Approximation of NP-hard problems by moderately exponential time algorithms

Vangelis Th. Paschos

http://www.lamsade.dauphine.fr/~paschos

Joint work with Nicolas Bourgeois and Bruno Escoffier

5 février 2009

Plan

- Polynomial inapproximability
- Exact computation with worst-case time-bounds
- Moderately exponential approximation
- MAX INDEPENDENT SET
- MIN VERTEX COVER
- MAX CLIQUE

Approximation ratio

opt(*I*): the value of an optimal solution of an instance *I* of a problem Π

 $m_{\mathbb{A}}(I, S)$: the value of the solution *S* computed by an approximation algorithm A on *I*

Approximation ratio of A

$$\rho_{\mathbf{A}}(I) = \frac{m_{\mathbf{A}}(I,S)}{\operatorname{opt}(I)}$$

The closer the ratio to 1, the better the performance of A

Polynomial inapproximability

- What is an inapproximability result?
- Examples
- A crucial question

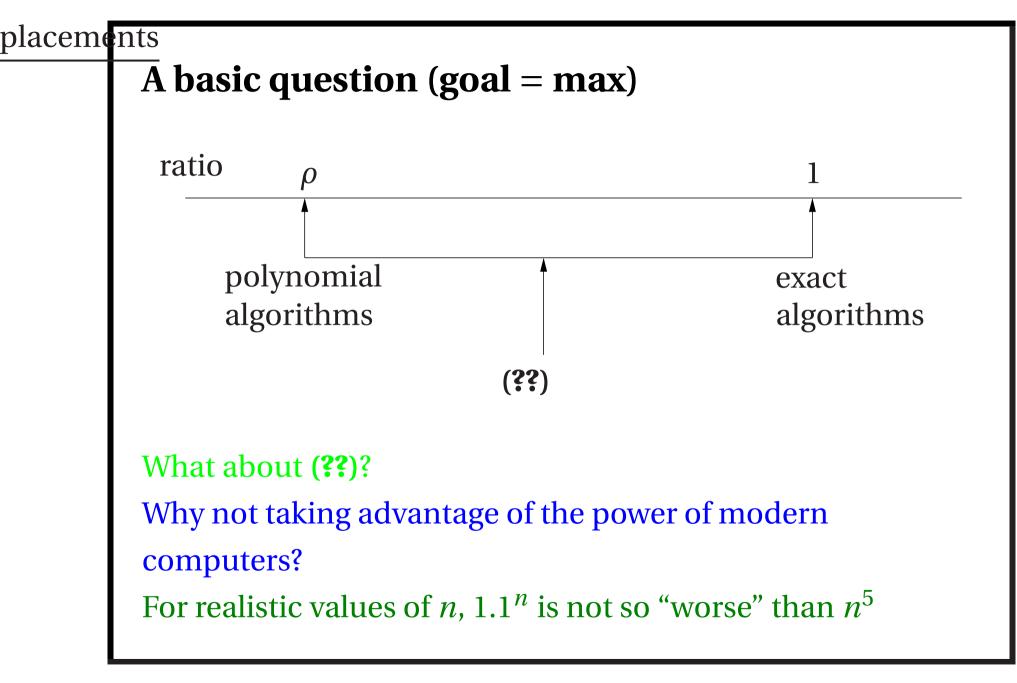
Inapproximability result

A statement that a problem is inapproximable within ratios better than some approximability level unless something very unlikely happens in complexity theory

- P = NP
- *Disproval of the Exponential Time Hypothesis* (problems in **NP** can be solved by slightly superpolynomial algorithms)

Examples of inapproximability

- MAX INDEPENDENT SET OF MAX CLIQUE inapproximable within ratios $\Omega(n^{-1})$
- MIN VERTEX COVER within smaller than 2
- MIN SET COVER within $o(\log n)$
- MIN TSP within better than exponential ratios
- MIN COLORING within *o*(*n*)
- . .



