Introduction à l'internet des objets (IdO – IoT)

Yassine HADDAB

Professeur à l'Université de Montpellier

Yassine.haddab@umontpellier.fr

Prérequis

Notions élémentaires sur les réseaux notions élémentaires sur les circuits électriques

But

Sensibilisation à l'importance de l'IoT. Présentation des concepts fondamentaux de l'Internet des Objets. Compréhension de la chaîne de conception des objets connectés.

Sommaire

- 1- Introduction
- 2- Le marché de l'IoT
- 3- Concepts fondamentaux
- 4- Interactions entre le « monde numérique » et le « monde physique »
- 5- Infrastructures pour l'IoT
- 6- Solutions technologiques
- 7- Exemples d'application
- 8- Bibliographie
- 9- Compléments

1- Introduction

Telegarden: juin 1995 (Univ. Of California)

Le concept d'« objet connecté » n'est pas nouveau. Exemple : Telegarden.

Agriculture – art - internet

Nabaztag, lancé par la société Violet en 2005

Ce lapin connecté en Wi-Fi peut déjà lire des mails à haute voix, émettre des signaux visuels et diffuser de la musique. L'objet est toujours commercialisé aujourd'hui, sous le nom de **Karotz**.

Pourquoi l'IoT?

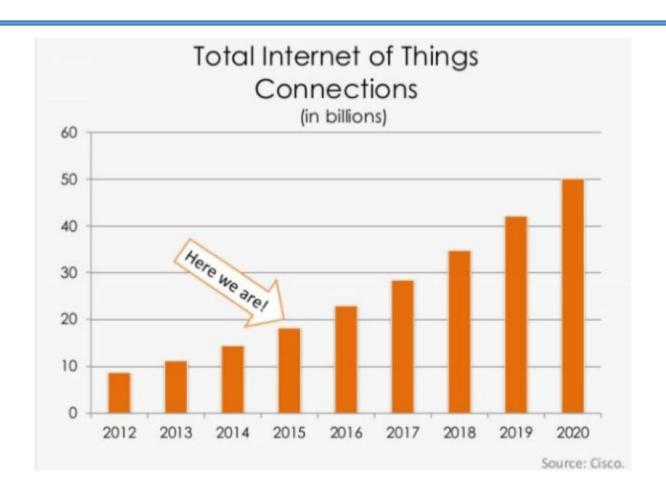
- Evolution naturelle des technologies : lien inévitable entre le monde numérique et le monde physique,
- Assistance à nos activités professionnelles et personnelles.
- Permet une réduction considérable des dépenses dans l'économie d'aujourd'hui (industrie, santé, sécurité, etc.).
- L'IoT est ici et il évolue rapidement! Il n'y a pas de temps à perdre.
- 50 milliards d'objets en 2020 (estimation)!

Domaines applicatifs de l'IoT?

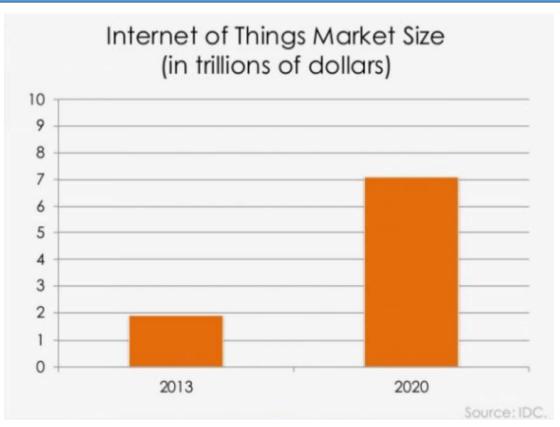
- Ville intelligente: circulation routière intelligente, transports intelligents, collecte des déchets, cartographies diverses (bruit, énergie, etc.).
- Environnements intelligents : prédiction des séismes, détection d'incendies, qualité de l'air, etc.
- Sécurité et gestion des urgences : radiations, attentats, explosions.
- Logistique: aller plus loin que les approches actuelles.
- Contrôle industriel : mesure, pronostic et prédiction des pannes, dépannage à distance.
- Santé: suivi des paramètres biologiques à distance.
- Agriculture intelligente, domotique, applications ludiques etc.

Quelques définitions

- **Objet connecté**: objet possédant la capacité d'échanger des données avec d'autres entités physiques ou numériques.
- Internet des objets (IdO): expansion du réseau internet à des objets et/ou des lieux du monde physique. En anglais, on parle d'IoT: Internet of Things.


« L'Internet des Objets est un réseau de réseaux qui permet, via des systèmes d'identification électronique normalisés et unifiés, et des dispositifs mobiles sans fil, d'identifier directement et sans ambiguïté des entités numériques et des objets physiques et ainsi de pouvoir récupérer, stocker, transférer et traiter, sans discontinuité entre les mondes physiques et virtuels, les données s'y rattachant. »

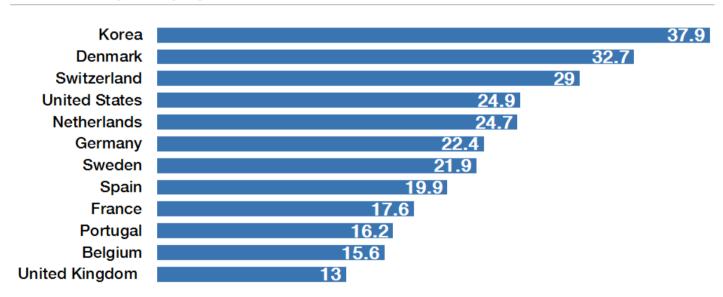
Source : L'Internet des objets de Pierre-Jean Benghozi, Sylvain Bureau et Françoise Massit-Folléa (Edition MSH)


• **M2M**: machine to machine, échange d'informations entre deux machines sans intervention humaine.

