
Comparing and Combining Genetic and Clustering
Algorithms for Software Component Identification from

Object-Oriented Code

Selim Kebir
LIRMM

University of Monptellier 2
France

smkebir@gmail.com

Abdelhak-Djamel Seriai
LIRMM

University of Monptellier 2
France

seriai@lirmm.fr

Sylvain Chardigny
MGPS

Port-Saint-Louis
France

s.chardigny@mgps.info
Allaoua Chaoui
MISC Laboratory

University of Constantine
Algeria

a_chaoui2001@yahoo.com

ABSTRACT
Software component identification is one of the primary chal-
lenges in component based software engineering. Typically,
the identification is done by analyzing existing software ar-
tifacts. When considering object-oriented systems, many
approaches have been proposed to deal with this issue by
identifying a component as a strongly related set of classes.
We propose in this paper a comparison between the formula-
tions and the results of two algorithms for the identification
of software components: clustering and genetic. Our goal
is to show that each of them has advantages and disadvan-
tages. Thus, the solution we adopted is to combine them to
enhance the results.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Components, Algorithms

Keywords
Software component identification, hierarchical clustering,
genetic algorithm

1. INTRODUCTION
Software component identification is one of the primary

research problems in CBSE [4]. When applied to object ori-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
C3S2E-12 2012 June 27-29, Montreal [QC, CANADA]
Editors: B. C. Desai, S. Mudur, E. Vassev
Copyright 2012 ACM 978-1-4503-1084-0/12/06 ...$15.00.

ented systems, software component identification result is a
set of components where each one contains a set of classes.
On the one hand, the relationship between classes belong-
ing to a component must be high. On the other hand, the
relationship between classes belonging to two different com-
ponents must be low. Otherwise, software component iden-
tification can be performed in two different manners [4]: top-
down and bottom-up. Top-down software component iden-
tification is performed by analyzing domain business models
to get a set of business components. Bottom-up software
component identification is performed by extracting reusable
software components from existing software system source
code.

In our previous works [5][6], we have defined a semantic-
correctness and quality model for extracting software archi-
tectures from object-oriented source code. In this paper, we
rely on our previous results to propose two algorithms for
software component identification. The former is based on
hierarchical clustering. The latter is based on genetic al-
gorithm. Based on the results obtained by applying them
on large-scale systems, we discuss the advantages and short-
comings of each one. Then, we propose a more efficient
solution to identify software components by combining the
results obtained by the two previous algorithms.

This paper is organized as follows: Section 2 introduces
the mapping model between object and component concepts
and the measurement model used to evaluate the semantic-
correctness of a component. In section 3, we formulate the
component identification problem as a partitioning problem.
Based on the above formulation, we describe respectively in
section 4 and section 5 how components can be identified us-
ing hierarchical clustering and genetic algorithms. In section
6, we present a comparison between hierarchical clustering
and genetic algorithm in the context of software component
identification. Next, we explain how we can combine these
two algorithms to enhance the quality of the results followed
by the experimentation of our approach on different systems
of various sizes, first by applying separately hierarchical and
genetic algorithms and next by combining them. In section
7, we present related works and we compare them with the
our. Section 8 concludes the paper.

1

Figure 1: Component Structure

2. FROM OBJECT METRICS TO COMPO-
NENT QUALITY CHARACTERISTICS

To identify software components from object oriented code,
we rely on an adaptation of two elements presented in our
previous works [5][6]: Firstly, A mapping model between
object oriented concepts (i.e. classes, interfaces, packages,
etc) and component based software engineering ones (i.e.
components, interfaces, sub-component, etc.). Secondly, A
measurement model of quality and semantic correctness of a
component. This model refines characteristics of a compo-
nent to measurable metrics. Based on these metrics, we
define a fitness function to measure the quality and the
semantic-correctness of a component.

