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Plan

• Polynomial inapproximability

• Exact computation with worst-case time-bounds

• Moderately exponential approximation

• MAX INDEPENDENT SET

• MIN VERTEX COVER

• MAX CLIQUE
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Approximation ratio

opt(I ): the value of an optimal solution of an instance I of a

problem Π

mA(I ,S): the value of the solution S computed by an

approximation algorithm A on I

Approximation ratio of A

ρA(I ) =
mA(I ,S)

opt(I )

The closer the ratio to 1, the better the performance of A
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Polynomial inapproximability

• What is an inapproximability result?

• Examples

• A crucial question
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Inapproximability result

A statement that a problem is inapproximable within

ratios better than some approximability level unless

something very unlikely happens in complexity

theory

• P = NP

• Disproval of the Exponential Time Hypothesis

(problems in NP can be solved by slightly

superpolynomial algorithms)

• . . .



LIRMM 5 février 2009 5

Examples of inapproximability

• MAX INDEPENDENT SET or MAX CLIQUE inapproximable

within ratios Ω(n−1)

• MIN VERTEX COVER within smaller than 2

• MIN SET COVER within o(logn)

• MIN TSP within better than exponential ratios

• MIN COLORING within o(n)

• . . .
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A basic question (goal = max)
eplacements

ratio

polynomial

algorithms algorithms

ρ

exact

1

(??)

What about (??)?

Why not taking advantage of the power of modern

computers?

For realistic values of n, 1.1n is not so “worse” than n5
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Exact computation with worst-case

guarantees

Determine an optimal solution for an NP-hard problem with

provably non trivial worst-case time-complexity

Notation : O∗( f (n)) = p(n)× f (n) (for a polynomial p)
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Example: MAX INDEPENDENT SET

• Exhaustively generate any subset of V and get a

maximum one among those that are independent

sets: O∗(2n) (trivial exact complexity)

• Find all the maximal independent sets of the input

graph: O∗(1.4422n) (Moon & Moser (1965))



LIRMM 5 février 2009 9

Doing better

(a) 1 vertex fixed (b) At least 4 ver-

tices fixed

T (n) É T (n −1)+T (n −4)+p(n) ≃O∗ (

1.385n
)
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Coping with inapproximability:

moderately exponential approximation

Approximate optimal solutions of NP-hard

problems within ratios “forbidden” to polynomial

algorithms and with worst-case complexity

provably better than the complexity of an exact

computation
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Moderately exponential approximation:

main stakes

For a problem Π inapproximable within ratios better than r ′

and solved by an exact algorithm in time O∗(γn):

• Can we determine an r -approximate solution (r better

than r ′) with complexity essentially better than O∗(γn)?

• More ambitiously, can we do that for any forbidden r ?
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MAX INDEPENDENT SET

Given a graph, determine a maximum-cardinality set of

mutually non-adjacent vertices

• Generate candidate solutions

• Divide and approximate

• Randomization
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Something simple: generate candidate solutions

• Generate all the
p

n-subsets of V

• If one of them is independent, then output it

• Else output a vertex at random

Approximation ratio: n−1/2

(impossible in polynomial time)

Worst-case complexity: O∗
(

( np
n

)

)

ÉO∗
(

2
p

n logn
)

(subexponential)
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Divide and approximate -

Algorithm IND_SET

Set p/q = r (if r fixed, p and q fixed also) and:

• Split G into q induced subgraphs G1, . . . ,Gq of order n/q

• Build the subgraphs G ′
1, . . .G ′

C
p
q

, unions of p subgraphs

in {G1, . . . ,Gq } among q

• Optimally solve MAX INDEPENDENT SET in every G ′
i

• Output the best of the solutions computed
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MAX INDEPENDENT SET Theorem

Assume that an optimal solution for MAX INDEPENDENT SET

can be found in O∗(γn)

Then, for any fixed p, q, p < q, a p/q-approximation can be

computed with complexity O∗(γ
p
q n

)

