Une nouvelle caractérisation des graphes Seymour

Zoltán Szigeti

Laboratoire G-SCOP INP Grenoble, France

29 May 2008

avec A. Ageev, A. Sebő

Résumé

- Motivation
- 2 Définitions : paquage complet de coupes, joint
- Graphes Seymour
- Autour des graphes Seymour
- Oractérisation co-NP des graphes Seymour
- Nouvelle caractérisation co-NP des graphes Seymour
- Mauvais sous-graphe partiel
- K_4 impairs et prismes impairs non-Seymour
- Problème ouvert

Problème des chaînes arête-disjointes

Etant donné un graphe H = (V, E) et k paires de sommets $\{s_i, t_i\}$, décider s'il existe k chaînes arête-disjointes, chacune reliant une paire s_i, t_i .

Problème des chaînes arête-disjointes

Etant donné un graphe H=(V,E) et k paires de sommets $\{s_i,t_i\}$, décider s'il existe k chaînes arête-disjointes, chacune reliant une paire s_i,t_i .

Reformulation en ajoutant l'ensemble F des arêtes $s_i t_i$.

Problème des chaînes arête-disjointes

Etant donné un graphe H=(V,E) et k paires de sommets $\{s_i,t_i\}$, décider s'il existe k chaînes arête-disjointes, chacune reliant une paire s_i,t_i .

Reformulation en ajoutant l'ensemble F des arêtes $s_i t_i$.

Paquage complet des cycles

Etant donné un graphe H' = (V, E + F), décider s'il existe |F| cycles arête-disjoints dans H', chacun contenant exactement une arête de F.

Problème des chaînes arête-disjointes

Etant donné un graphe H=(V,E) et k paires de sommets $\{s_i,t_i\}$, décider s'il existe k chaînes arête-disjointes, chacune reliant une paire s_i,t_i .

Reformulation en ajoutant l'ensemble F des arêtes $s_i t_i$.

Paquage complet des cycles

Etant donné un graphe H' = (V, E + F), décider s'il existe |F| cycles arête-disjoints dans H', chacun contenant exactement une arête de F.

Supposons H' planaire. Le problème dans le dual :

Problème des chaînes arête-disjointes

Etant donné un graphe H=(V,E) et k paires de sommets $\{s_i,t_i\}$, décider s'il existe k chaînes arête-disjointes, chacune reliant une paire s_i,t_i .

Reformulation en ajoutant l'ensemble F des arêtes $s_i t_i$.

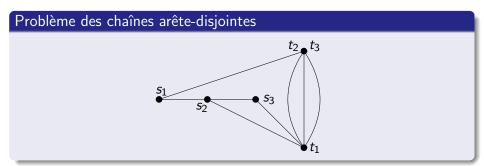
Paquage complet des cycles

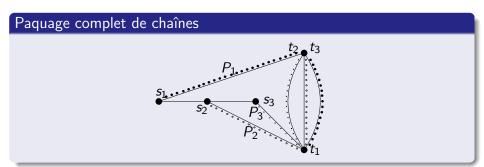
Etant donné un graphe H' = (V, E + F), décider s'il existe |F| cycles arête-disjoints dans H', chacun contenant exactement une arête de F.

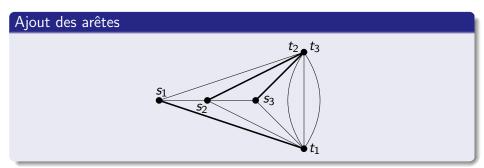
Supposons H' planaire. Le problème dans le dual :

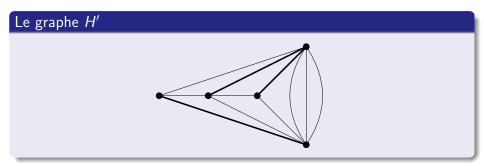
Paquage complet de coupes

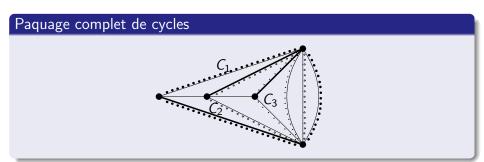
Etant donné un graphe G = (V', E' + F'), décider s'il existe |F'| coupes arête-disjointes dans G, chacune contenant exactement une arête de F'.