2.1 Mapping model between component and
object concepts

We define components as disjoint collections of classes.
These collections are named ”shapes” and contain classes
which can belong to different object oriented packages (Fig-
ure 1). Each shape is composed of two sets of classes: the
”shape interface” which is the set of classes which have a
link with some classes from the outside of the shape, e.g. a
method call or attribute use from the outside; and the ”cen-
ter” which is the remainder of shape. As shown in figure 1,
we assimilate component interface set to ”shape interface”
and component to shape. Figure 2 shows the component-
object mapping model that we propose to handle the corre-
spondence between object and component concepts.

2.2 Semantic-correctness of components
In order to measure the component semantic-correctness,

we study component characteristics. This study is based on
the most commonly admitted definitions of software compo-
nent. Many definitions exist where each one characterizes a
component somewhat differently. Nonetheless, some impor-
tant commonalities exist among the most prevalent defini-
tions.

Szyperski defines, in [17], a component as a unit of com-
position with contractually specified interfaces and explicit
context dependencies only. A software component can be
deployed independently and is subject to composition by
third parties. In [9], Heinemann and Councill define a com-
ponent as a software element that conforms to a component
model and can be independently deployed and composed

Figure 2: Object-Component Mapping Model

without modification according to a composition standard.
Finally, Luer, in [15], makes a distinction between compo-
nent and deployable component. He defines a component as
a software element that (a) encapsulates a reusable imple-
mentation of functionnality, (b) can be composed without
modification, and (c) adheres to a component model. A
deployable component is a component that is (a) prepack-
aged, (b) independently distributed, (c) easily installed and
uninstalled, and (d) self- descriptive.

By combining and refining the common elements of these
definitions and others commonly accepted, we propose the
following definition of a component:

A component is a software element that (a) can be com-
posed without modification, (b) can be distributed in an au-
tonomous way, (c) encapsulates an implementation of func-
tionality, and (d) adheres to a component model.

Our component definition references component model.
In our approach, the definition of a component model is the
Luer one [15]: a component model is the combination of
(a) a component standard that governs how to construct in-
dividual components and (b) a composition standard that
governs how to organize a set of components into an applica-
tion and how those components globally communicate and
interact with each other.

As compared to the definitions of Luer and Heineman and
Councill, we intentionally do not include the criterion that
a component must adhere on a composition theory and the
self-descriptive, pre-packaged and easy to install and unin-
stall properties of component. These are covered through
the criterion that a component must adhere to a component
model and does not need to be repeated.

In conclusion, according to our software component defi-
nition, we identify three semantic characteristics of software
components: composability, autonomy and specificity.

2.2.1 From Characteristics to Properties
In the previous section, we have identified three seman-

tic characteristics that we propose to evaluate. To do so, we
adapt the characteristic refinement model given by the norm
ISO-9126 [11]. According to this model, we can measure the
characteristic semantic-correctness by refining it in the pre-
vious three semantic characteristics which are consequently
considered as subcharacteristics. Based on the study of the
semantic sub-characteristics, we refine them to a set of com-
ponent measurable properties. Thus,

• A component is autonomous if it has no required inter-

2

face. Consequently, the property number of required
interfaces should give us a good measure of the com-
ponent autonomy.

• Then, a component can be composed by means of its
provided and required interfaces. However, compo-
nent will be more easily composed with another if ser-
vices, in each interface, are cohesive. Thus, the prop-
erty average of service cohesion by component interface
should be a correct measure of the component compos-
ability.

• Finally, the evaluation of the number of functionali-
ties is based on the following statements. Firstly a
component which provides many interfaces may pro-
vide various functionalities. Indeed each interface can
offer different services. Thus the higher the number
of interfaces is, the higher the number of functional-
ities can be. Secondly if interfaces (resp. services in
each interface) are cohesive (i.e. share resources), they
probably offer closely related functionalities. Thirdly if
the code of the component is closely coupled (resp. co-
hesive), the different parts of the component code use
each other (resp. common resources). Consequently,
they probably work together in order to offer a small
number of functionalities. From these statements, we
refine the specificity sub characteristic to the following
properties: number of provided interfaces, average of
service cohesion by component interface, component
interface cohesion and component cohesion and cou-
pling.