It works for every problem defined upon a non-trivial

hereditary property
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Graph-splitting Corollary

The best independent set computed in the graphs G ′
i

is an

r = (p/q)-approximation for MAX INDEPENDENT SET
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Sketch of proof (for p/q = r = 1/2)

S∗: a maximum independent set in G

Si : a maximum independent set in G ′
i
, i = 1,2

Here, G ′
i
, i = 1,2, the half of G

∣

∣S∗∩V
(

G ′
i

)∣

∣É |Si |⇒
∣

∣S∗∣

∣É |S1|+ |S2| É 2max {|S1| , |S2|}

=⇒
max{|S1| , |S2|}

|S∗|
Ê

1

2

Complexity: O∗(γn/2)
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Doing better: random splitting

Achieving ratio r with complexity better than O∗(γr n)?

• Randomly split the graph into subgraphs in such a way

that MAX INDEPENDENT SET is to be solved in graphs G ′
i

of

order r ′n with r ′ < r

• Compute the probability Pr[r ] that |S∗∩Vi | Ê r |S∗|
(r -approximation with probability Pr[r ])

• Repeat splitting N (r ) times so that Pr[r ] → 1 (we have an

r-approximation with probability ∼ 1 in time N (r )γr ′n)

• Prove that N (r )γr ′n < γr n
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Example: random splitting into 2 subgraphs

• Fix a ratio r > 1/2 to attain

• Split the input-graph into two parts of size n/2

• Compute the probability Pr[r ] that |S∗∩V1| Ê r |S∗|

• Repeat the 2-splitting N (r ) times so that Pr[r ] → 1

• Complexity of the game random splitting - MAX INDEPENDENT

SET solving: N (r )γn/2

• Complexity of deterministic solution γr n

• And the winner is . . .
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The randomization MAX INDEPENDENT SET

theorem

For any r < 1 and for any β, r /2 ÉβÉ r , it is possible to

determine with probability 1−exp{−cn} (for some

constant c), an r -approximation for MAX INDEPENDENT SET,

with running time O∗(Knγ
βn), where:

Kn =
n

( n
n/2

)

( βn
r n/2

)( n−βn
((1−r )n/2)

)
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Ratio Deterministic Randomized

0.1 1.017n 1.015n

0.2 1.034n 1.031n

0.3 1.051n 1.047n

0.4 1.068n 1.063n

0.5 1.086n 1.080n

0.6 1.104n 1.098n

0.7 1.123n 1.117n

0.8 1.142n 1.136n

0.9 1.161n 1.157n

γ= 1.18 (Robson (2001))
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MIN VERTEX COVER

Given a graph, determine a minimum-cardinality set of

vertices that “touch” all the edges

• On the polyhedron of MIN VERTEX COVER

• Aproximation transfer from MAX INDEPENDENT SET to

MIN VERTEX COVER

• Using parameterized divide and approximate

• Parameterized approximation
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MIN VERTEX COVER























min
∑

vi∈V
xi

xi +x j Ê 1 ∀
(

vi , v j

)

∈ E

xi ∈ {0,1} ∀vi ∈V

MIN VERTEX COVER-R























min
∑

vi∈V
xi

xi +x j Ê 1 ∀
(

vi , v j

)

∈ E

xi ∈ [0,1] ∀vi ∈V
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A basic theorem (Nemhauser & Trotter (1975))

The basic optimal solution of MIN VERTEX COVER-R is

semi-integral, i.e., it assigns to the variables values from

{0,1,1/2}

If V0, V1 and V1/2 are the subsets of V associated with 0, 1

et 1/2, respectively, then there exists a minimum vertex

cover C∗ such that:

