Scarf's Lemma and the Stable Paths Problem

Penny Haxell

University of Waterloo

Scarf's Lemma

Let A be an $m \times t$ matrix where $m \leq t$. A set of columns S is called dominating if
for every column c there exists a row r such that $a_{r c} \leq a_{r s}$ for EVERY column $s \in S$.

$$
\begin{aligned}
& {\left[\begin{array}{llllll}
2 & 1 & 7 & 4 & 5 & 2 \\
8 & 2 & 2 & 3 & 6 & 7 \\
1 & 3 & 2 & 2 & 1 & 4 \\
4 & 4 & 8 & 1 & 5 & 5
\end{array}\right]} \\
& \boldsymbol{\uparrow} \\
& \boldsymbol{\uparrow}
\end{aligned}
$$

Scarf's Lemma

Let B and C be $m \times t$ matrices where $m<t$, and let $b \in R_{+}^{m}$ with the following properties:

- The first m columns of B form an identity matrix,
- the set of non-negative solutions $x \in R_{+}^{t}$ to $B x=b$ is bounded,
- $c_{i i}<c_{i k}<c_{i j}$ for each $k>m$ and $j \leq m, i \neq j$.

Then the number of non-negative solutions x to $B x=b$ whose support $\operatorname{supp}(x)$ is dominating in C (and is an independent m-set of columns of $B)$ is ODD. In particular, there is at least one.

Note that if b has all positive entries then the set consisting of first m columns IS the support of a solution x to $B x=b$, but is NOT a dominating set in C.

An example of a dominating set of columns in C : the first $m-1$ columns, together with the column indexed $k>m$ with the LARGEST entry in row m.

Scarf's Lemma

Let B and C be matrices satisfying the conditions of Scarf's Lemma. Let V denote the set of column indices of B and C. We define two m-uniform hypergraphs on the vertex set V as follows:
\mathcal{B} : those m-sets of columns that are the support of a solution x to $B x=b$
\mathcal{C} : those m-sets of columns that are dominating in C TOGETHER WITH the single m-set consisting of the first m columns.

Then $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

Restricted Triangulations

Sperner's Lemma for Restricted Triangulations

The number of multicoloured elementary simplices in an $(n+1)$ colouring of a nontrivial restricted triangulation is EVEN.

Sperner's Lemma

Consider a triangulation of the n-dimensional simplex T.
Consider any Sperner colouring of the points with $n+1$ colours.
Then the number of multicoloured elementary simplices is ODD. (In particular there is at least one.)

Sperner's Lemma for restricted triangulations implies the usual formulation of Sperner's Lemma:

The Sperner colouring guarantees that the only "extra" multicoloured simplex added by this construction is the exterior one.

Sperner's Lemma for Restricted Triangulations

Let $m=(n+1)$, and let an m-coloured restricted triangulation T of an n-simplex be given. Let V denote the set of points of T. We define two m-uniform hypergraphs on the vertex set V as follows:
\mathcal{B} : those m-sets that are multicoloured
\mathcal{C} : those m-sets that are the vertices of an elementary simplex.
Then $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

A General Theorem

THEOREM: Let \mathcal{B} and \mathcal{C} be m-uniform hypergraphs on the same vertex set V. Suppose

- \mathcal{B} has the UNIQUE ADD property: for each $B \in \mathcal{B}$ and each $u \notin B$ there exists a unique $v \in B$ such that $B \backslash\{v\} \cup\{u\} \in \mathcal{B}$.
- \mathcal{C} has the UNIQUE REMOVE property: for each $C \in \mathcal{C}$ and each $v \in C$ there exists a unique $u \notin C$ such that $C \backslash\{v\} \cup\{u\} \in \mathcal{C}$.

Then $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.
Implicit in the proofs of Sperner and Scarf, this link also interpreted/rediscovered by several authors in different formulations, including Kuhn (1968), Aharoni and Fleiner (2003).

Sperner's Lemma for Restricted Triangulations

Let $m=(n+1)$, and let an m-coloured restricted triangulation T of an n-simplex be given. Let V denote the set of points of T. We define two m-uniform hypergraphs on the vertex set V as follows:
\mathcal{B} : those m-sets that are multicoloured. Then \mathcal{B} has the UNIQUE ADD property.
\mathcal{C} : those m-sets that are the vertices of an elementary simplex. Then \mathcal{C} has the UNIQUE REMOVE property.

Therefore $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

Scarf's Lemma

Let B and C be matrices satisfying the conditions of Scarf's Lemma. Let V denote the set of column indices of B and C. We define two m-uniform hypergraphs on the vertex set V as follows:
\mathcal{B} : those m-sets of columns that are the support of some solution x to $B x=b$. Then \mathcal{B} has the UNIQUE ADD property.
\mathcal{C} : those m-sets of columns that are dominating in C TOGETHER WITH the single m-set consisting of the first m columns. Then \mathcal{C} has the UNIQUE REMOVE property.

Therefore $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

The General Theorem

THEOREM: Let \mathcal{B} and \mathcal{C} be m-uniform hypergraphs on the same vertex set V. Suppose

- \mathcal{B} has the UNIQUE ADD property,
- \mathcal{C} has the UNIQUE REMOVE property.