2.2.2 From Properties to Metrics
We cannot define the metrics which measure these prop-

erties on shapes. Consequently, according to our quality
measurement model, we link the component properties to
shape measurable properties.

• Firstly, according to our mapping model, component
interface set is linked to the shape interface. As a
result the average of the interface-class cohesion gives
a correct measure of the average of service cohesion by
component interface.

• Secondly the component interface cohesion, the inter-
nal component cohesion and the internal component
coupling can respectively be measured by the proper-
ties interface class cohesion, shape class cohesion and
shape class coupling.

• Thirdly in order to link the number of provided in-
terfaces property to a shape property, we associate a
component provided interface to each shape-interface
class having public methods. Thanks to this choice,
we can measure the number of provided interfaces us-
ing the number of shape interface classes having public
methods.

• Finally, the number of required interfaces can be eval-
uated by using coupling between the component and
the outside. This coupling is linked to shape external
coupling. Consequently, we can measure this property
using the property shape external coupling. In order
to measure these properties, we need to define metrics.

The properties shape class coupling and shape external
coupling require a coupling measurement. We define the
metric Coupl(E) which measures the coupling of a shape E
and CouplExt(E) which measures the coupling of E with
the rest of classes. They measure three types of dependen-
cies between objects: method calls, use of attributes and
parameters of another class. Moreover they are percent-
ages and are related through the equation: couplExt(E) =
100coupl(E). Due to space limitations, we do not detail
these metrics. Shape properties average of interface-class
cohesion, interface-class cohesion, and shape-class cohesion
require a cohesion measurement. The metric Loose Class
Cohesion (LCC), proposed by Bieman and Kang [3], mea-
sures the percentage of pair of methods which are directly or
indirectly connected. Two methods are connected if they use
directly or indirectly a common attribute. Two methods are
indirectly connected if a connected method chain connects
them. This metric satisfies all our needs for the cohesion
measurement: it reflects all sharing relations, i.e. sharing
attributes in object oriented system, and it is a percentage.
Consequently, we use this metric to compute the cohesion
for these properties. The refinement model is summarized
in figure 3.

2.2.3 Evaluation of semantic-correctness
According to the links previously established between the

sub- characteristics and the shape properties, we define the
evaluation functions Spe, A and C respectively for speci-
ficity, autonomy and composability, where nbPub(I) is the
number of interface classes having a public method and |I|
is the cardinality of the shape interface I:

• Spe(E) = 1
5
·(1
|I| ·

P
i∈I LCC(i)+LCC(I)+LCC(E)+

Coupl(E) + nbPub(I))

• A(E) = couplExt(E) = 100− coupl(E)

• C(E) = 1
|I| ·

P
i∈I LCC(i)

The evaluation of the semantic-correctness characteristic is
based on the evaluation of each sub-characteristic. That
is why we define a local fitness function to measure the
semantic-correctness of one component as a linear combina-
tion of each fitness function of sub-characteristics (i.e. Spe,
A, and C):

S(E) =
1P
i λi
· (λ1 · Spe(E) + λ2 ·A(E) + λ3 · C(E))

This form is linear because each of its parts must be consid-
ered uniformly. The weight associated with each function
allows the software architect to modify, as needed, the im-
portance of each sub-characteristic.

3. SOFTWARE COMPONENT IDENTIFICA-
TION PROBLEM

After defining what a component is and how to measure
its semantic- correctness using a fitness function, we have to
formulate the software component identification problem as
a partitioning problem where the resulting partition must
contain as many good-quality components as possible. To
do this, we define in the following the properties and the
constraints that a partition must meet followed by the def-
inition of a global fitness function to measure the overall
quality of a set of identified components.