2- Le marché de l'IoT

Le marché de l'IoT

Le marché de l'IoT

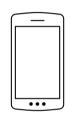


Rappel: 1 trillion = 1000 milliards

Le marché de l'IoT

Countries with the most IoT devices

Devices online per 100 people

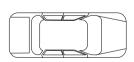

Data: Shodan/OECD Source: Quartz

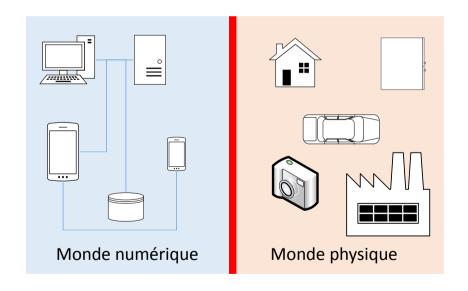
3- Concepts fondamentaux

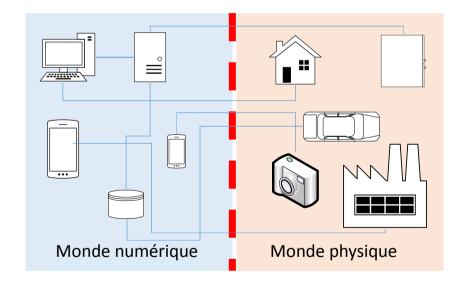
Quelques objets connectés

Objets « traditionnels »: ordinateurs, tablettes, smartphones, etc.

Nouveaux objets connectés : appareils électroménagers, instruments de mesure, robots, serrures, machines-outils, bennes à ordures, drones, jouets, montres, véhicules, etc.






Concepts fondamentaux (1)

Jonction entre le monde physique et le monde numérique

Avant l'internet des objets

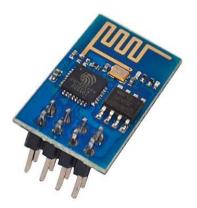
Aujourd'hui

Concepts fondamentaux (2)

Acquisition de signaux issus du monde physique (capteurs, transcription de grandeurs physiques en grandeurs électriques, puis numérisation puis transmission vers des systèmes informatiques ou d'autres systèmes physiques)

Action sur le monde physique (déclanchement du fonctionnement de dispositifs, chauffage, extinction de feux, ouverture d'une porte, mise en service d'une machine, régulation d'une grandeur physique, exécution d'une tâche robotique, etc.) L'ordre peut provenir d'un système informatique ou d'autres objets physiques connectés.

Concepts fondamentaux (3)


La mise en réseau de plusieurs objets connectés apporte de nouvelles fonctionnalités de mesure de l'environnement et d'actionnement collectif. Par exemple : collaboration entre plusieurs objets pour exécuter une tâche qu'un objet ne peut réaliser seul. Exemple : relevé des températures dans une forêt en plusieurs points permet de prévenir les départs d'incendie et éviter les ca aberrants.

Concepts fondamentaux (4)

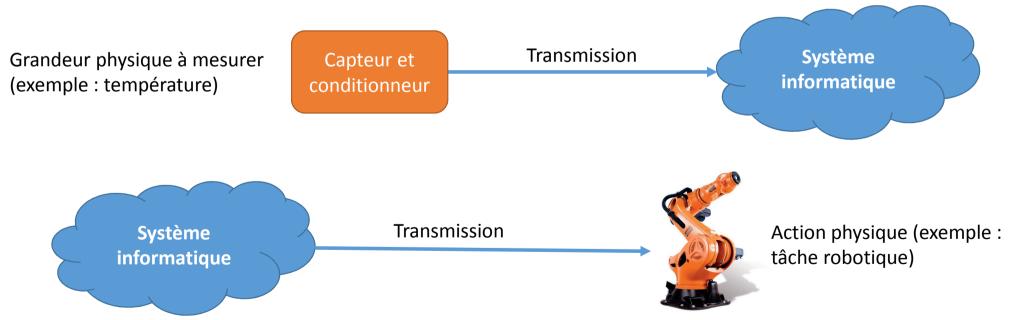
Une problématique de sécurité accrue : en effet, le risque dépasse largement le vol de données. Par exemple, arrêter le fonctionnement d'une usine ou y provoquer des dégâts matériels ou humains, ouvrir les portes d'une habitation ou d'un magasin pour y effectuer des vols, contrôler à distance un véhicule terrestre ou volant, bloquer le trafic routier de toute une ville, etc. Il convient d'être particulièrement vigilant lors de la conception d'un objet connecté.

Concepts fondamentaux (5)

Aujourd'hui, la baisse des coût des microcontrôleur ainsi que des puces de communication sans fil (WiFi, Bluetooth, Zigbee, etc.) permet de mettre une intelligence et des moyens de communication dans beaucoup d'objets de la vie courante ou professionnels. Exemple, systèmes fondés sur la puce esp8266 de ESPRESSIF.

Coût:3€

4- Interactions entre le « monde numérique » et le « monde physique »


Monde « numérique » et monde « physique »

- On désignera par « monde numérique » tous les systèmes manipulant des données numérique ainsi que les réseaux permettant l'échange des données (calculateurs, microcontrôleurs, serveurs informatiques, bases de données, réseaux informatiques, protocoles de communication filaires ou sans fil, etc.).
- On désignera par « monde physique » tous les systèmes vivants ou artificiels que nous côtoyons et qui interagissent entre eux par divers effets physiques (être humains, animaux, végétaux, véhicules, objets du quotidien, outils, machines diverses, outils de production, etc.). Ces systèmes interagissent entre eux au moyens de grandeurs physiques (forces, déplacements, variation de température ou de pression, voix, son, lumière, etc.)

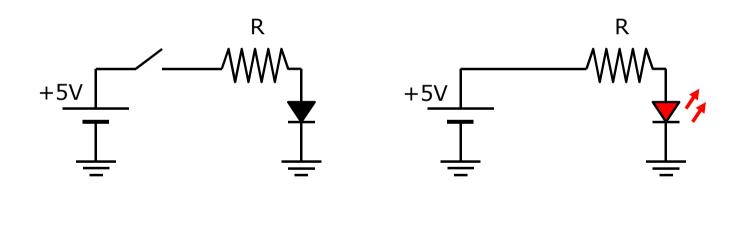
Attention! Certains objets du « monde numérique » sont bien « physiques » mais ils manipulent essentiellement des données (un ordinateur par exemple) et on s'intéresse généralement à leur aptitude à traiter des données.

Enjeu majeur de l'IoT : comment faire interagir ces deux mondes ?

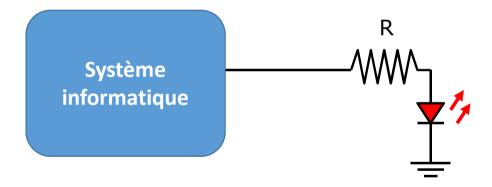
• Pour cela, il convient de mettre en œuvre des moyens permettant à une grandeur physique de renseigner un système informatique et, inversement, des moyens permettant à un système informatique d'agir sur le monde physique (c'est-à-dire : changer son état).