Then $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

FOR EXAMPLE for graphs $(m=2)$: Any complete bipartite graph has the UNIQUE ADD property. Any 2 -regular graph has the UNIQUE REMOVE property. Therefore
"Any 2-regular graph has an even number of edges crossing any cut."

FOR EXAMPLE for $m=3$:

- Any complete tripartite 3 -uniform hypergraph W has the UNIQUE ADD property.
- Any disjoint union U of two Steiner triple systems has the UNIQUE REMOVE property.

Therefore the intersection of any such U and any such W has even size.

Proof

\bigcirc

Every $(m+1)$-set has degree 0 or 2 into \mathcal{B}.
Every $(m-1)$-set has degree 0 or 2 into \mathcal{C}.

Fix a vertex $v_{0} \in V$. We define a directed graph D with vertex set $\mathcal{B} \cup \mathcal{C}$ as follows: put an arc from C to B if there exists $v \in C, v \neq v_{0}$ such that $C \backslash\{v\}=B \backslash\left\{v_{0}\right\}$.

For $C \in \mathcal{C}$: if $v_{0} \in C$ then $d^{+}(C)=0$.
If $v_{0} \notin C$ then $d^{+}(C)=0$ or 2,

unless $C \in \mathcal{B} \cap \mathcal{C}$,
in which case $d^{+}(C)=1$.

For $B \in \mathcal{B}$: if $v_{0} \notin B$ then $d^{-}(B)=0$.
If $v_{0} \in B$ then $d^{-}(B)=0$ or 2,

unless $B \in \mathcal{B} \cap \mathcal{C}$,
in which case $d^{-}(B)=1$.

Thus in the underlying graph of D, the vertices of degree 1 are those in $\mathcal{B} \cap \mathcal{C}$, all other vertices have degree 0 or 2 .

Therefore $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

More generally

THEOREM: Let \mathcal{B} and \mathcal{C} be m-uniform hypergraphs on the same vertex set V. Suppose

- each $(m+1)$-set contains an EVEN number of elements of \mathcal{B}.
- each $(m-1)$-set is contained in an EVEN number of elements of \mathcal{C}.

Then $|\mathcal{B} \cap \mathcal{C}|$ is EVEN.

Application of Scarf's Lemma: Fractional Kernels

A fractional kernel in D is a non-negative function f on the vertices of a directed graph, such that

- $\sum_{u \in N(v)} f(u) \geq 1$ for every vertex v, where $N(v)$ denotes the set $\{v\} \cup\{u:(v, u) \in D\}(f$ is fractionally absorbing $)$
- $\sum_{u \in K} f(u) \leq 1$ for each clique K (f is fractionally independent).

THEOREM (Aharoni, Holzman 1995): Every clique-acyclic directed graph has a fractional kernel.

PROOF: Uses Scarf's Lemma.
The matrix B encodes fractional independence
The matrix C encodes fractional absorption

Application: The Stable Paths problem
 INSTANCE:

- A graph G with a distinguished vertex d (the destination),
- an ordered list $\pi(v)$ of paths from v to d for each vertex v (the preference list of v).

SOLUTION: a tree T in G, rooted at d, such that for every vertex v and path $P \in \pi(v)$, either

- v prefers its path in T to P, or
- there is a PROPER final segment of P that is not contained in T.

Motivation: internet routing protocols (Border Gateway Protocol)

NOT EVERY instance of SPP has a solution:

A fractional version

SOLUTION: A function that assigns a weight $w(P)$ to each path $P \in$ $\cup_{v} \pi(v)$ such that

- for each $v, \sum_{P \in \pi(v)} w(P) \leq 1$,
- (tree condition) for each vertex v and path $S, \sum_{P \in \pi(v, S)} w(P) \leq$ $w(S)$, where $\pi(v, S)$ denotes the set of paths in $\pi(v)$ that end with the segment S,

(stability condition) for each v and each $P \in \pi(v)$, either
- $\sum_{Q \in \pi(v)} w(Q)=1$ AND v prefers ALL its paths $Q \in \pi(v)$ for which $w(Q)>0$ to P, or
- there exists a PROPER final segment S of P such that $\sum_{Q \in \pi(v, S)} w(Q)=w(S)$ AND v prefers ALL paths $Q \in \pi(v, S)$ for which $w(Q)>0$ to P.

THEOREM (PH, Wilfong): Every instance of SPP has a fractional solution.

PROOF: Uses Scarf's Lemma.

- The matrix B encodes the tree condition.
- The matrix C encodes the stability condition.
- The solution x gives the weight function on paths that is the fractional solution to SPP.

The matrix B

The $((v, S), P)$ entry is -1 if $P=S$, 1 if $P \in \pi(v, S)$, and 0 otherwise.

The matrix C

The $((v, S), P)$ entry is the rank of P in $\pi(v, S)$, if $P \in \pi(v, S)$, and M otherwise, where M is larger than any rank.

The solution x from Scarf's Lemma gives a weight function w on all paths in $\cup_{v} \pi(v)$.

The matrix B ensures that the tree condition is satisfied.

The dominating property of $\operatorname{supp}(x)$ ensures that the stability condition is satisfied.