3

Figure 3: The refinement model for semantic-correctness

3.1 Software Component Identification as a par-
titionning problem

According to the mapping model between component and
object concepts, the content of a component matches a set of
classes. Thus, in order to define the sets of classes that can
belong to a component, it is necessary to define a process
for grouping these classes. This association must be based
on a number of criteria to maximize the value of the above
defined fitness function in these groups.

Hence, the component identification problem can be for-
mulated as a partitioning problem where the input is a set
of classes C = {c1, c2, ..., cn} and the output is a partition
of C noted P (C) = {p1, p2, ..., pk} where:

• ci is a class belonging to the system.

• pi is a subset of C.

• k is the number of identified components.

• P (C) does not contain empty elements: ∀pi ∈ P (C), pi 6=
φ

• The Union of all P (C) elements is equal to C:
Sk

i=1 pi =
C. This property is called completness.

• The elements of P (C) are pair wise disjoint:∀i 6= j, pi∩
pj = φ. This property is called consistency.

3.2 Definition of the global fitness function
The main purpose of software component identification

techniques is to promote the reuse of recovered components
as building blocks for newly developed systems. Thus, the
identified components must exceed a certain threshold of
quality to be potential candidates for reuse. Based on this,
we define a global fitness function F to measure the quality
of a partition P . This function returns the proportion of
components for which the value of the local fitness function
S exceeds a given threshold t chosen by the architect.

F (P, t) =
{ci ∈ P,where S(ci) > t}

|P |

4. HIERARCHICAL CLUSTERING BASED
TECHNIQUE FOR COMPONENT IDEN-
TIFICATION

Clustering approaches can be classified as hierarchical or
non-hierarchical. Hierarchical clustering techniques are fur-
ther divided into agglomerative and divisive techniques. An
agglomerative method involves a series of successive merg-
ers whereas a divisive method involves a series of successive
divisions [13].

4.1 Building a Hierarchy of Clusters
The approach proposed here makes use of a hierarchical

agglomerative clustering algorithm for grouping classes. The
strength of the relationship between the classes is used as ba-
sis for clustering them. This strength is measured using the
fitness function defined previously. We propose the follow-
ing algorithm to build a dendrogram from a set of classes.

Algorithm 1 HierarchicalClustering(file code):Tree dendro

classes← extractInformation(code);
clusters← classes;
while (|clusters| > 1) do

(c1, c2)← nearestClusters(clusters);
c3← Cluster(c1, c2);
remove(c1, clusters);
remove(c2, clusters);
add(c3, clusters);

end while
dendro← get(0, clusters);
return dednro;

The technique proceeds through a series of successive bi-
nary mergers (agglomerations), initially of individual enti-
ties (classes) and later of clusters formed during the pre-
vious stages. The classes having the highest relationship
strengths are grouped first. The process continues until a

4

cut-off point is reached. We obtain from this single cluster a
dendrogram which represents the shape hierarchy. This den-
drogram contains all candidate components. The presented
algorithm uses the nearestClusters() function to determine
which two clusters will be merged in the next step. This
function returns the most similar pair of clusters (the two
clusters that maximize the value of the fitness function).

4.2 Selection of potentially good components
In order to obtain a partition of classes, we have to select

nodes among the hierarchy resulting from the previous step.
This selection is done by an algorithm based on a depth-first
search which selects nodes representing shapes which will be
the best components (Algorithm 2).

Algorithm 2 DendrogramTraversal(file code):Tree dendro

stack traversalClusters;
push(root(dendro), traversalClusters);
while (!empty(traversalClusters)) do
Cluster father = pop(traversalClusters);
Cluster f1 = son1(father, dendro);
Cluster f2 = son2(father, dendro);
if (F (father) > average(F (f1), F (f2))) then
add(father,R);

else
push(f1, traversalClusters);
push(f2, traversalClusters);

end if
end while
return R;

For each node, we compare the result of the fitness func-
tion for the node shape and its sons. If the node result is
inferior to the average of the result of its two sons, then
the algorithm continues on the next node, else the node is
identified to a shape and added to the partition and the al-
gorithm computes the next node. In this way, good quality
components will be identified while the traversal continues.