Exemple : allumage et extinction d'une LED

• Une LED (Light Emitting Diode) ou DEL (Diode ElectroLuminescente) est un composant électronique très utilisé dans les appareils électroniques comme indicateur ou afficheur.

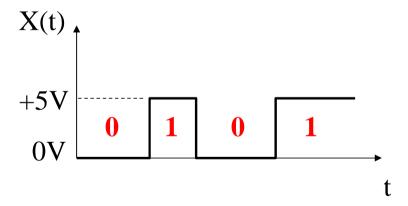


Exemple : allumage et extinction d'une LED

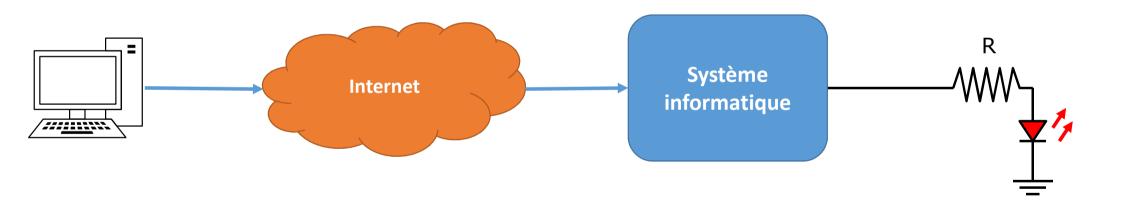

• L'allumage d'une LED s'effectue en appliquant à ses bornes une tension électrique à travers une résistance de limitation de courant.

LED éteinte (état 0) LED allumée (état 1)

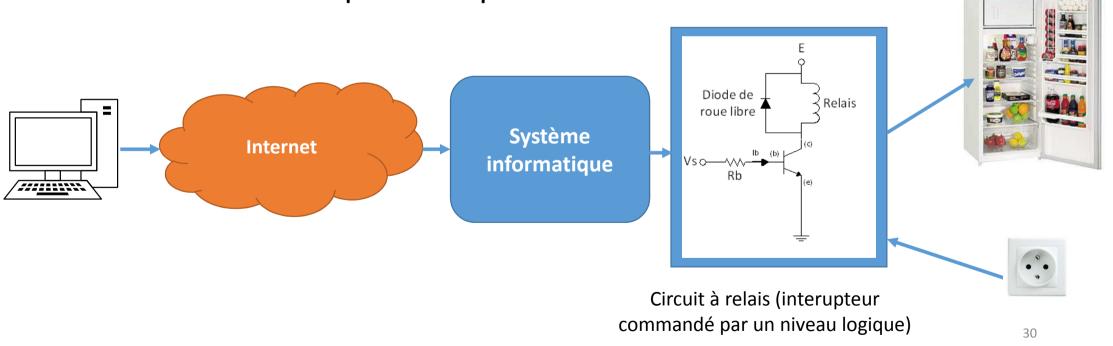
Exemple: allumage et extinction d'une LED


 Pour réaliser ce fonctionnement à l'aide d'un système informatique, il convient d'utiliser un dispositif d'entrée/sortie (E/S).

Le système informatique pilote l'allumage et l'extinction de la LED par application de deux niveaux de tension électrique


Exemple: allumage et extinction d'une LED

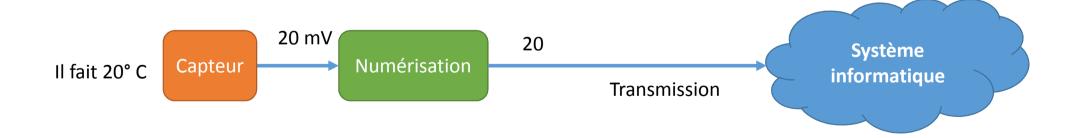
- Représentation physique des états logiques
- Les états logiques sont matérialisés par des niveaux de tensions 0V et +5V (ou 0V et 3,3V).


Exemple : allumage et extinction d'une LED

• Idée : comment commander l'état de la LED à distance (par exemple via le réseau internet) ?

Extension : déclenchement d'un dispositif quelconque à distance

• La commande d'une LED à distance ne présente qu'un intérêt limité. Cependant, il est possible d'étendre ce concept pour déclencher divers dispositifs à distance : éclairage, ventilation, climatisation, moteur, déverrouillage ou ouverture de sorties de secours, allumage d'un ordinateur... ou tout dispositif électrique.



Interactions: capteurs et actionneurs

- De manière générale, l'IoT met en œuvre deux types d'éléments pour interagir avec le monde physique : des capteurs et des actionneurs.
- Les capteurs permettent de recueillir des informations depuis le monde physique et de les transmettre vers le système informatique.
- Les actionneurs permettent au système informatique d'agir sur le monde physique en modifiant son état.

Les capteurs

- Ils permettent de traduire une grandeur physique en un signal électrique. Ce dernier est ensuite numérisé pour être transmis au système informatique.
- Par exemple : un capteur de température permet de traduire l'amplitude de la température en une tension électrique. Cette dernière est numérisée puis transmise.

Les capteurs

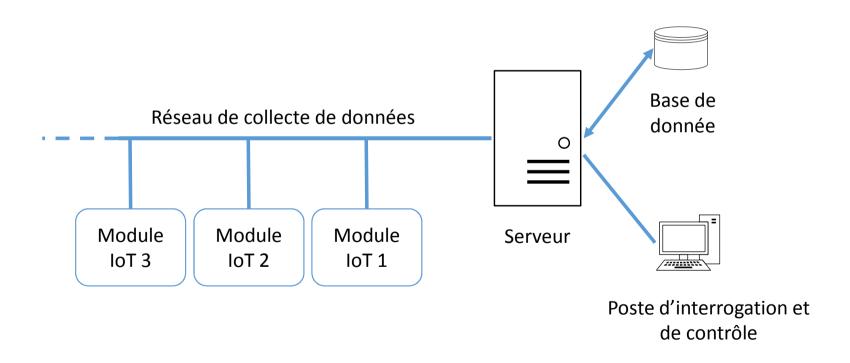
Grandeur communément mesurées :

- Systèmes à deux états (0,1), (fermé,ouvert) (éteint,allumé), etc.
- Comptage d'impulsions (tachymètre), cardio-fréquencemètre,
- Température
- Pression
- Luminosité
- Position
- vitesse