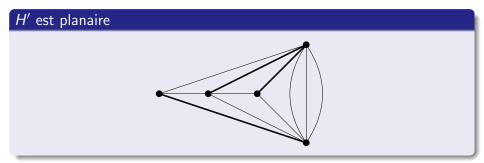


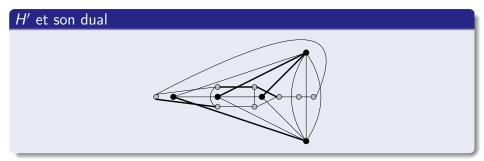


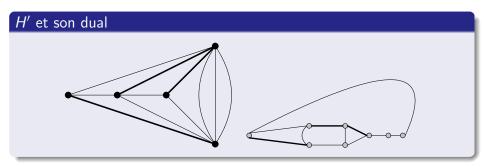


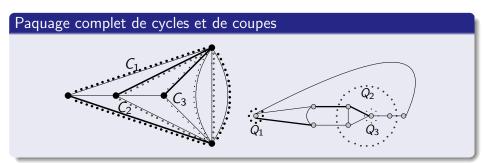












Les graphes ne sont plus planaires!

Le problème

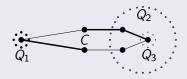
Etant donné un graphe G = (V, E + F), décider s'il existe |F| coupes arête-disjointes dans G, chacune contenant exactement une arête de F.

Le problème

Etant donné un graphe G = (V, E + F), décider s'il existe |F| coupes arête-disjointes dans G, chacune contenant exactement une arête de F.

Condition nécessaire

Si le graphe G=(V,E+F) admet un paquage complet de coupes, alors F est un joint : pour tout cycle C, $|C \cap F| \leq |C \setminus F|$.



Le problème

Etant donné un graphe G = (V, E + F), décider s'il existe |F| coupes arête-disjointes dans G, chacune contenant exactement une arête de F.

Condition nécessaire

Si le graphe G = (V, E + F) admet un paquage complet de coupes, alors F est un joint : pour tout cycle C, $|C \cap F| \le |C \setminus F|$.

Condition suffisante?

Si F est un joint, le graphe G = (V, E + F) admet-il un paquage complet de coupes ?

Le problème

Etant donné un graphe G = (V, E + F), décider s'il existe |F| coupes arête-disjointes dans G, chacune contenant exactement une arête de F.

Condition nécessaire

Si le graphe G = (V, E + F) admet un paquage complet de coupes, alors F est un joint : pour tout cycle C, $|C \cap F| \le |C \setminus F|$.

Condition suffisante?

Si F est un joint, le graphe G = (V, E + F) admet-il un paquage complet de coupes ?

Le problème

Etant donné un graphe G = (V, E + F), décider s'il existe |F| coupes arête-disjointes dans G, chacune contenant exactement une arête de F.

Condition nécessaire

Si le graphe G = (V, E + F) admet un paquage complet de coupes, alors F est un joint : pour tout cycle C, $|C \cap F| \le |C \setminus F|$.

Condition suffisante?

Si F est un joint, le graphe G = (V, E + F) admet-il un paquage complet de coupes ?

Théorème (Middendorf, Pfeiffer)

Etant donné un joint dans un graphe, décider s'il existe un paquage complet de coupes est un problème NP-complet.

Théorème (Seymour)

Si *G* est un graphe biparti, alors pour tout joint il existe un paquage complet de coupes.

Théorème (Seymour)

Si G est un graphe biparti, alors pour tout joint il existe un paquage complet de coupes.

Théorème (Seymour)

Si *G* est un graphe série-parallèle, alors pour tout joint il existe un paquage complet de coupes.

Théorème (Seymour)

Si *G* est un graphe biparti, alors pour tout joint il existe un paquage complet de coupes.

Théorème (Seymour)

Si *G* est un graphe série-parallèle, alors pour tout joint il existe un paquage complet de coupes.