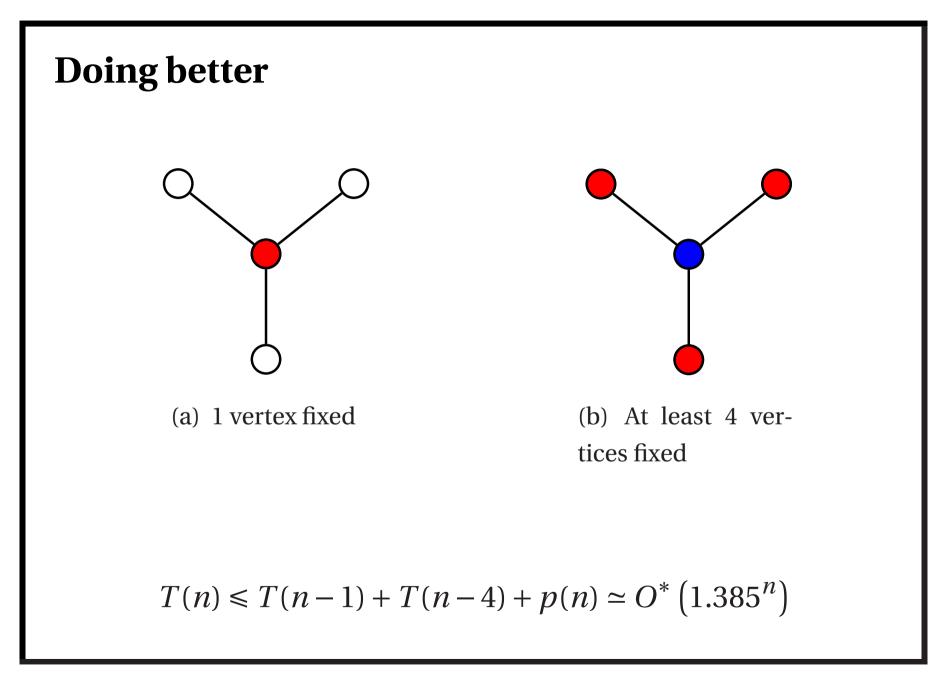
Exact computation with worst-case guarantees

Determine an optimal solution for an **NP**-hard problem with provably non trivial worst-case time-complexity

Notation : $O^*(f(n)) = p(n) \times f(n)$ (for a polynomial p)

Example: MAX INDEPENDENT SET

- Exhaustively generate any subset of V and get a maximum one among those that are independent sets: O* (2ⁿ) (trivial exact complexity)
- Find all the maximal independent sets of the input graph: $O^*(1.4422^n)$ (Moon & Moser (1965))



Coping with inapproximability: moderately exponential approximation **Approximate optimal solutions of NP-hard** problems within ratios "forbidden" to polynomial algorithms and with worst-case complexity provably better than the complexity of an exact computation

Moderately exponential approximation: main stakes

For a problem Π inapproximable within ratios better than r' and solved by an exact algorithm in time $O^*(\gamma^n)$:

- Can we determine an *r*-approximate solution (*r* better than r') with complexity essentially better than $O^*(\gamma^n)$?
- More ambitiously, can we do that for any forbidden *r*?

MAX INDEPENDENT SET

Given a graph, determine a maximum-cardinality set of mutually non-adjacent vertices

- Generate candidate solutions
- Divide and approximate
- Randomization

Something simple: generate candidate solutions

- Generate all the \sqrt{n} -subsets of *V*
- If one of them is independent, then output it
- Else output a vertex at random

Approximation ratio: $n^{-1/2}$ (impossible in polynomial time)

Worst-case complexity: $O^*\left(\binom{n}{\sqrt{n}}\right) \le O^*\left(2^{\sqrt{n}\log n}\right)$ (subexponential)

Divide and approximate -Algorithm IND_SET

Set p/q = r (if *r* fixed, *p* and *q* fixed also) and:

- Split *G* into *q* induced subgraphs G_1, \ldots, G_q of order n/q
- Build the subgraphs $G'_1, \ldots, G'_{C^p_q}$, unions of p subgraphs in $\{G_1, \ldots, G_q\}$ among q
- Optimally solve MAX INDEPENDENT SET in every G'_i
- Output the best of the solutions computed

MAX INDEPENDENT SET Theorem

Assume that an optimal solution for MAX INDEPENDENT SET can be found in $O^*(\gamma^n)$ Then, for any fixed p, q, p < q, a p/q-approximation can be computed with complexity $O^*(\gamma^{\frac{p}{q}n})$