5. GENETIC BASED TECHNIQUE FOR COM-
PONENT IDENTIFICATION

Genetic algorithms are meta-heuristics inspired from the
evolution theory of Darwin [10]. This meta-heuristic is used
to obtain nearly optimal solutions to optimization prob-
lems by mimicking biological mechanisms such as, selection,
crossover and mutation. Thus, to define a genetic algorithm
for a given optimization problem, we must define four ele-
ments:

• A genetic representation of what a solution is.

• A fitness function to measure the quality of a solution.

• How to perform genetic operators.

• Content of the initial population.

We propose a genetic based algorithm for software com-
ponent identification. We choose to randomly generate the
content of initial population. We use the above-defined
global fitness function of components as a fitness function
for the genetic algorithm. Thus we only need to define the
two remaining elements.

Figure 4: Representation of chromosomes

5.1 Genetic representation of components
Genetic algorithms start from an initial population which

consists of a set of randomly generated solutions. Each so-
lution has a genetic representation called chromosome. A
chromosome is composed of genes that uniquely identify it.
Based on this representation, genetic algorithms perform a
series of successive iterations to evolve towards a better so-
lution. The quality of a solution is evaluated using a fitness
function. In our approach it is evaluated using the above-
defined global fitness function. Thus, we need to define an
adequate genetic representation of what a solution is.

In the software component identification problem, a solu-
tion is a given partition of all the system classes (cf. Section
3) where each element represents an identified component.
Thus, a genetic representation of a solution must adhere to
this definition and should allow us to know which class be-
longs to which component.

This can be performed in two manners; the first manner
(Figure 4.a) consists in defining a chromosome as an associa-
tive array composed of a collection of genes noted (key,value)
where each key is a class and each value is the component
to which it belongs. Such that, each key appears only once
in the collection. The second manner (Figure 4.b) consists
in defining a chromosome as a partition of all classes. This
partition is a set of non-overlapping and non- empty genes
consisting in subsets that cover all classes.

We opt for the second representation because it allows
verifying completeness and consistency properties more effi-
ciently (cf. Section 3).

5.2 Genetic Operators
In order to converge towards best solutions, a genetic al-

gorithm performs on the population a series of genetic op-
erators. These operators allow creating new solutions by
combining and modifying the current one. Next, we define
selection, crossover and mutation operators based on the ge-
netic representation that we have chosen above.

5.2.1 Selection
The first operator performed by a genetic algorithm on a

population is the selection of individuals that will be com-
bined to generate the next solutions. This selection can
be performed in different manners (e.g. tournament, rank,
steady-state, etc.). We opt for the roulette-wheel selection
to favor the selection of the best solutions and to give oppor-
tunities to the other solutions to be selected for crossover.

5.2.2 Crossover
Crossover operators are used by genetic algorithms to ex-

plore the neighboring solutions by combining the selected
ones.

Based on the genetic representation of components that
we have defined previously, we can define a simple crossover

5

Figure 5: Simple crossover

Figure 6: Preserving consistency and completeness

operator that combine two parents chromosomes to obtain
new ones. The operator splits the chromosome of each par-
ent into two subsets of genes and then combines each subset
to obtain four children. This is illustrated in figure 5. As
illustrated in figure 5, by using the simple crossover oper-
ator, we obtain children that violate the consistency and
completeness properties. To avoid this problem, we define
a crossover operator based on the one proposed in [8] to
preserve these two properties. As illustrated in figure 6, to
preserve completeness, we create a child by adding a subset
of genes of the first parent to the second parent. Then to
preserve consistency, we eliminate classes (Underlined in fig-
ure 6) that belong to new genes from the old genes and we
remove eventually empty genes and duplicate chromosomes.