Définition

G est un graphe Seymour si pour tout joint il existe un paquage complet de coupes.

Théorème (Seymour)

Si G est un graphe biparti, (\iff pas de cycle impair) alors pour tout joint il existe un paquage complet de coupes.

Théorème (Seymour)

Si *G* est un graphe série-parallèle, alors pour tout joint il existe un paquage complet de coupes.

Définition

G est un graphe Seymour si pour tout joint il existe un paquage complet de coupes.

Théorème (Seymour)

Si G est un graphe biparti, (\iff pas de cycle impair) alors pour tout joint il existe un paquage complet de coupes.

Théorème (Seymour)

Si G est un graphe série-parallèle, (\iff pas de subdivision de K_4) alors pour tout joint il existe un paquage complet de coupes.

Définition

G est un graphe Seymour

si pour tout joint il existe un paquage complet de coupes.

Théorème (Seymour)

Si G est un graphe biparti, (\iff pas de cycle impair) alors pour tout joint il existe un paquage complet de coupes.

Théorème (Seymour)

Si G est un graphe série-parallèle, (\iff pas de subdivision de K_4) alors pour tout joint il existe un paquage complet de coupes.

Définition

G est un graphe Seymour \iff ?

si pour tout joint il existe un paquage complet de coupes.

Sous-classes

- Seymour : Graphes sans cycle impair,
- 2 Seymour : Graphes sans subdivision de K_4 ,
- \odot Gerards : Graphes sans K_4 impair et sans prisme impair,
- - impair non-Seymour.

Sous-classes

- Seymour : Graphes sans cycle impair,
- 2 Seymour : Graphes sans subdivision de K_4 ,
- 3 Gerards: Graphes sans K_4 impair et sans prisme impair,
- Szigeti : Graphes sans K_4 impair non-Seymour et sans prisme impair non-Seymour.

Sous-classes

- Seymour : Graphes sans cycle impair,
- 2 Seymour : Graphes sans subdivision de K_4 ,
- **3** Gerards: Graphes sans K_4 impair et sans prisme impair,
- Szigeti : Graphes sans K_4 impair non-Seymour et sans prisme impair non-Seymour

Sous-classes

Seymour : Graphes sans cycle impair,

2 Seymour : Graphes sans subdivision de K_4 ,

3 Gerards: Graphes sans K_4 impair et sans prisme impair,

 Szigeti : Graphes sans K₄ impair non-Seymour et sans prisme impair non-Seymour

Sous-classes

Seymour : Graphes sans cycle impair,

2 Seymour : Graphes sans subdivision de K_4 ,

3 Gerards: Graphes sans K_4 impair et sans prisme impair,

 \odot Szigeti : Graphes sans K_4 impair non-Seymour et sans prisme

impair non-Seymour.

Sous-classes

Seymour : Graphes sans cycle impair,

2 Seymour : Graphes sans subdivision de K_4 ,

3 Gerards: Graphes sans K_4 impair et sans prisme impair,

 \odot Szigeti : Graphes sans K_4 impair non-Seymour et sans prisme

impair non-Seymour.

Sous-classes

Seymour : Graphes sans cycle impair,

2 Seymour : Graphes sans subdivision de K_4 ,

3 Gerards: Graphes sans K_4 impair et sans prisme impair,

3 Szigeti : Graphes sans K_4 impair non-Seymour et sans prisme

impair non-Seymour.

Sous-classes

Seymour : Graphes sans cycle impair,

2 Seymour : Graphes sans subdivision de K_4 ,

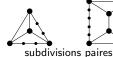
3 Gerards: Graphes sans K_4 impair et sans prisme impair,

Szigeti : Graphes sans K₄ impair non-Seymour et sans prisme

impair non-Seymour.

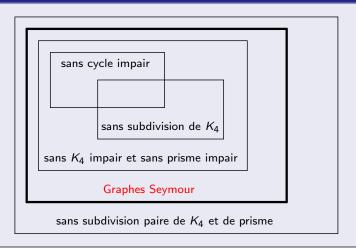
Sur-classe

Graphe Seymour \implies sans subdivision paire de K_4 et de prisme.