1. V1 ⊆C∗

2. V0 ⊆ S∗ =V \C∗ (a maximum independent set associated

with C∗)
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Corollaries

1. The graph G ′ =G[V \ (V0 ∪V1)]=G[V1/2] has:

∣

∣S∗∣

∣ É
|V1/2|

2
∣

∣C∗∣

∣ = |V \ S∗| Ê
|V1/2|

2

2. Modulo some preprocessing of G, we can reason with

respect to G ′ and assume that |S∗| É n/2 and |C∗| Ê n/2
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Approximation Transfer Theorem

If S is an r -approximate solution for MAX

INDEPENDENT SET, then C =V \ S is a

(2− r )-approximation for MIN VERTEX COVER
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C∗: an optimal vertex cover of G

C : an approximate vertex cover

|C |
|C∗|

=
n −|S|

n −|S∗|
É

n − r |S∗|
n −|S∗|

=
1− r |S∗|

n

1− |S∗|
n

By first Nemhauser & Trotter corollary:

|S∗|
n

É
1

2
=⇒

|C |
|C∗|

É 2− r
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A first MIN VERTEX COVER corollary . . .

A (2− r )-approximation for MIN VERTEX COVER can be

computed in O∗(γr n), for any r

... and a question

Can we achieve ratio 2− r in time better than O∗(γr n)?
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A useful parameterized result

There exists an optimal algorithm OPT_VC for MIN

VERTEX COVER that, for any k É n, determines if G

contains a vertex cover of size k or not and, if yes, it

computes it with complexity O∗(δk ), δ< 2

δ= 1.2852 (Chen, Kanj & Jia (2001))
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First Lemma (small independent sets)

If, for some λ< 1/2, |S∗| Éλn, then a

(2− r )-approximation of MIN VERTEX COVER can be

found in O∗
(

γ
(

2−r− 1−r
λ

)

n
)

, for any r

Remark

For λ< 1/2, 2− r − 1−r
λ < r
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From |C |
|C∗| <

1−r
|S∗|

n

1− |S∗|
n

, setting λ= |S∗|/n:

|C |
|C∗|

É
1− rλ

1−λ

λ<1/2
< 2− r

So, for λ< 1/2, ratio 2− r is get by approximately solving MAX INDE-

PENDENT SET with ratio r ′ < r verifying:

2− r=
1− r ′λ

1−λ
=⇒ r ′ = 2− r −

1− r

λ

Complexity: O∗
(

γr ′n
)

=O∗
(

γ
(

2−r− 1−r
λ

)

n
)

<O∗ (

γr n
)
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Second Lemma (large independent sets, i.e.,

small vertex covers)

If, for some λ< 1/2, |S∗| Êλn, then a

(2− r )-approximation of MIN VERTEX COVER can be

found in O∗ (

δr (1−λ)n
)
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Set r = p/q and run algorithm VERTEX_COVER:

1. Split the graph as in the two first steps of IND_SET

2. for i = 1, . . . ,C
p
q , run OPT_VC(G ′

i
, (1−λ)r n) and store the best

(denoted by C ′
0) among the covers that are É (1−λ)r n (if any)

3. if such a cover C ′
0 has been computed in Step 2 for a graph G ′

0,

then output C =C ′
0 ∪ (V \V (G ′

0)), else exit

G ′
0

G

C ′
0

V \V (G ′
0)
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If |S∗| Ê λn, then there exists a graph G ′
0 where a vertex cover C ′

0

satisfying |C ′
0| É (1−λ)r n has been computed in step 2

∃G ′
0 where max independent set S′

0 verifies
∣

∣S′
0

∣

∣Ê r |S∗| Ê rλn

(Graph-splitting Corollary)

Hence
∣

∣C ′
0

∣

∣=
∣

∣V
(

G ′
0

)

\ S′
0

∣

∣É r n − rλn = (1−λ)r n

C =V \S′
0 =C ′

0∪(V \V (G ′
0)) is a (2−r )-approximation for MIN VERTEX

COVER (Approximation Transfer Theorem)

Complexity of VERTEX_COVER: O∗ (

δr (1−λ)n
)
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The overall algorithm APPROX_VERTEX_COVER