It works for every problem defined upon a non-trivial hereditary property

Graph-splitting Corollary

The best independent set computed in the graphs G'_i is an r = (p/q)-approximation for MAX INDEPENDENT SET

Sketch of proof (for p/q = r = 1/2)

 S^* : a maximum independent set in G S_i : a maximum independent set in G'_i , i = 1, 2Here, G'_i , i = 1, 2, the half of G

$$|S^* \cap V(G'_i)| \le |S_i| \Rightarrow |S^*| \le |S_1| + |S_2| \le 2\max\{|S_1|, |S_2|\}$$

$$\implies \frac{\max\{|S_1|, |S_2|\}}{|S^*|} \ge \frac{1}{2}$$

Complexity: $O^*(\gamma^{n/2})$

Doing better: random splitting

Achieving ratio *r* with complexity better than $O^*(\gamma^{rn})$?

- Randomly split the graph into subgraphs in such a way that MAX INDEPENDENT SET is to be solved in graphs G'_i of order r'n with r' < r
- Compute the probability $\Pr[r]$ that $|S^* \cap V_i| \ge r|S^*|$ (*r*-approximation with probability $\Pr[r]$)
- Repeat splitting N(r) times so that $\Pr[r] \to 1$ (we have an r-approximation with probability ~ 1 in time $N(r)\gamma^{r'n}$)
- Prove that $N(r)\gamma^{r'n} < \gamma^{rn}$

Example: random splitting into 2 subgraphs

- Fix a ratio r > 1/2 to attain
- Split the input-graph into two parts of size n/2
- Compute the probability $\Pr[r]$ that $|S^* \cap V_1| \ge r|S^*|$
- Repeat the 2-splitting N(r) times so that $\Pr[r] \rightarrow 1$
- Complexity of the game random splitting MAX INDEPENDENT SET solving: $N(r)\gamma^{n/2}$
- Complexity of deterministic solution γ^{rn}
- And the winner is ...

The randomization MAX INDEPENDENT SET theorem

For any r < 1 and for any β , $r/2 \le \beta \le r$, it is possible to determine with probability $1 - \exp\{-cn\}$ (for some constant *c*), an *r*-approximation for MAX INDEPENDENT SET, with running time $O^*(K_n\gamma^{\beta n})$, where:

$$K_n = \frac{n\binom{n}{n/2}}{\binom{\beta n}{rn/2}\binom{n-\beta n}{((1-r)n/2)}}$$

Ratio	Deterministic	Randomized
0.1	1.017 ⁿ	1.015 ⁿ
0.2	1.034^{n}	1.031 ⁿ
0.3	1.051^{n}	1.047^{n}
0.4	1.068 ⁿ	1.063 ⁿ
0.5	1.086 ⁿ	1.080^{n}
0.6	1.104 ⁿ	1.098^{n}
0.7	1.123 ⁿ	1.117^{n}
0.8	1.142^{n}	1.136 ⁿ
0.9	1.161 ⁿ	1.157 ⁿ

 $\gamma = 1.18$ (Robson (2001))

MIN VERTEX COVER

Given a graph, determine a minimum-cardinality set of vertices that "touch" all the edges

- On the polyhedron of MIN VERTEX COVER
- Approximation transfer from MAX INDEPENDENT SET to MIN VERTEX COVER
- Using parameterized divide and approximate
- Parameterized approximation

MIN VERTEX COVER

$$\min \sum_{v_i \in V} x_i$$

$$x_i + x_j \ge 1 \quad \forall (v_i, v_j) \in E$$

$$x_i \in \{0, 1\} \quad \forall v_i \in V$$

MIN VERTEX COVER-R

$$\begin{array}{ll} \min & \sum\limits_{v_i \in V} x_i \\ & x_i + x_j \geq 1 \quad \forall \left(v_i, v_j \right) \in E \\ & x_i \in [0, 1] \quad \forall v_i \in V \end{array}$$