Classes des graphes

Figure



Definition

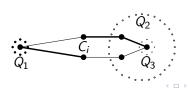
Etant donné un joint F, un cycle C est F-serré si $|C \cap F| = |C \setminus F|$.

Remarques

- toute arête de C_i (et donc de C) appartient à une coupe $Q \in \mathcal{Q}$,
- $\{C \cap Q : Q \in \mathcal{Q}, C \cap Q \neq \emptyset\}$ partitionne C et $|C \cap Q|$ est pair,
- |C| est pair donc $C_1 \cup C_2$ est biparti.

Remarques

- toute arête de C_i (et donc de C) appartient à une coupe $Q \in \mathcal{Q}$,
- $\{C \cap Q : Q \in \mathcal{Q}, C \cap Q \neq \emptyset\}$ partitionne C et $|C \cap Q|$ est pair,
- |C| est pair donc $C_1 \cup C_2$ est biparti.



Remarques

- toute arête de C_i (et donc de C) appartient à une coupe $Q \in \mathcal{Q}$,
- $\{C \cap Q : Q \in \mathcal{Q}, C \cap Q \neq \emptyset\}$ partitionne C et $|C \cap Q|$ est pair,
- |C| est pair donc $C_1 \cup C_2$ est biparti.

Remarques

- toute arête de C_i (et donc de C) appartient à une coupe $Q \in \mathcal{Q}$,
- $\{C \cap Q : Q \in \mathcal{Q}, C \cap Q \neq \emptyset\}$ partitionne C et $|C \cap Q|$ est pair,
- |C| est pair donc $C_1 \cup C_2$ est biparti.

Remarques

Etant donné un joint F, un paquage F-complet de coupes \mathcal{Q} , deux cycles F-serrés C_1 et C_2 et un cycle C dans $C_1 \cup C_2$, alors

- toute arête de C_i (et donc de C) appartient à une coupe $Q \in \mathcal{Q}$,
- $\{C \cap Q : Q \in \mathcal{Q}, C \cap Q \neq \emptyset\}$ partitionne C et $|C \cap Q|$ est pair,
- |C| est pair donc $C_1 \cup C_2$ est biparti.

Lemme

Si pour un joint F de G il existe deux cycles F-serrés dont la réunion n'est pas biparti, alors G n'est pas Seymour.

Théorème (Ageev, Kostochka, Szigeti)

Les propriétés suivantes sont équivalentes :

- G n'est pas Seymour,
- 2 *G* admet un joint *F* tel qu'il existe deux cycles *F*-serrés dont la réunion n'est pas biparti,
- **3** G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion est un K_4 impair ou un prisme impair.

Théorème (Ageev, Kostochka, Szigeti)

Les propriétés suivantes sont équivalentes :

- G n'est pas Seymour,
- Q admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion n'est pas biparti,
- \odot *G* admet un joint *F* tel qu'il existe deux cycles *F*-serrés dont la réunion est un K_4 impair ou un prisme impair.

Exemple:

Théorème (Ageev, Kostochka, Szigeti)

Les propriétés suivantes sont équivalentes :

- G n'est pas Seymour,
- Q admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion n'est pas biparti,
- **3** G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion est un K_4 impair ou un prisme impair.

Exemple:

Théorème (Ageev, Kostochka, Szigeti)

Les propriétés suivantes sont équivalentes :

- G n'est pas Seymour,
- Q admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion n'est pas biparti,
- **3** G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion est un K_4 impair ou un prisme impair.

Exemple:

Théorème (Ageev, Kostochka, Szigeti)

Les propriétés suivantes sont équivalentes :

- G n'est pas Seymour,
- G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion n'est pas biparti,
- **3** G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion est un K_4 impair ou un prisme impair.

Théorème (Ageev, Kostochka, Szigeti)

Les propriétés suivantes sont équivalentes :

- G n'est pas Seymour,
- G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion n'est pas biparti,
- **3** G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion est un K_4 impair ou un prisme impair.

