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Plan

e Polynomial inapproximability

Exact computation with worst-case time-bounds
Moderately exponential approximation

MAX INDEPENDENT SET

MIN VERTEX COVER

MAX CLIQUE
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Approximation ratio

opt(I): the value of an optimal solution of an instance I of a
problem I1

my (I, S): the value of the solution S computed by an
approximation algorithm A on [

Approximation ratio of A

my (1, S)
opt([)

pal) =

The closer the ratio to 1, the better the performance of A
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Polynomial inapproximability

e What is an inapproximability result?
e Examples

e A crucial question
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Inapproximability result

A statement that a problem is inapproximable within
ratios better than some approximability level unless
something very unlikely happens in complexity
theory

e P=NP

e Disproval of the Exponential Time Hypothesis
(problems in NP can be solved by slightly
superpolynomial algorithms)
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Examples of inapproximability

MAX INDEPENDENT SET or MAX CLIQUE inapproximable
within ratios Q(n™ 1)

MIN VERTEX COVER within smaller than 2
MIN SET COVER within o(log n)
MIN TSP within better than exponential ratios

MIN COLORING within o(n)
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A basic question (goal = max)

ratio

polynomial exact
algorithms algorithms

Why not taking advantage of the power of modern

computers?

For realistic values of 7, 1.1 is not so “worse” than 7°
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Exact computation with worst-case

guarantees

Determine an optimal solution for an NP-hard problem with

provably non trivial worst-case time-complexity

Notation : O* (f(n)) = p(n) x f(n) (for a polynomial p)
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Example: MAX INDEPENDENT SET

e Exhaustively generate any subset of V and get a
maximum one among those that are independent

sets: O*(2") (trivial exact complexity)

e Find all the maximal independent sets of the input
graph: O* (1.4422") (Moon & Moser (1965))
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Doing better

(a) 1 vertex fixed (b) At least 4 ver-
tices fixed

T(n)<T(n-1)+Tn-4)+pn) =0*(1.385")
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Coping with inapproximability:

moderately exponential approximation

Approximate optimal solutions of NP-hard
problems within ratios “forbidden” to polynomial
algorithms and with worst-case complexity
provably better than the complexity of an exact
computation
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Moderately exponential approximation:

main stakes

For a problem IT inapproximable within ratios better than r’
and solved by an exact algorithm in time O™ (y"):

e Can we determine an r-approximate solution (r better
than ') with complexity essentially better than O* (y™)?

e More ambitiously, can we do that for any forbidden r?

11
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MAX INDEPENDENT SET

Given a graph, determine a maximum-cardinality set of

mutually non-adjacent vertices

e (Generate candidate solutions
e Divide and approximate

e Randomization

12



LIRMM 5 février 2009

Something simple: generate candidate solutions

e Generate all the y/n-subsets of V
e If one of them is independent, then output it

e Else output a vertex at random

Approximation ratio: n=1/2

Worst-case complexity: O* (( \}%)) < O* (2\/5108 n)

13
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Divide and approximate -
Algorithm IND_SET

Set p/q = r (if r fixed, p and q fixed also) and:
* Split G into g induced subgraphs Gi,..., G, of order n/q

e Build the subgraphs G/, ... Gg », unions of p subgraphs

q

in {Gy,..., G4} among g
e Optimally solve MAX INDEPENDENT SET in every G;

e Qutput the best of the solutions computed

14
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MAX INDEPENDENT SET Theorem

Assume that an optimal solution for MAX INDEPENDENT SET
can be found in O* (y")
Then, for any fixed p,q, p < g, a p! g-approximation can be

computed with complexity O* ()f% ")

It works for every problem defined upon a non-trivial

hereditary property

15
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Graph-splitting Corollary

The best independent set computed in the graphs G is an

r = (plq)-approximation for MAX INDEPENDENT SET

16
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Sketch of proof (for p/g=r =1/2)

§*: amaximum independent set in G
S;: amaximum independent setin G}, i = 1,2
Here, G;., i =1,2, the half of G

1S* NV (G})| <ISil= |S"| <811 +1S2] < 2max{|Sy],1S21}
max{|S; ], |52|} 1

N ~2

Complexity: O* (y"'?)
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Doing better: random splitting

Achieving ratio r with complexity better than O* (y"")?

e Randomly split the graph into subgraphs in such a way
that MAX INDEPENDENT SET is to be solved in graphs G’ of
order r'nwith ' < r