5.2.3 Mutation
Genetic algorithms use mutation operators to avoid limit-

ing the exploration only in the neighborhood of the current
population. This operator consists in modifying randomly
a given chromosome. Based on the genetic representation
of components that we have defined previously, we define a
mutation operator that consists in performing randomly one
of these two operations: fusion and separation. The former
merges two randomly selected genes of a chromosome. The
latter separates a randomly selected gene into two disjoint
genes.

5.2.4 Selection of the next generation

After applying the above genetic operators, we obtain a
new population containing the chromosomes of the previous
iteration and newly generated chromosomes from crossovers
and mutations. Therefore the size of the population in-
creases at each generation of the algorithm. In order to keep
the size of the population constant after applying crossovers
and mutations, we use a second selection operator based on
the roulette-wheel selection to obtain the next generation.

6. THE COMBINED APPROACH MOTIVA-
TION

We show in this section the limits and the shortcomings
of clustering and genetic approach taken separately. Then
we propose to combine them.

6.1 Motivations of the combined approach
The main advantage of hierarchical clustering over genetic

algorithm is its non-stochastic nature and low complexity
when applied to medium systems. In fact, the complexity of
the hierarchical clustering depends linearly on the number of
classes of the system. However, the complexity of the genetic
algorithm is high due to the complexity of the crossover
and mutation operators. Also, the complexity of genetic
algorithm depends highly on the size and the quality of the
initial population.

Unlike genetic algorithm, hierarchical clustering provides
a hierarchy of the identified components. Thus, it becomes
possible to identify composite components. This offers the
possibility to the architect to replace a component by its
sub-components.

Even if hierarchical clustering does not perform an op-
timization of the global fitness function, in the case where
relationships and dependencies between classes are relatively
strong, it can identify good quality components by optimiz-
ing the local fitness function. In contrast, genetic algorithm
tries to optimize the global fitness function using selection,
crossover and mutation operators. However, on large-scale
systems, a randomly generated initial population may pro-
duce bad results because the exploration performed by the
genetic algorithm will spent lot of time before reaching good
solutions. According to the previous comparison, using sepa-
rately hierarchical clustering and genetic algorithms to iden-
tify software components have important limitations.

In order to overcome these limitations, we propose to com-
bine the two algorithms to benefit from the advantages of
each one. Instead of using a randomly generated initial pop-
ulation, we choose a population that contains the solution
obtained by hierarchical clustering.

6.2 Experiment and results
In order to validate our hypothesis, we have applied hi-

erarchical clustering (HC), genetic (GA) and combination
of the two (HC-GA) component identification techniques on
three different systems of different size (small, medium and
large). The first is Apache Commons Email1, a library that
aims to provide an API for sending emails. It contains 44
classes. The second system is JDOM2, a well-known library
that provide a complete, Java-based solution for accessing,
manipulating, and outputting XML data from Java code. It

1http://commons.apache.org/email/
2http://www.jdom.org/

6

contains 139 classes. The third system is Apache Http Com-
ponents3; a toolset of low level Java components focused on
HTTP and associated protocols. It contains 368 classes. We
have chosen the value 0.7 for the threshold t of the global
fitness function.

Tables 1, 2 and 3 summarize the obtained results for
each system. Due to space limitations we use the follow-
ing acronyms :

• NIC: Number of Identified Components.

• GFF: Global Fitness Function value.

• NCET: Number of Components Exceeding Thresh-
old.

Table 1: Results on Common Email
NIC GFF NCET

HC 5 0.20 1
GA 5 0.80 4

HC-GA 3 0.66 2

Table 2: Results on JDOM
NIC GFF NCET

HC 11 0.36 4
GA 38 0.78 30

HC-GA 14 0.92 96

Table 3: Results on HTTP Components
NIC GFF NCET

HC 34 0.55 19
GA 126 0.41 52

HC-GA 26 0.96 25

In order to compare the obtained results in terms of the
optimization of the global fitness function, we place them on
a bar diagram given in figure 7.