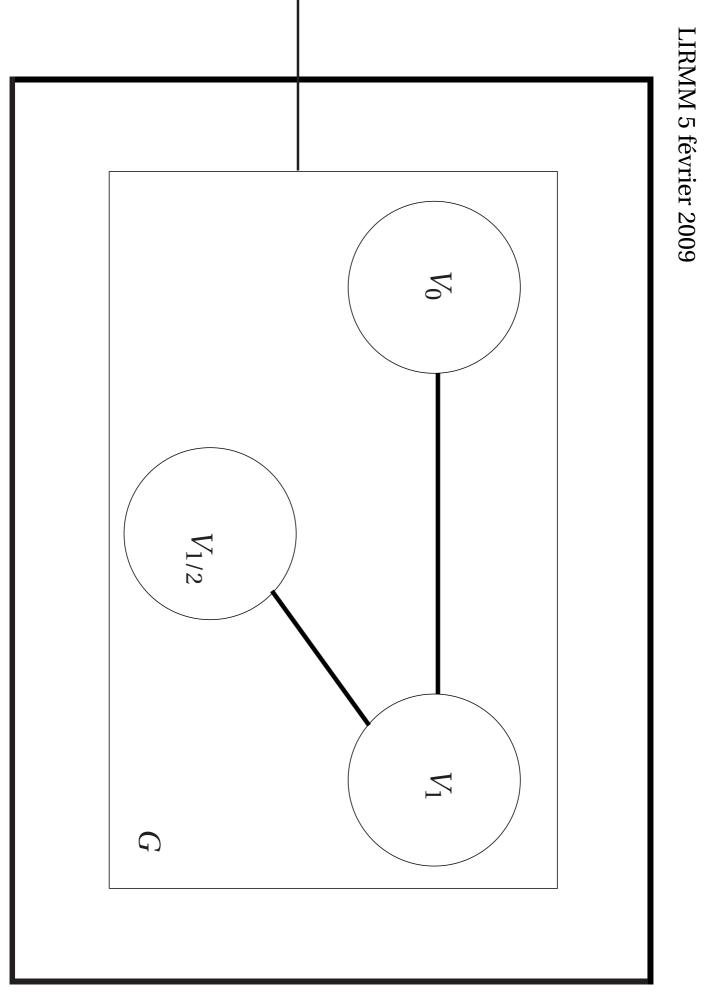
A basic theorem (Nemhauser & Trotter (1975))

The basic optimal solution of MIN VERTEX COVER-R is semi-integral, i.e., it assigns to the variables values from $\{0, 1, 1/2\}$

If V_0 , V_1 and $V_{1/2}$ are the subsets of *V* associated with 0, 1 et 1/2, respectively, then there exists a minimum vertex cover C^* such that:

1.
$$V_1 \subseteq C^*$$

2. $V_0 \subseteq S^* = V \setminus C^*$ (a maximum independent set associated with C^*)



Corollaries

1. The graph $G' = G[V \setminus (V_0 \cup V_1)] = G[V_{1/2}]$ has:

$$\begin{vmatrix} S^* \end{vmatrix} \leq \frac{|V_{1/2}|}{2} \\ |C^*| = |V \setminus S^*| \geq \frac{|V_{1/2}|}{2} \end{vmatrix}$$

2. Modulo some preprocessing of *G*, we can reason with respect to *G'* and assume that $|S^*| \le n/2$ and $|C^*| \ge n/2$

Approximation Transfer Theorem

If *S* is an *r*-approximate solution for MAX INDEPENDENT SET, then $C = V \setminus S$ is a (2 - r)-approximation for MIN VERTEX COVER *C**: an optimal vertex cover of *GC*: an approximate vertex cover

$$\frac{|C|}{|C^*|} = \frac{n - |S|}{n - |S^*|} \le \frac{n - r |S^*|}{n - |S^*|} = \frac{1 - r \frac{|S^*|}{n}}{1 - \frac{|S^*|}{n}}$$

By first Nemhauser & Trotter corollary:

$$\frac{|S^*|}{n} \leq \frac{1}{2} \Longrightarrow \frac{|C|}{|C^*|} \leq 2 - r$$

A (2 - r)-approximation for MIN VERTEX COVER can be computed in $O^*(\gamma^{rn})$, for any r

... and a question

Can we achieve ratio 2 - r **in time better than** $O^*(\gamma^{rn})$?