• Fix an r and determine λ=λ(r ) satisfying

γ2−r− 1−r
λ = δ(1−λ)r

• Preprocess G

• Set 2− r − 1−r
λ = p

q and compute C0 =V \IND_SET(G)

(First Lemma)

• Set r = p/q and compute C = VERTEX_COVER(G) (Second

Lemma)

• Output the best among C0 and C
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MIN VERTEX COVER Theorem

For any r < 1, MIN VERTEX COVER can be solved

approximately within ratio 2− r and with

time-complexity O∗
(

γ
(

2−r− 1−r
λ

)

n
)

ÉO∗ (

γr n
)

Randomization also works for MIN VERTEX COVER
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Parameterized approximation

For any r = p/q ∈Q, if there exists a vertex cover of

size É k, it is possible to determine a

(2− r )-approximation of it in time O∗(δr k )
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1. Split the graph as in the two first steps of IND_SET and set k = 1

2. Run OPT_VC in G ′
i

in order to compute a minimum vertex cover

of size k; if impossible, repeat step 2 with k = k +1; let C ′
i∗ be

a smallest vertex cover so-computed (G ′
i∗ the corresponding

graph)

3. Output C =C ′
i∗ ∪ (V \V (G ′

i∗))

Complexity: O∗
(

δ

∣

∣

∣C ′
i∗

∣

∣

∣

)
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α
(

G ′
i∗

)

Ê
p

q
α(G) (Graph-splitting Corollary)

∣

∣C ′
i∗

∣

∣ É
p

q
n −α

(

G ′
i∗

)

É
p

q
(n −α(G))

=
p

q

∣

∣C∗∣

∣ = r
∣

∣C∗∣

∣

|C | =
∣

∣C ′
i∗

∣

∣+
(

1−
p

q

)

n É
p

q

∣

∣C∗∣

∣+n

(

1−
p

q

)

Since |C∗| Ê n/2 (Nemhauser & Trotter Corollary 2):

|C |
|C∗|

É 2

(

1−
p

q

)

+
p

q
= 2−

p

q
= 2− r

Complexity: O∗
(

δr |C∗|
)
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Ratio IND_SET APPROX_VERTEX_COVER Parameterized

1.9 1.017n 1.013n 1.025k

1.8 1.034n 1.026n 1.051k

1.7 1.051n 1.039n 1.077k

1.6 1.068n 1.054n 1.104k

1.5 1.086n 1.069n 1.131k

1.4 1.104n 1.086n 1.160k

1.3 1.123n 1.104n 1.189k

1.2 1.142n 1.124n 1.218k

1.1 1.161n 1.148n 1.249k

γ= 1.18, δ= 1.28
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MAX CLIQUE

Given a graph, determine a maximum-size complete induced

subgraph

For the efficient approximation of MAX CLIQUE,

parameter γ is the same as for MAX INDEPENDENT SET

The exponent for MAX CLIQUE is the maximum

degree ∆ of the input-graph
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• Split G into n induced subgraphs Gi =G[{vi }∪Γ(vi )]

• Solve MAX INDEPENDENT SET in Ḡi (recover cliques in Gi ’s)

• Output the best of the solutions computed

Hint: any clique is a subset of the neighborhood of a vertex

This is a polynomial reduction MAX CLIQUE ≤ MAX INDEPENDENT SET

that:

1. transforms approximation ratios functions of n for MAX INDE-

PENDENT SET into ratios functions of ∆ for MAX CLIQUE

2. solves MAX CLIQUE in n graphs of order at most ∆+1 instead of

solving it in one graph of order n
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Further research

• Devise proper approximability preserving reductions

• Devise new methods proper to this type of approximation

• Mix polynomial approximation and exact computation

• What about approximation by subexponential

algorithms?

What about MIN COLORING, MIN TSP, MIN INDEPENDENT

DOMINATING SET, . . . ?
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MERCI