On a small system (commons email), genetic algorithm
gives a better result than hierarchical clustering because of
the following reasons: Firstly, when the number of classes
is limited, the number of identified components decreases so
the number of components which exceeds the quality thresh-
old will be small. Secondly, the hierarchical clustering does
not perform global optimization (cf. Section 6.1) unlike ge-
netic algorithm which tries to globally enhance the quality
of the solution at each generation. Finally, the small number
of classes increases the probability to generate randomly a
good initial population, so the exploration will likely lead to
good-quality solutions after only few iterations.

Compared to genetic algorithms, the combined approach
does not give a better result on a small system because it
begins with a bad initial population so it have less chances
to reach a better solution.

On a medium system (JDOM), genetic algorithm gives
better results than hierarchical clustering for the same rea-
sons cited above. However, even if hierarchical clustering

3http://hc.apache.org/

Figure 7: Value of the global fitness function ob-
tained for each algorithm

does not perform global optimization, the third of compo-
nents identified exceeds the quality threshold. This is ex-
plained by the significant number of classes contained in the
system.

The combined approach gives a better result than genetic
algorithm on a medium system because it starts with an av-
eragely good initial population. This confirms the hypothe-
sis that we have made in section 6.1.

On a large system (HTTP Components), the hierarchi-
cal clustering gives better results than genetic algorithm be-
cause of the following reasons: Firstly, when the number
of classes is large, the probability to randomly generate a
good initial population decreases. Thus, the genetic algo-
rithm starts from a bad initial population and it will likely
spend more time to reach good solutions. Secondly, the large
number of classes and the number of relationships and de-
pendencies between them allow the hierarchical clustering
to optimize more efficiently the local fitness function and
discover good quality components.

As on medium systems, the combined approach gives bet-
ter results than genetic algorithm and hierarchical clustering
on large systems because it starts from a nearly good initial
population.

7. RELATED WORK
Software component identification can be performed in

two different manners [4]: top-down and bottom-up. Top-
down software component identification is performed by an-
alyzing domain business models to get a set of business com-
ponents. Bottom-up software component identification is
performed by extracting reusable software components from
existing software system source code.

Most of the software component identification techniques
belong to the first category [12] [14] [16]. This means that
they start from semi-formal domain business models (Typi-
cally expressed in UML) and produce domain software com-
ponents. This constitutes an important shortcoming like the
inability to apply these approaches when domain business
models are missing.

Our approach is based on the analysis of source code which
remains the only software artifact that reflects the reality of
the system.

Approaches presented in [2] [16] make use of only coupling
and cohesion metrics to identify components. However, the

7

use of only these two metrics can lead to poor quality com-
ponents. In our approach, we have studied the quality and
semantic-correctness of components to guarantee that the
identified components will be of high quality. In addition,
unlike the previously cited works, our approach has the ad-
vantage to allow the architect to give more importance to
some sub-characteristics.

In our work we compare two algorithms in the context
of component identification. In [1], the authors propose to
use genetic algorithm to generate initial population for k-
means. Based on [1], the work presented in [7] presents a
general purpose empirical comparison between k-means and
genetic algorithms.

The work presented in [2] is the closest to ours. The au-
thors propose to combine genetic algorithms and simulated
annealing to respectively optimize global and local fitness
functions for software identification. It uses dynamic analy-
sis to identify software components from the execution trace
of a use case. Its main drawback is the a priori knowledge
of the high-level system functionalities. Also, it requires an
extensive execution of many execution scenarios to involve
all the classes that constitutes the system.

8. CONCLUSION
In this paper, we rely on our previous works [5] [6] to

propose, compare and combine two algorithms for software
component identification from object- oriented source code.
The former is based on hierarchical clustering and the latter
is based on genetic algorithms.

We begin by defining a mapping model between objects
and components and a measurement model for evaluating
semantic-correctness of software component. Based on these
models, we formulate the software component identification
problem as a partitioning problem.