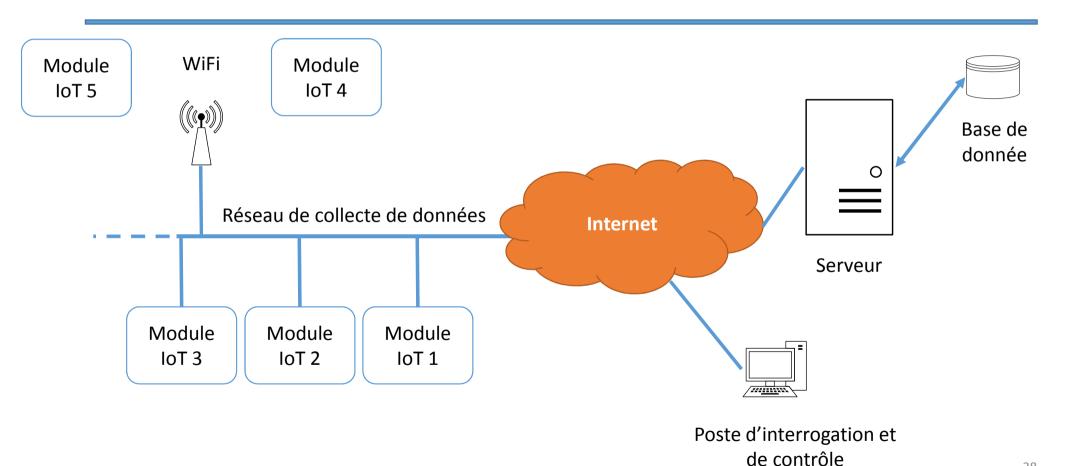
Les actionneurs

• Ils permettent d'agir dans le monde physique, c'est-à-dire, changer son état.

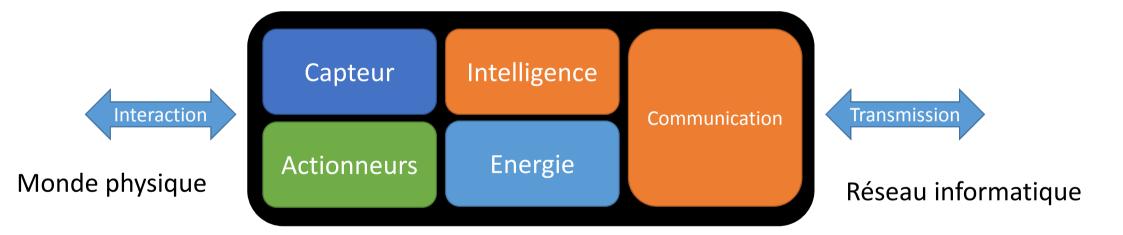
 Par exemple : un actionneur peut allumer un appareil à distance (voir l'exemple donné dans les transparents précédents).


Les actionneurs

Actionneurs couramment utilisés :


- Allumage d'un éclairage
- Déclenchement d'un avertisseur sonore
- Allumage d'une machine
- Génération de mouvements (ex. servomoteur)
- Commande de robots
- Commande de moteurs (à courant continu, pas-à-pas, etc.)
- Contrôle de débits (air, pression, liquides, etc.)

5- Infrastructures pour l'IoT


Infrastructure élémentaire

Exploitation du réseau internet

Caractéristiques générales d'une plateformes pour l'IoT

Caractéristiques générales d'une plateformes pour l'IoT

Capteur

Traduction d'une grandeur physique en un signal électrique

Energie

Alimentation de la plateforme en énergie électrique. Doit être adaptée à l'application

Actionneurs

Modification de l'état de l'environnement

Intelligence

Traitement local des données (simple ou complexe)

Communication

Codage et transmission des données, protocoles standards ou dédiés, communication filaire ou sans fil.

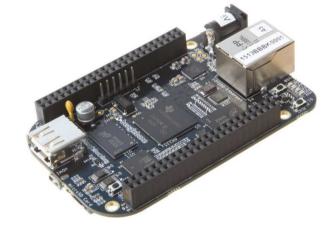
Avant de se lancer dans la réalisation d'un objet connecté, il convient de bien choisir la plateforme technologique à utiliser.

Caractéristiques générales d'une plateformes pour l'IoT

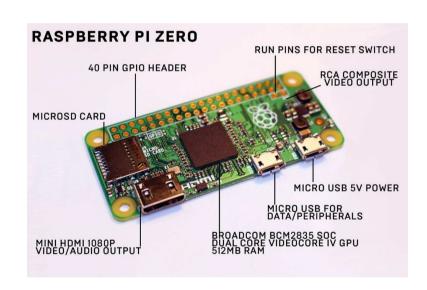
- Quelle puissance de calcul ? (Quels sont les traitements et calculs à effectuer en local ?)
- Quelle quantité de mémoire ? (Que doit-on stocker en local ?)
- Quelles interactions avec le monde physique ? (Capteurs actionneurs)
- Quelle autonomie énergétique ? (durée d'utilisation, accessibilité, usage de batteries, panneaux solaires, etc.)
- Quelles caractéristiques logicielles ? (Programmation simple ou complexe, accès distant, OS, etc.)
- Quels protocoles de communication ? (Protocoles standards ou dédiés, liaison filaire ou sans fil, cryptage, etc.)
- Quel coût ? (Nombre d'objets à réaliser, budget dédié à la partie IoT, degré de fiabilité requis, etc.)
- ..

La révolution des systèmes embarqués à faible coût :

Deux approches majeures :


- Systèmes construits autour d'un OS embarqué (RASPBERRY PI, BEAGLEBONE, et plateformes similaires)
 - Avantages: ouverts, puissants, langages de programmation multiples,
 - **Inconvénients** : parfois complexes à mettre en œuvre, prise en main longue, réactivité moyenne, coût relativement élevé, interfaçage plus difficile.
- Systèmes dédiés compacts à logiciel propriétaire (ARDUINO, GENUINO, INTEL GALILEO, ESP8266 etc.)
 - Avantages: Très réactifs, très faible coût, fonctionnement plus robuste (pas de couches logicielles), interfaçage aisé, prise en main très rapide.
 - Inconvénients : moins puissants, langages de programmation plus limités, moins flexibles sur le plan logiciel.

Quelques dignes représentants...


