of Sperner and Scarf, this link also
interpreted/rediscovered by several authors in different formulations,
including Kuhn (1968), Aharoni and Fleiner (2003).
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Sperner’s Lemma for Restricted Triangulations

Let m = (n + 1), and let an m-coloured restricted triangulation T of an
n-simplex be given. Let V denote the set of points of T . We define two
m-uniform hypergraphs on the vertex set V as follows:

B: those m-sets that are multicoloured. Then B has the UNIQUE ADD
property.

C: those m-sets that are the vertices of an elementary simplex. Then C
has the UNIQUE REMOVE property.

Therefore |B ∩ C| is EVEN.
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Scarf’s Lemma

Let B and C be matrices satisfying the conditions of Scarf’s Lemma.
Let V denote the set of column indices of B and C. We define two
m-uniform hypergraphs on the vertex set V as follows:

B: those m-sets of columns that are the support of some solution x to
Bx = b. Then B has the UNIQUE ADD property.

C: those m-sets of columns that are dominating in C TOGETHER WITH
the single m-set consisting of the first m columns. Then C has the
UNIQUE REMOVE property.

Therefore |B ∩ C| is EVEN.
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The General Theorem
THEOREM: Let B and C be m-uniform hypergraphs on the same vertex
set V . Suppose

• B has the UNIQUE ADD property,

• C has the UNIQUE REMOVE property.

Then |B ∩ C| is EVEN.

FOR EXAMPLE for graphs (m = 2): Any complete bipartite graph
has the UNIQUE ADD property. Any 2-regular graph has the UNIQUE
REMOVE property. Therefore

“Any 2-regular graph has an even number of edges crossing any cut.”
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FOR EXAMPLE for m = 3:

• Any complete tripartite 3-uniform hypergraph W has the UNIQUE
ADD property.

• Any disjoint union U of two Steiner triple systems has the UNIQUE
REMOVE property.

Therefore the intersection of any such U and any such W has even size.
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Proof
(m+1)−sets

(m−1)−sets

Every (m + 1)-set has degree 0 or 2 into B.

Every (m− 1)-set has degree 0 or 2 into C.
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Fix a vertex v0 ∈ V . We define a directed graph D with vertex set B ∪ C
as follows: put an arc from C to B if there exists v ∈ C, v 6= v0 such that
C \ {v} = B \ {v0}.
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For C ∈ C: if v0 ∈ C then d+(C) = 0.

If v0 /∈ C then d+(C) = 0 or 2,

v0

v0

v

v

C B B’

unless C ∈ B ∩ C,
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in which case d+(C) = 1.
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For B ∈ B: if v0 /∈ B then d−(B) = 0.

If v0 ∈ B then d−(B) = 0 or 2,

v0

v

v

C B

v0

w

w

unless B ∈ B ∩ C,
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in which case d−(B) = 1.

v0

v0

v

v

C B

Thus in the underlying graph of D, the vertices of degree 1 are those in
B ∩ C, all other vertices have degree 0 or 2.

Therefore |B ∩ C| is EVEN.
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More generally

THEOREM: Let B and C be m-uniform hypergraphs on the same vertex
set V . Suppose

• each (m + 1)-set contains an EVEN number of elements of B.

• each (m− 1)-set is contained in an EVEN number of elements of C.

Then |B ∩ C| is EVEN.
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Application of Scarf’s Lemma: Fractional Kernels
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A fractional kernel in D is a non-negative function f on the vertices of a
directed graph, such that

•
∑

u∈N(v) f(u) ≥ 1 for every vertex v, where N(v) denotes the set
{v} ∪ {u : (v, u) ∈ D} (f is fractionally absorbing)

•
∑

u∈K f(u) ≤ 1 for each clique K (f is fractionally independent).
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a

1−a

THEOREM (Aharoni, Holzman 1995): Every clique-acyclic directed
graph has a fractional kernel.

PROOF: Uses Scarf’s Lemma.

The matrix B encodes fractional independence

The matrix C encodes fractional absorption
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Application: The Stable Paths problem
INSTANCE:

• A graph G with a distinguished vertex d (the destination),

• an ordered list π(v) of paths from v to d for each vertex v (the
preference list of v).

SOLUTION: a tree T in G, rooted at d, such that for every vertex v and
path P ∈ π(v), either

• v prefers its path in T to P , or

• there is a PROPER final segment of P that is not contained in T .

Motivation: internet routing protocols (Border Gateway Protocol)
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NOT EVERY instance of SPP has a solution:

x y
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(yzd,yd)
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A fractional version
SOLUTION: A function that assigns a weight w(P ) to each path P ∈
∪vπ(v) such that

• for each v,
∑

P∈π(v) w(P ) ≤ 1,

• (tree condition) for each vertex v and path S,
∑

P∈π(v,S) w(P ) ≤
w(S), where π(v, S) denotes the set of paths in π(v) that end with
the segment S,

Sv d
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(stability condition) for each v and each P ∈ π(v), either

•
∑

Q∈π(v) w(Q) = 1 AND v prefers ALL its paths Q ∈ π(v) for which
w(Q) > 0 to P , or

• there exists a PROPER final segment S of P such that∑
Q∈π(v,S) w(Q) = w(S) AND v prefers ALL paths Q ∈ π(v, S) for

which w(Q) > 0 to P .
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THEOREM (PH, Wilfong): Every instance of SPP has a fractional
solution.

PROOF: Uses Scarf’s Lemma.

• The matrix B encodes the tree condition.

• The matrix C encodes the stability condition.

• The solution x gives the weight function on paths that is the fractional
solution to SPP.
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The matrix B

(v,S)
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The ((v, S), P ) entry is −1 if P = S, 1 if P ∈ π(v, S), and 0 otherwise.
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The matrix C

(v,S)

P

BIG
s

m

a
l

lBIG

The ((v, S), P ) entry is the rank of P in π(v, S), if P ∈ π(v, S), and
M otherwise, where M is larger than any rank.
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The solution x from Scarf’s Lemma gives a weight function w on all
paths in ∪vπ(v).

The matrix B ensures that the tree condition is satisfied.

The dominating property of supp(x) ensures that the stability condition
is satisfied.
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