A useful parameterized result

There exists an optimal algorithm OPT_VC for MIN VERTEX COVER that, for any $k \le n$, determines if *G* contains a vertex cover of size *k* or not and, if yes, it computes it with complexity $O^*(\delta^k), \delta < 2$

 δ = 1.2852 (Chen, Kanj & Jia (2001))

First Lemma (small independent sets)

If, for some $\lambda < 1/2$, $|S^*| \le \lambda n$, then a (2 - r)-approximation of MIN VERTEX COVER can be found in $O^*\left(\gamma^{\left(2-r-\frac{1-r}{\lambda}\right)n}\right)$, for any r

Remark

For
$$\lambda < 1/2$$
, $2 - r - \frac{1-r}{\lambda} < r$

From
$$\frac{|C|}{|C^*|} < \frac{1-r\frac{|S^*|}{n}}{1-\frac{|S^*|}{n}}$$
, setting $\lambda = |S^*|/n$:
$$\frac{|C|}{|C^*|} \leq \frac{1-r\lambda}{1-\lambda} \stackrel{\lambda < 1/2}{<} 2-r$$

So, for $\lambda < 1/2$, ratio 2 - r is get by approximately solving MAX INDE-PENDENT SET with ratio r' < r verifying:

$$2 - r = \frac{1 - r'\lambda}{1 - \lambda} \Longrightarrow r' = 2 - r - \frac{1 - r}{\lambda}$$

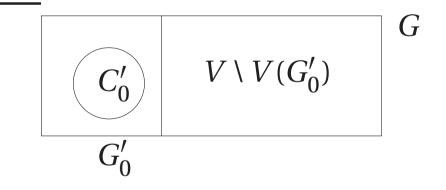
Complexity: $O^*\left(\gamma^{r'n}\right) = O^*\left(\gamma^{\left(2 - r - \frac{1 - r}{\lambda}\right)n}\right) < O^*\left(\gamma^{rn}\right)$

Second Lemma (large independent sets, i.e., small vertex covers)

If, for some $\lambda < 1/2$, $|S^*| \ge \lambda n$, then a (2 - r)-approximation of MIN VERTEX COVER can be found in $O^*(\delta^{r(1-\lambda)n})$ LIRMM 5 février 2009

Set r = p/q and run algorithm VERTEX_COVER:

- 1. Split the graph as in the two first steps of IND_SET
- 2. for $i = 1, ..., C_q^p$, run $OPT_VC(G'_i, (1 \lambda)rn)$ and store the best (denoted by C'_0) among the covers that are $\leq (1 \lambda)rn$ (if any)
- 3. if such a cover C'_0 has been computed in Step 2 for a graph G'_0 , then output $C = C'_0 \cup (V \setminus V(G'_0))$, else exit



If $|S^*| \ge \lambda n$, then there exists a graph G'_0 where a vertex cover C'_0 satisfying $|C'_0| \le (1 - \lambda)rn$ has been computed in step 2

 $\exists G'_0$ where max independent set S'_0 verifies $|S'_0| \ge r |S^*| \ge r \lambda n$ (Graph-splitting Corollary)

Hence $|C'_0| = |V(G'_0) \setminus S'_0| \le rn - r\lambda n = (1 - \lambda)rn$

 $C = V \setminus S'_0 = C'_0 \cup (V \setminus V(G'_0))$ is a (2-r)-approximation for MIN VERTEX COVER (Approximation Transfer Theorem)

Complexity of VERTEX_COVER: $O^*(\delta^{r(1-\lambda)n})$

The overall algorithm APPROX_VERTEX_COVER

- Fix an *r* and determine $\lambda = \lambda(r)$ satisfying $\gamma^{2-r-\frac{1-r}{\lambda}} = \delta^{(1-\lambda)r}$
- Preprocess G
- Set $2 r \frac{1-r}{\lambda} = \frac{p}{q}$ and compute $C_0 = V \setminus \text{IND}_\text{SET}(G)$ (First Lemma)
- Set *r* = *p*/*q* and compute *C* = VERTEX_COVER(*G*) (Second Lemma)
- Output the best among *C*₀ and *C*