Arduino + shield

Raspberry Pi

BeagleBone

NOM DE LA CARTE	ARDUINO UNO	BEAGLEBONE	RASPBERRY PI (MODEL B)
Origine	Interaction Design Institute d'Ivrea (Italie)	Projet de Hardware Open Source piloté par Texas Instruments	Université de Cambridge
Organisation en charge des spécifications	Arduino.cc	BeagleBoard.org	Raspberry Pi Foundation (fondation de droit anglais)
Naissance	2005 (fabrication en Italie par Smart Projets)	2008 (BeagleBoards) - 2011 (BeagleBone) (accord de fabrication/distribution avec Digi-Key)	2008 (accord de fabrication avec RS Components et Farnell/Element 14 en 2011)
Prix	30\$	90 \$(45 \$ pour le BeagleBone Black)	Moins de 40\$
Taille	45,43 x 32,34 mm	86,36x53,34mm (bords arrondis)	85,60×53,98mm
Processeur	ATmega328 8 bits d'Atmel à 16MHz	Sitara 335x de TI basé sur un Cortex-A8 à 720MHz (1 GHZ pour la BeagleBone Black)	BCM2835 de Broadcom basé sur un ARM11 à 700MHz GPU intégrée (Video Core 4 de Broadcom)
Mémoires	2 Ko Ram, 1 Ko Eeprom	256Mo DDR2 (512Mo DDR3 pour la BeagleBone Black)	512 Mo Sdram
Mémoire Flash	32 Ko	Sur MicroSD (4Go)	Sur carte SD
Tension d'entrée	7V - 12V	5V – 3,3V	5V
Consommation	42 mA (0,5 W)	210 à 450mA (2,5W max.)	700 mA (3,5W)
Ethernet	Non	10/100 Ethernet	10/100 Ethernet
USB	Non	1 USB 2.0	2 USB 2.0
Sorties vidéo	Non	Non (micro HDMI pour la BeagleBone Black)	Composite et HDMI
Développement	Langage de programmation Arduino	Environnement BoneScript. Langages Phyton, Scratch, Squeak	Langages Scratch, Squeak

Les nouveaux... encore plus petits, encore moins chers

ESP8266 (Espressif) (2€)

Une application complète : caractéristiques

• Processeur : Tensilica L106, 32 bits

• Horloge processeur : 80 / 160 MHz

• Mémoire RAM: 32 + 80 Ko

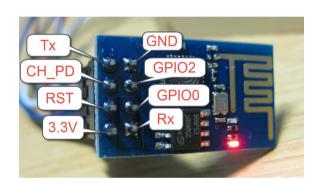
• Mémoire flash : max. 16 Mo, typique 512 Ko ou 1 Mo

Alimentation: 3,3 V, ne tolère PAS le 5 V

• Consommation : 10 µA à 170 mA

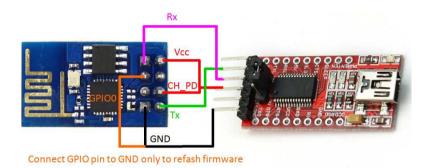
• Lignes de port GPIO : 17, avec les fonctions l²C, SPI, UART, MLI multiplexées

• Port analogique : 1, résolution de 10 bit, plage 0 à 1 V


• Compatible 802.11 : b/g/n/....

• Liaisons TCP simultanées : max 5

• Modes disponibles : station, point d'accès, station + point d'accès


• Switch transmetteur embarqué, balun, LNA, Ampli de puissance, circuit d'adaptation.

• Circuits de gestion de la puissance.

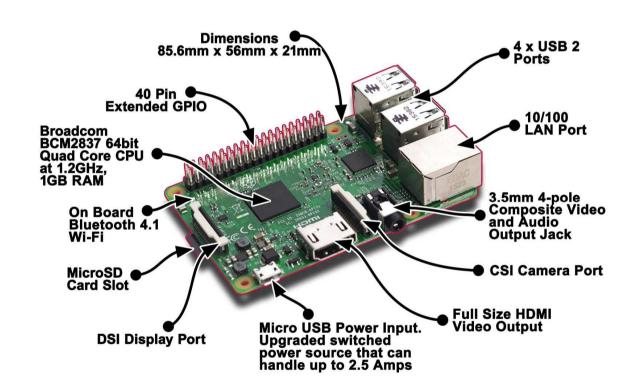
Une application complète: programmation

```
Richier Edition Croquis Outils Aide
 #include <ESP8266WiFi.h>
 // Spécifier le SSID du point d'accès Wifi
const char* ssid = "your-ssid";
 // Spécifier le mot de passe associé const char* password = "your-password";
 // Crée le serveur Web en spécifiant le port TCP/IP
// 80 est le port par défaut pour HTTP
WiFiServer server(80);
 // Démarrage
void setup() {
   // Communication série 115200
Serial.begin (115200);
// Petite pause
delay(10);
     // GPIO2 en sortie
    pinMode (2, OUTPUT);
// GPIO2 a la masse
digitalWrite (2, 0);
    // Deux sauts de ligne pour faire le ménage car
// le module au démarrage envoie des caractères sur le port série
    // le module au demarrage envoie
Serial.println();
Serial.println();
Serial.println("Connexion a : ");
    // Connexion au point d'accès
WiFi.begin(ssid, password);
    // On bouch en attendant use counexion
// Si l'état est WI CONNECTED la connexion est acceptée
// et on a obtenu usue adresse IP
while (Wifi.status() != WI_CONNECTED) {
delay(500);
Serial.print(".");
     Serial.println("");
Serial.println("WiFi connecte");
     // Démarrage du serveur Web
    server.begin();
Serial.println("Serveur demarre");
    // On affiche notre adresse IP
Serial.println(WiFi.localIP());
 // Boucle principale
void loop() {
    // Est-ce qu'un client Web est connecté ?
    // ast-ce qu'un client med est conhecte ?
Wiriclient client = server.available();
if (!client) {
    // Non, on abandonne ici et on repart dans un tour de loop
```


Exemple d'application : brosse à dents connectée

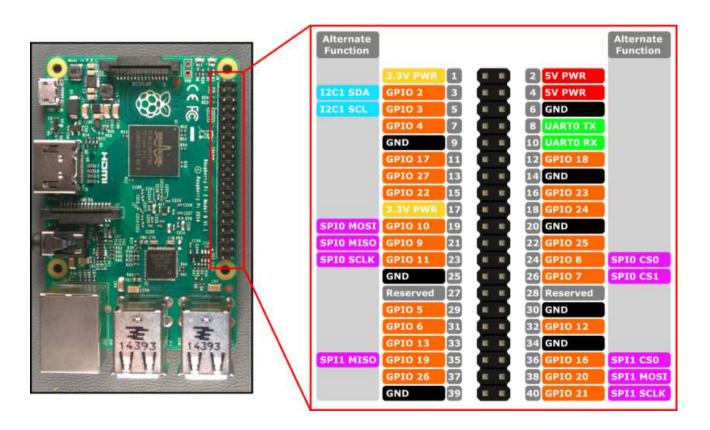
Suivi de l'usage (enfants par exemple), données commerciales (durée du brossage, fréquence...)