K₄ impair Seymour

prisme impair non-Seymour

Théorème (Ageev, Kostochka, Szigeti)

Les propriétés suivantes sont équivalentes :

- G n'est pas Seymour,
- G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion n'est pas biparti,
- **3** G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion est un K_4 impair ou un prisme impair.

K₄ impair Seymour

prisme impair non-Seymour

Théorème (Ageev, Kostochka, Szigeti)

Les propriétés suivantes sont équivalentes :

- G n'est pas Seymour,
- G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion n'est pas biparti,
- **3** G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion est un K_4 impair ou un prisme impair.

K₄ impair Seymour

prisme impair non-Seymour

Théorème (Ageev, Kostochka, Szigeti)

Les propriétés suivantes sont équivalentes :

- G n'est pas Seymour,
- G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion n'est pas biparti,
- **3** G admet un joint F tel qu'il existe deux cycles F-serrés dont la réunion est un K_4 impair ou un prisme impair.

- ① G est facteur-critique si $\forall v \in V, G v$ admet un couplage parfait.
- ② G est bicritique si $\forall u, v \in V, G u v$ admet un couplage parfait
- 3 La contraction d'un sous-graphe facteur-critique et ses voisins est une facteur-contraction.

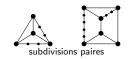
- **①** *G* est facteur-critique si $\forall v \in V, G v$ admet un couplage parfait.
- ② G est bicritique si $\forall u, v \in V, G u v$ admet un couplage parfait,
- 3 La contraction d'un sous-graphe facteur-critique et ses voisins est une facteur-contraction.

- **①** *G* est facteur-critique si $\forall v \in V, G v$ admet un couplage parfait.
- ② G est bicritique si $\forall u, v \in V, G u v$ admet un couplage parfait,
- La contraction d'un sous-graphe facteur-critique et ses voisins est une facteur-contraction.

- **①** *G* est facteur-critique si $\forall v \in V, G v$ admet un couplage parfait.
- ② G est bicritique si $\forall u, v \in V, G u v$ admet un couplage parfait, (c-à-d $\forall u \in V, G u$ est facteur-critique).
- 3 La contraction d'un sous-graphe facteur-critique et ses voisins est une facteur-contraction.

Définitions

- **①** *G* est facteur-critique si $\forall v \in V, G v$ admet un couplage parfait.
- ② G est bicritique si $\forall u, v \in V, G u v$ admet un couplage parfait, (c-à-d $\forall u \in V, G u$ est facteur-critique).
- 3 La contraction d'un sous-graphe facteur-critique et ses voisins est une facteur-contraction.



Théorème (Lovász-Plummer)

Tout graphe bicritique non-trivial admet une subdivision paire de K_4 ou de prisme.

Définitions

- **①** *G* est facteur-critique si $\forall v \in V, G v$ admet un couplage parfait.
- ② G est bicritique si $\forall u, v \in V, G u v$ admet un couplage parfait, (c-à-d $\forall u \in V, G u$ est facteur-critique).
- 3 La contraction d'un sous-graphe facteur-critique et ses voisins est une facteur-contraction.

Théorème (Lovász-Plummer)

Tout graphe bicritique non-trivial admet une subdivision paire de K_4 ou de prisme.

Théorème (Ageev, Sebő, Szigeti)

- G n'est pas Seymour,
- *G* peut être facteur-contracté en un graphe contenant un graphe bicritique non-trivial,
- G peut être facteur-contracté en un graphe contenant une subdivision paire de K_4 ou de prisme,
- G contient un mauvais K_4 impair ou un mauvais prisme impair.

Théorème (Ageev, Sebő, Szigeti)

- G n'est pas Seymour,
- *G* peut être facteur-contracté en un graphe contenant un graphe bicritique non-trivial,
- G peut être facteur-contracté en un graphe contenant une subdivision paire de K_4 ou de prisme,
- G contient un mauvais K_4 impair ou un mauvais prisme impair.