Compute the probability Pr[r] that |S* n V;| = r|S™]
(r-approximation with probability Pr[r])

Repeat splitting N(r) times so that Pr[r] — 1 (we have an

r-approximation with probability ~ 1 in time N(r)y” ™)

Prove that N(r))/”/” <y

17
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Example: random splitting into 2 subgraphs

Fix a ratio r > 1/2 to attain

Split the input-graph into two parts of size n/2
Compute the probability Pr[r] that |S* n V;| = r|S™|
Repeat the 2-splitting N(r) times so that Pr{r] — 1

Complexity of the game random splitting - MAX INDEPENDENT
SET solving: N (r)y”/ 2

Complexity of deterministic solution y""

And the winner s ...
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The randomization MAX INDEPENDENT SET
theorem

Forany r <1and forany f, r/2< < r, itis possible to
determine with probability 1 —exp{—cn} (for some
constant ¢), an r-approximation for MAX INDEPENDENT SET,

with running time O* (K nyﬁ "y where:

n (n72)

K, = —
(r,[;l’;lz) (((llzr’)Brlz/l/Z))
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Ratio Deterministic

Randomized

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1.017"
1.034"
1.051"
1.068"
1.086"
1.104"
1.123"
1.142"
1.161"

1.015"
1.031"
1.047"
1.063"
1.080"
1.098"
1.117"
1.136"
1.157"

Y = 1.18 (Robson (2001))
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MIN VERTEX COVER

Given a graph, determine a minimum-cardinality set of
vertices that “touch” all the edges

e On the polyhedron of MIN VERTEX COVER

e Aproximation transfer from MAX INDEPENDENT SET to
MIN VERTEX COVER

e Using parameterized divide and approximate

e Parameterized approximation

20
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MIN VERTEX COVER

-

min

MIN VERTEX COVER-R

f

min

> X

21
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A basic theorem (Nemhauser & Trotter (1975))

The basic optimal solution of MIN VERTEX COVER-R is
semi-integral, i.e., it assigns to the variables values from
{0,1,1/2}

If Vy, V7 and Vj,» are the subsets of V associated with 0, 1
et 1/2, respectively, then there exists a minimum vertex
cover C* such that:

1. ycC*

2. Vo€ 8" =V \C* (amaximum independent set associated
with C™)
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Corollaries

1. The graph G' = G[V \ (Vo u V1)] = G[V1,2] has:

V12l
2

| V12
2

|57

C*| = IV\S*| =

2. Modulo some preprocessing of G, we can reason with
respect to G' and assume that |S*| < n/2 and |C*| = n/2

24
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Approximation Transfer Theorem

If S is an r-approximate solution for MAX
INDEPENDENT SET, then C=V \Sisa
(2 — r)-approximation for MIN VERTEX COVER

25
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C™: an optimal vertex cover of G
C: an approximate vertex cover

Cl _ n=IS| _n-ris7|_1-rk]

n

C*l =181 n—l$* - 18

By first Nemhauser & Trotter corollary:

S*] 1 |C|
< <2-r

~

_ >
n 2 |C*|

25-1
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A first MIN VERTEX COVER corollary ...

... and a question

Can we achieve ratio 2 — r in time better than O* (y'"*)?

26
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A useful parameterized result

There exists an optimal algorithm OPT_VC for MIN
VERTEX COVER that, for any k < n, determines if G

contains a vertex cover of size k or not and, if yes, it

computes it with complexity O* (6%), § < 2

0 =1.2852 (Chen, Kanj & Jia (2001))

27
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First Lemma (small independent sets)

If, forsome A <1/2,|S*| < An, then a
(2 — r)-approximation of MIN VERTEX COVER can be

found in O* (y(z_r_T)”), foranyr

Remark

For&<1/2,2—r—%<r

28
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|S™]

1-r - . . " .
< ] , setting A = |S™|/ n:

C]
1C*|

From

n

|C] 1—rA A<1/2
< < 2-r1
|C*| 1-A

So, for A < 1/2, ratio 2 — r is get by approximately solving MAX INDE-
PENDENT SET with ratio r’ < r verifying:

1—7”/1:> _ 1—r
r=2-r———
1-1 A

2—r=

1-r

Complexity: O* (Yr’n) = OF (Y(Z—r—T)n) < O* (an)
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Second Lemma (large independent sets, i.e.,

small vertex covers)

If, forsome A <1/2,|S*| = An, then a
(2 — r)-approximation of MIN VERTEX COVER can be

found in O* (§71~-Y1)