Exemple d'application : relevé automatique des compteurs

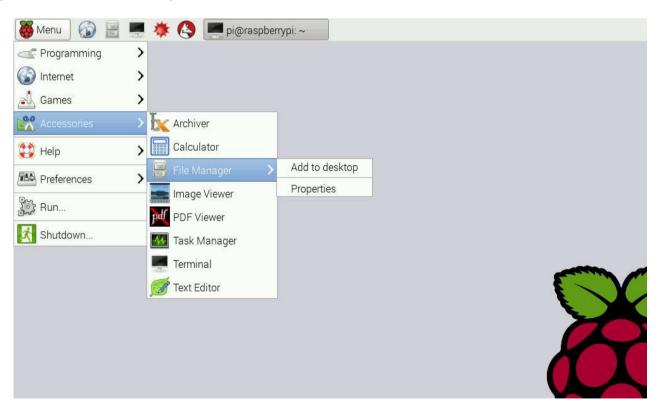

Economies.

Collecte de données.

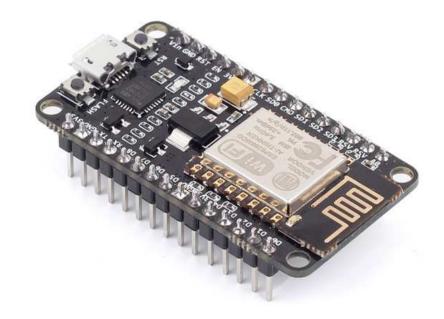
Surveillance de populations à risques.


Raspberry pi 3

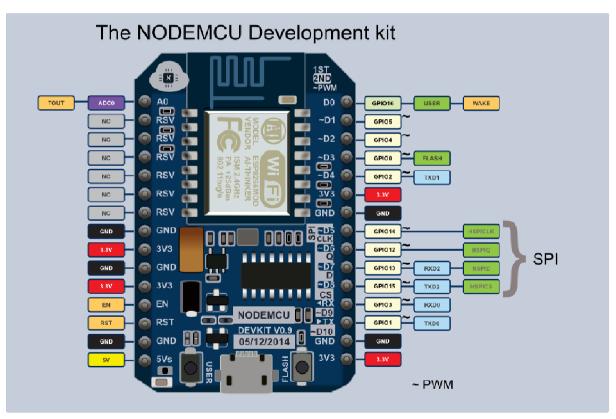
Chipset	Broadcom BCM2837 SoC	
Processeur	ARM Cortex-A53 1.2 GHz	
Mémoire Vive	1 Go LPDDR2	
Format de carte SD	Carte MicroSD	
	4x Ports USB 2.0	
Connections	40 GPIO	
Connectique	HDMI, audio/vidéo	
	composite	
Puissance électrique /	600mA jusqu'à 2.5A @	
tension	5V	
Connectivité	1x 10/100 Ethernet,	
Connectivité	Bluetooth, WiFi	


Raspberry pi 3

Connecteur GPIO (General Purpose Input Output)


Raspberry pi 3

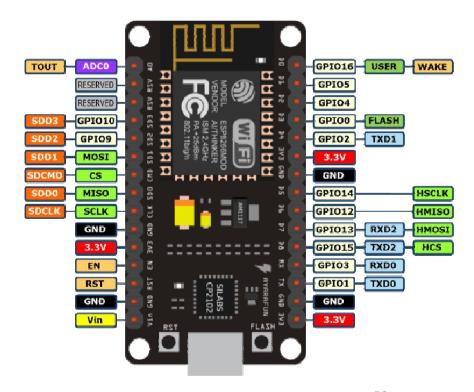
Système d'exploitation : Raspbian


NodeMCU (basé sur un ESP8266)

- 32-bit RISC CPU: Tensilica Xtensa LX106, 80 MHz
- 64 KiB of instruction RAM, 96 KiB of data RAM
- External QSPI flash 512 KiB to 4 MiB (up to 16MiB is supported)
- IEEE 802.11 b/g/n Wi-Fi
- Integrated TR switch, balun, LNA, power amplifier and matching network
- WEP or WPA/WPA2 authentication, or open networks
- 16 GPIO pins
- SPI, I²C,
- I²S interfaces with DMA (sharing pins with GPIO)
- UART on dedicated pins, plus a transmit-only UART can be enabled on GPIO2
- 1 10-bit ADC

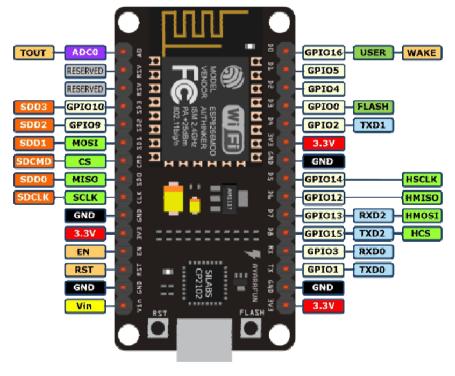
NodeMCU (basé sur un ESP8266)

Entrées/sorties d'un module NodeMCU


NodeMCU (basé sur un ESP8266)

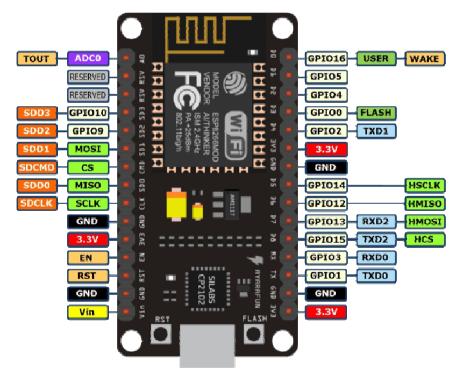
- L'ESP8266 peut se programmer de plusieurs façons :
- Avec des scripts Lua, interprétés ou compilés, avec le firmware NodeMCU
- En C, avec l'IDE Arduino
- En JavaScript, avec le firmware Espruino
- En MicroPython, avec le firmware MicroPython 2
- En C, avec le SDK d'Espressif
- En C, avec le SDK esp-open-sdk3 basé sur la chaîne de compilation GCC