MIN VERTEX COVER Theorem

For any r < 1, MIN VERTEX COVER can be solved approximately within ratio 2 - r and with time-complexity $O^*\left(\gamma^{\left(2-r-\frac{1-r}{\lambda}\right)n}\right) \leq O^*\left(\gamma^{rn}\right)$

Randomization also works for MIN VERTEX COVER

Parameterized approximation

For any $r = p/q \in \mathbb{Q}$, if there exists a vertex cover of size $\leq k$, it is possible to determine a (2-r)-approximation of it in time $O^*(\delta^{rk})$

- 1. Split the graph as in the two first steps of IND_SET and set k = 1
- 2. Run OPT_VC in G'_i in order to compute a minimum vertex cover of size k; if impossible, repeat step 2 with k = k + 1; let C'_{i^*} be a smallest vertex cover so-computed (G'_{i^*} the corresponding graph)
- 3. Output $C = C'_{i^*} \cup (V \setminus V(G'_{i^*}))$

Complexity: $O^*\left(\delta^{\left|C'_{i^*}\right|}\right)$

$$\begin{aligned} \alpha\left(G'_{i^*}\right) &\geq \frac{p}{q}\alpha(G) \text{ (Graph-splitting Corollary)} \\ \left|C'_{i^*}\right| &\leq \frac{p}{q}n - \alpha\left(G'_{i^*}\right) \leq \frac{p}{q}(n - \alpha(G)) \\ &= \frac{p}{q}\left|C^*\right| = r\left|C^*\right| \\ \left|C\right| &= \left|C'_{i^*}\right| + \left(1 - \frac{p}{q}\right)n \leq \frac{p}{q}\left|C^*\right| + n\left(1 - \frac{p}{q}\right) \end{aligned}$$

Since $|C^*| \ge n/2$ (Nemhauser & Trotter Corollary 2):

$$\frac{|C|}{|C^*|} \leq 2\left(1 - \frac{p}{q}\right) + \frac{p}{q} = 2 - \frac{p}{q} = 2 - r$$

Complexity: $O^*\left(\delta^{r|C^*|}\right)$

Ratio	IND_SET	APPROX_VERTEX_COVER	Parameterized
1.9	1.017 ⁿ	1.013 ⁿ	1.025^{k}
1.8	1.034 ⁿ	1.026^{n}	1.051^{k}
1.7	1.051 ^{<i>n</i>}	1.039^{n}	1.077^{k}
1.6	1.068 ⁿ	1.054^{n}	1.104^{k}
1.5	1.086 ⁿ	1.069^{n}	1.131^{k}
1.4	1.104 ⁿ	1.086^{n}	1.160^{k}
1.3	1.123 ^{<i>n</i>}	1.104^{n}	1.189^{k}
1.2	1.142 ⁿ	1.124^{n}	1.218^{k}
1.1	1.161 ^{<i>n</i>}	1.148^{n}	1.249^{k}
	$\frac{1.161^n}{\delta = 1.28}$	1.14	8 ⁿ

MAX CLIQUE

Given a graph, determine a maximum-size complete induced subgraph

For the efficient approximation of MAX CLIQUE, parameter γ is the same as for MAX INDEPENDENT SET The exponent for MAX CLIQUE is the maximum degree Δ of the input-graph

- Split *G* into *n* induced subgraphs $G_i = G[\{v_i\} \cup \Gamma(v_i)]$
- Solve MAX INDEPENDENT SET in \overline{G}_i (recover cliques in G_i 's)
- Output the best of the solutions computed

Hint: any clique is a subset of the neighborhood of a vertex

This is a polynomial reduction MAX CLIQUE ≤ MAX INDEPENDENT SET that:

- 1. transforms approximation ratios functions of *n* for MAX INDE-PENDENT SET into ratios functions of Δ for MAX CLIQUE
- 2. solves MAX CLIQUE in *n* graphs of order at most $\Delta + 1$ instead of solving it in one graph of order *n*

Further research

- Devise proper approximability preserving reductions
- Devise new methods proper to this type of approximation
- Mix polynomial approximation and exact computation
- What about approximation by **sub**exponential algorithms?

What about MIN COLORING, MIN TSP, MIN INDEPENDENT DOMINATING SET, ...?

MERCI