Théorème (Ageev, Sebő, Szigeti)

- G n'est pas Seymour,
- *G* peut être facteur-contracté en un graphe contenant un graphe bicritique non-trivial,
- G peut être facteur-contracté en un graphe contenant une subdivision paire de K_4 ou de prisme,
- G contient un mauvais K_4 impair ou un mauvais prisme impair.

Théorème (Ageev, Sebő, Szigeti)

- G n'est pas Seymour,
- *G* peut être facteur-contracté en un graphe contenant un graphe bicritique non-trivial,
- G peut être facteur-contracté en un graphe contenant une subdivision paire de K_4 ou de prisme,
- G contient un mauvais K_4 impair ou un mauvais prisme impair.

Théorème (Ageev, Sebő, Szigeti)

- G n'est pas Seymour,
- *G* peut être facteur-contracté en un graphe contenant un graphe bicritique non-trivial,
- G peut être facteur-contracté en un graphe contenant une subdivision paire de K_4 ou de prisme,
- G contient un mauvais K_4 impair ou un mauvais prisme impair.

Les 3 graphes

Les 3 graphes

et leurs subdivisions paires

Les 3 graphes

et leurs subdivisions paires

Les 3 graphes

et leurs subdivisions paires

Mauvais K_4 impair

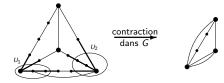
 K_4 impair H de G est mauvais s'il existe $U_i \subseteq V(H)$ disjoints tq

- **1** $H[U_i \cup N_H(U_i)]$ soit une subdivision paire d'une 3-étoile,
- ② en contractant chaque $U_i \cup N_G(U_i)$, H se transforme en une subdivision paire de K_4 .

Mauvais K₄ impair

 K_4 impair H de G est mauvais s'il existe $U_i \subseteq V(H)$ disjoints tq

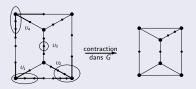
- **1** $H[U_i \cup N_H(U_i)]$ soit une subdivision paire d'une 3-étoile,
- ② en contractant chaque $U_i \cup N_G(U_i)$, H se transforme en une subdivision paire de K_4 .



Mauvais prisme impair

Prisme impair H de G est mauvais s'il existe $U_i \subseteq V(H)$ disjoints tq

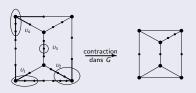
- **1** $H[U_i \cup N_H(U_i)]$ soit une subdivision paire d'une 2- ou 3-étoile,
- ② en contractant chaque $U_i \cup N_G(U_i)$, H se transforme en une subdivision paire de prisme ou de biprisme (sans arête de G entre les deux composantes connexes du biprisme moins son séparateur).

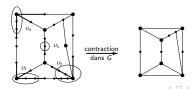


Mauvais prisme impair

Prisme impair H de G est mauvais s'il existe $U_i \subseteq V(H)$ disjoints tq

- **1** $H[U_i \cup N_H(U_i)]$ soit une subdivision paire d'une 2- ou 3-étoile,
- ② en contractant chaque $U_i \cup N_G(U_i)$, H se transforme en une subdivision paire de prisme ou de biprisme (sans arête de G entre les deux composantes connexes du biprisme moins son séparateur).

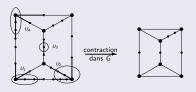


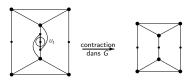


Mauvais prisme impair

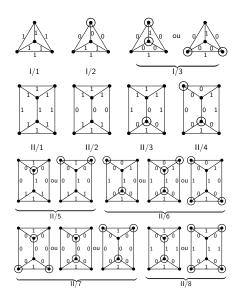
Prisme impair H de G est mauvais s'il existe $U_i \subseteq V(H)$ disjoints tq

- **1** $H[U_i \cup N_H(U_i)]$ soit une subdivision paire d'une 2- ou 3-étoile,
- ② en contractant chaque $U_i \cup N_G(U_i)$, H se transforme en une subdivision paire de prisme ou de biprisme (sans arête de G entre les deux composantes connexes du biprisme moins son séparateur).





K₄ impairs et prismes impairs non-Seymour



Problème ouvert

Caractérisation NP?

Problème ouvert

Caractérisation NP?

Trouver une construction des graphes Seymour!