29
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Set r = p/ g and run algorithm VERTEX_COVER:
1. Split the graph as in the two first steps of IND_SET

2. fori = 1,...,C§, run OPT_VC(G;, (1 — A)rn) and store the best
(denoted by C)) among the covers that are < (1 - A)rn (if any)

3. if such a cover C| has been computed in Step 2 for a graph G,
then output C = C| U (V\ V(Gy)), else exit

V\V(G))

Gy

G
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If |S*| = An, then there exists a graph G(’) where a vertex cover C(’)
satisfying |Cyl < (1-A)rn has been computed in step 2

3G, where max independent set S|, verifies |Sy| = r|S*| = rAn
(Graph-splitting Corollary)

Hence |C)| = [V (G))\S)|<rn—rAn=(1-Nrn

C=V\S, =C,u(V\V(G)))is a(2—r)-approximation for MIN VERTEX
COVER (Approximation Transfer Theorem)

Complexity of VERTEX_COVER: O* (6"(1-H7)
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The overall algorithm APPROX_VERTEX_COVER

e Fix an r and determine A = A(r) satistying
YZ—r—% — 5(1—A)r

Preprocess G

Set2—r— I;A” = g and compute Cy = V \ IND_SET(G)

(First Lemma)

Set r = p/q and compute C = VERTEX_COVER(G) (Second

Lemma)

Output the best among Cy and C

30
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MIN VERTEX COVER Theorem

For any r <1, MIN VERTEX COVER can be solved

approximately within ratio 2 — r and with
time-complexity O* (y(z""%)”l) < 0" (y™)

Randomization also works for MIN VERTEX COVER

31
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Parameterized approximation

For any r = p/q € Q, if there exists a vertex cover of
size < k, it is possible to determine a

(2 — r)-approximation of it in time O™ (6’ €y

32
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1. Split the graph as in the two first steps of IND_SET and set k = 1

2. Run0OPT_VCin G;. in order to compute a minimum vertex cover
of size k; if impossible, repeat step 2 with k = k+1; let C., be
a smallest vertex cover so-computed (G}. the corresponding
graph)

3. Output C=C;, U (V\V(G},))

|

/
l’*

Complexity: O* (6
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a(G.) = saz(G) (Graph-splitting Corollary)
ICl.| < Bn—a(G;*) < En-a(6)
q q
= Zlc*| = rfe?]
q
cl=|cl. +(1—B)n<B|C*|+n(1—B)
q q q
Since |C*| = n/2 (Nemhauser & Trotter Corollary 2):
© <2(1—3)+B:2—B:2—r
|C*| q) q q

Complexity: O* (57‘IC* |)
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IND_SET

APPROX_VERTEX_COVER Parameterized

1.9
1.8
1.7
1.6
1.5
1.4
1.3
1.2
1.1

1.017"
1.034"
1.051"
1.068"
1.086"
1.104"
1.123"
1.142"
1.161"

1.013"
1.026"
1.039"
1.054"
1.069"
1.086"
1.104"
1.124"
1.148"

1.025%
1.051%
1.077%
1.104%
1.131%
1.160%
1.189%
1.218%
1.249%

y=1.18,6 = 1.28

33
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MAX CLIQUE

Given a graph, determine a maximum-size complete induced
subgraph

For the efficient approximation of MAX CLIQUE,
parameter vy is the same as for MAX INDEPENDENT SET
The exponent for MAX CLIQUE is the maximum
degree A of the input-graph
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e Split G into n induced subgraphs G; = G[{v;} UT' (v;)]
e Solve MAX INDEPENDENT SET in G; (recover cliques in G;’s)

e QOutput the best of the solutions computed

Hint: any clique is a subset of the neighborhood of a vertex

This is a polynomial reduction MAX CLIQUE < MAX INDEPENDENT SET
that:

1. transforms approximation ratios functions of n for MAX INDE-
PENDENT SET into ratios functions of A for MAX CLIQUE

2. solves MAX CLIQUE in n graphs of order at most A+ 1 instead of
solving it in one graph of order n
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Further research

e Devise proper approximability preserving reductions
e Devise new methods proper to this type of approximation

e Mix polynomial approximation and exact computation

e What about approximation by subexponential

algorithms?

What about MIN COLORING, MIN TSP, MIN INDEPENDENT
DOMINATING SET, ...?

35



LIRMM 5 février 2009

MERCI
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