Then we propose two algorithms for identifying software
components from existing systems. The former is based on
hierarchical clustering and the latter is based genetic algo-
rithms. We show the limitations of using them separately
and we propose to overcome these limitations by combin-
ing them to benefit from the advantages of each one. The
obtained results by applying the combination of the two al-
gorithms confirm our hypothesis.

As short-term perspective, we plan to extend our approach
to apply it on multiple versions/variants of the same system
to obtain highly reusable components. The obtained results
will guide our long-term perspective which consists in recov-
ering software product lines.

9. REFERENCES
[1] B. Al-Shboul and S.-H. Myaeng. Initializing k-means

using genetic algorithms. World Academy of Science,
Engineering and Technology, 54, 2009.

[2] S. Allier, H. A. Sahraoui, S. Sadou, and S. Vaucher.
Restructuring object-oriented applications into
component-oriented applications by using consistency
with execution traces. In Proceedings of the 13th
international conference on Component-Based
Software Engineering, CBSE’10, pages 216–231,
Berlin, Heidelberg, 2010. Springer-Verlag.

[3] J. M. Bieman and B.-K. Kang. Cohesion and reuse in
an object-oriented system. In Proceedings of the 1995
Symposium on Software reusability, SSR ’95, pages
259–262, New York, NY, USA, 1995. ACM.

[4] D. Birkmeier and S. Overhage. On component
identification approaches — classification, state of the
art, and comparison. In Proceedings of the 12th
International Symposium on Component-Based
Software Engineering, CBSE ’09, pages 1–18, Berlin,
Heidelberg, 2009. Springer-Verlag.

[5] S. Chardigny and A. Seriai. Software architecture
recovery process based on object-oriented source code
and documentation. In Proceedings of the 4th
European conference on Software architecture,
ECSA’10, pages 409–416, Berlin, Heidelberg, 2010.
Springer-Verlag.

[6] S. Chardigny, A. Seriai, M. Oussalah, and
D. Tamzalit. Extraction of component-based
architecture from object-oriented systems. In
Proceedings of the Seventh Working IEEE/IFIP
Conference on Software Architecture (WICSA 2008),
WICSA ’08, pages 285–288, Washington, DC, USA,
2008. IEEE Computer Society.

[7] Chittu.V and N.Sumathi. A modified genetic
algorithm initializing k-means clustering. Global
Journal of Computer Science and Technology, 11,
2011.

[8] E. Falkenauer. Genetic Algorithms and Grouping
Problems. John Wiley & Sons, Inc., New York, NY,
USA, 1998.

[9] G. T. Heineman and W. T. Councill, editors.
Component-based software engineering: putting the
pieces together. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2001.

[10] J. H. Holland. Adaptation in natural and artificial
systems. MIT Press, Cambridge, MA, USA, 1992.

[11] ISO. Software engineering – Product quality – Part 1:
Quality model. Technical Report ISO/IEC 9126-1,
International Organization for Standardization, 2001.

[12] H. Jain, N. Chalimeda, N. Ivaturi, and B. Reddy.
Business component identification - a formal
approach. In Proceedings of the 5th IEEE
International Conference on Enterprise Distributed
Object Computing, EDOC ’01, pages 183–,
Washington, DC, USA, 2001. IEEE Computer Society.

[13] S. Johnson. Hierarchical clustering schemes.
Psychometrika, 32:241–254, 1967.
10.1007/BF02289588.

[14] S. D. Kim and S. H. Chang. A systematic method to
identify software components. In Proceedings of the
11th Asia-Pacific Software Engineering Conference,
APSEC ’04, pages 538–545, Washington, DC, USA,
2004. IEEE Computer Society.

[15] C. Luer and A. V. D. Hoek. Composition
environments for deployable software components.
Technical report, 2002.

[16] S. K. Mishra, D. S. Kushwaha, and A. K. Misra.
Creating reusable software component from
object-oriented legacy system through reverse
engineering. Journal of Object Technology,
8(5):133–152, 2009.

[17] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 2nd
edition, 2002.

8