7- Exemples d'application

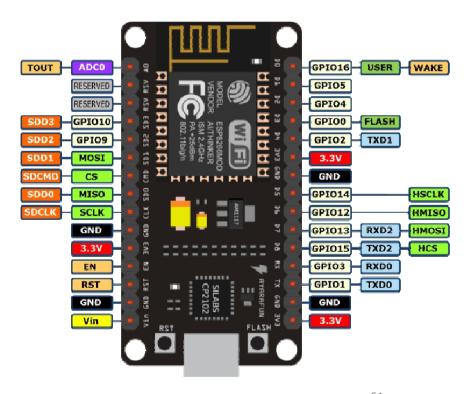

Application 1 : commande d'une LED

- On utilisera un module NodeMCU (utilisant un ESP8266).
- But : pouvoir allumer et éteindre une LED (indicateur lumineux).
- On utilisera l'environnement de développement ARDUINO.
- On reliera la LED et la résistance de limitation de courant entre la masse (GND) et la broche GPIO5 (D1) par exemple.

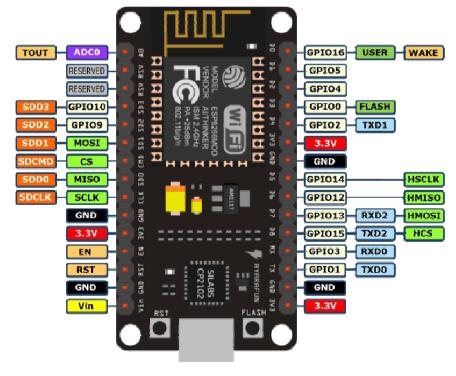
Application 1 : commande d'une LED



Application 2 : lecture d'une entrée numérique


- On utilisera un module NodeMCU (utilisant un ESP8266).
- But : pouvoir lire l'état d'une entrée numérique.
- On utilisera l'environnement de développement ARDUINO.
- On reliera l'entrée numérique sur la broche GPIO14 (D5).

```
void setup(void)
{
  // Start Serial
  Serial.begin(115200);
  // Set D5 as input
  pinMode(14, INPUT);
}
void loop() {
  // Read D5 and print it on Serial port
  Serial.print("State of D5: ");
  Serial.println(digitalRead(14));
  // Wait 1 second
  delay(1000);
}
```



Application 3 : Scan des réseaux wifi disponibles et affichage à l'aide de la liaison série

- On utilisera un module NodeMCU (utilisant un ESP8266).
- But : Détecter les réseaux wifi disponibles et afficher le SSID, la puissance du signal et indiquer si le réseau est ouvert on crypté.

Application 3 : Scan des réseaux wifi disponibles et affichage à l'aide de la liaison série

```
#include "ESP8266WiFi.h"
void setup() {
 Serial.begin(115200);
  // Set WiFi to station mode and disconnect from an AP if it was previously connected
  WiFi.mode(WIFI STA);
 WiFi.disconnect();
 delay(100);
  Serial.println("Setup done");
void loop() {
  Serial.println("scan start");
  // WiFi.scanNetworks will return the number of networks found
  int n = WiFi.scanNetworks();
  Serial.println("scan done");
  if (n == 0)
   Serial.println("no networks found");
  else
    Serial.print(n);
    Serial.println(" networks found");
    for (int i = 0; i < n; ++i)
      // Print SSID and RSSI for each network found
     Serial.print(i + 1);
      Serial.print(": ");
      Serial.print(WiFi.SSID(i));
      Serial.print(" (");
      Serial.print(WiFi.RSSI(i));
      Serial.println((WiFi.encryptionType(i) == ENC_TYPE_NONE)?" ":"*");
      delay(10);
  Serial.println("");
  // Wait a bit before scanning again
 delay(5000);
```


Application 3 : Scan des réseaux wifi disponibles et affichage à l'aide de la liaison série

scan start

scan done

16 networks found

1: SFR-0000 (-69)*

2: Freebox-5XXECD (-77)*

3: FreeWifi (-80)

4: FreeWifi_secure (-79)*

5: SFR-f04332 (-74)*

6: Livebox-57A46 (-93)*

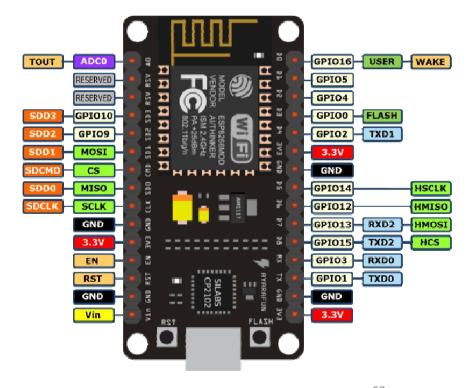
7: orange banane (-93)

8: NETwork2 (-47)*

9: FreeWifi (-47)

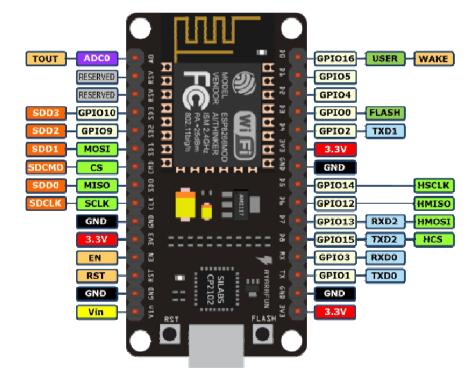
10: FreeWifi_secure (-46)*

11: FreeWifi (-86)


12: FreeWifi secure (-87)*

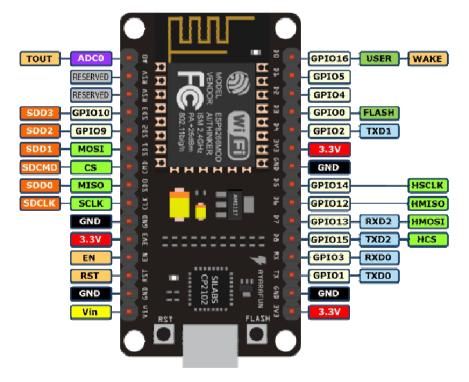
13: freebox AZZOF (-85)*

14: freefree (-89)*


15: FreeWifi (-88)

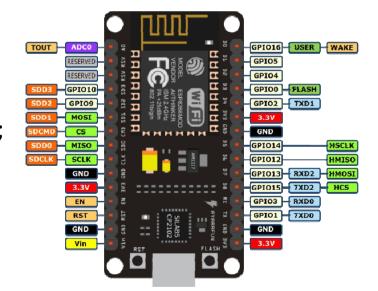
16: SFR WiFi FON (-91)

Application 4 : connexion à un réseau WiFi (connaissant le SSID et le mot de passe) et afichage de l'adresse IP obtenue par DHCP


```
#include <ESP8266WiFi.h>
// WiFi parameters
const char* ssid = "mon_SSID"; // à remplacer par le SSID
const char* password = "mon_mot_de_passe"; // mettre ici le mot de passe
void setup(void)
// Start Serial
Serial.begin(115200);
// Set WiFi to station mode and disconnect from an AP if it was previously
connected
WiFi.mode(WIFI STA);
WiFi.disconnect();
delay(100);
// Connect to WiFi
WiFi.begin(ssid, password);
Serial.println("");
while (WiFi.status() != WL_CONNECTED) {
delay(500);
Serial.print(".");
Serial.println("");
Serial.println("WiFi connected");
// Print the IP address
Serial.println(WiFi.localIP());
void loop() {
```

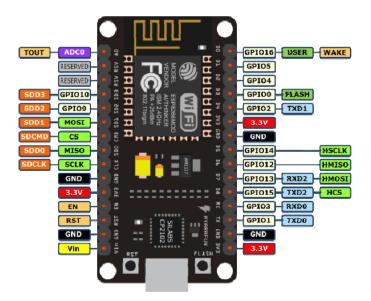

Application 4 : connexion à un réseau WiFi (connaissant le SSID et le mot de passe) et afichage de l'adresse IP obtenue par DHCP

.....


WiFi connected 192.168.0.6

Application 5 : AP WiFi, serveur web, commande à distance d'un LED et html/css

Caractéristiques de l'application :


- point d'accès WiFi (AP);
- serveur WEB;
- commande à distance d'une LED ou de tout autre dispositif;
- composition de pages en html et css.

Application 5 : AP WiFi, serveur web, commande à distance d'un LED et html/css

Voir le fichier complet!

(trop long pour être affiché sur une page de présentation)

8- Bibliographie

Ressources documentaires

Etudes des institutions nationales et européennes (stratégies)


The Internet of Things: A New Path to European Prosperity

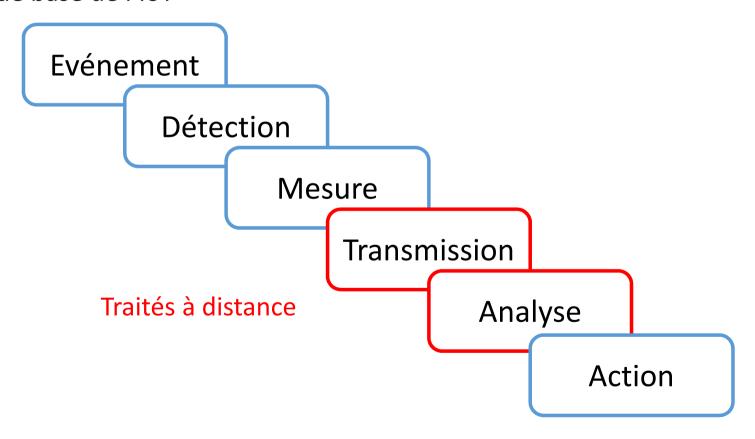
With the right focus, Europe can capitalize on the rise of the Internet of Things and the €1 trillion opportunity that it brings.

Ressources documentaires

Ouvrages scientifiques et techniques (architectures, structuration, organisation)

Ressources documentaires

Aspects technologiques

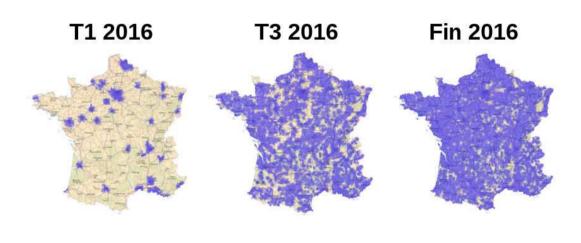

- Magazines techniques (Hackable, MISC, OpenSilicium, Embarqué, The MagPi, etc.)
- Ouvrages des éditions techniques (nombreux ouvrages sur les plateformes technologiques embarquées)

Merci pour votre attention

9- Compléments

Principe général


Fonctions de base de l'IoT


Transmissions à longue distance et à très faible débit

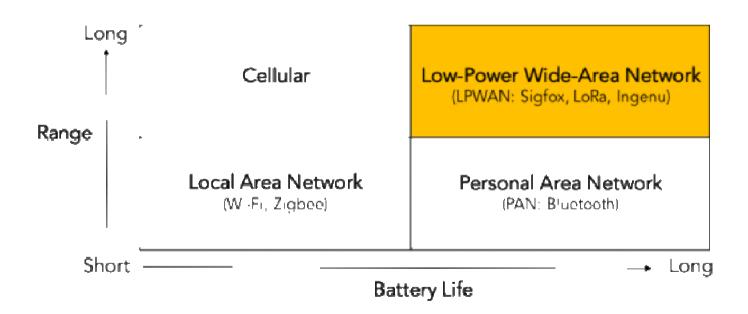
Transmission à longue distance et à très faible débit

Couverture du réseau SigFox en 2016.

Couverture du réseau LoRa de Bouygues télécom (objenious) en 2016.

Sigfox promet une meilleure pénétration et une meilleure portée, LoRa annonce une meilleure communication bidirectionnelle et une localisation par triangulation plus fine.

Transmission à longue distance et à très faible débit


Applications potentielles

- Suivi de données biologiques chez les patients (transmission de paramètres à une structure médicale pour un suivi massif à distance).
- Ville intelligente (signalisation routière, gestion des parkings, surveillance, etc.).
- Etude de phénomènes naturels.

Intérêt majeur

• Une pile bouton peut offrir plus d'un an d'autonomie et une bonne portée (jusqu'à 20 km en champ libre, environ 1 km en zone urbaine). 4 000 antennes sont suffisantes pour assurer une couverture comparable en surface à celle obtenue avec plus de 15 000 antennes du réseau 3G!

Transmission à longue distance et à très faible débit

RFID (Radio Frequency Identification) & NFC (Near Field Communication)

RFID & NFC

Wearable technology

Wearable

Merci pour votre attention!

