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Abstract 
 

One of the most important approaches that support 

software reuse is Component Based Software Engineering 

(CBSE). Nevertheless the lack of component libraries is 

one of the major obstacles to widely use CBSE in the 

industry. To help filling this need, many approaches have 

been proposed to identify components from existing 

object-oriented software. These approaches identify 

components from singular software. Therefore the 

reusability of these components may be limited. In this 

paper, we propose an approach to mine reusable 

components from a set of similar object-oriented 

software, which were developed in the same domain, 

ideally by the same developers. Our goal is to enhance 

the reusability of mined components compared to those 

mined from single software. In order to validate our 

approach, we have applied it onto two open source Java 

applications of different sizes; small and large-scale ones. 

The results show that the components mined from the 

analysis of similar software are more reusable than those 

which are mined from single ones. 
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1. Introduction 
 

It is admitted that reuse improves the software quality 

and productivity [1]. Component Based Software 

Engineering (CBSE) is considered as one of the most 

important approaches supporting software reuse [1, 2, 4]. 

Nevertheless, one of the major limitations against widely 

use of CBSE is the lack of component libraries [12]. 

Therefore, mining reusable components from existing 

software is an efficient way to supply component 

libraries. Otherwise, as software components are admitted 

as more reusable entities than object-oriented ones [12], 

many approaches have proposed to identify components 

from existing object-oriented software [3, 5, 6, 7]. These 

approaches proposed to mine components by analyzing 

single software. As a result, the mined components may 

be useless in other software and consequently their 

reusability is not guaranteed. In fact the probability of 

reusing a component in new software is proportional to 

the number of software that has already used it [18]. 

Moreover software companies often find themselves in 

the situation where they have developed many software in 

the same domain, but with functional or technical 

variations [8]. In most cases, each software variant is 

developed by adding some variations to an existing 

software to meet the requirements of a new need. Thus in 

this paper, we propose an approach to mine reusable 

components from a set of similar object-oriented 

software
1
 which were developed in the same domain, 

ideally by the same developers. The goal is to analyze the 

source code of these software to identify pieces of code 

that may form reusable components. Our motivation is 

that components mined from the analysis of several 

existing software will be more useful (reusable) for the 

development of new software than those mined from 

singular ones. To validate our approach, we have applied 

it onto two open source Java applications of different 

sizes (i.e. small and large-scale ones). We propose an 

empirical measurement to evaluate the reusability of the 

mined components. According to this measurement, the 

results show that the reusability of the mined components 

using our approach is better than the reusability of those 

mined from singular software. 

The rest of this paper is organized as follows. In 

section 2, we present the ROMANTIC approach, which 

constitute a background for our work. Section 3 presents 

the proposed approach. The experimental results are 

presented and discussed in section 4. The related work 

and conclusion are placed in sections 5 and 6 respectively. 

 

2. Background: the ROMANTIC Approach 
 

In our previous works [3] and [17], we have proposed 

the ROMANTIC approach which aims to extract a 

component-based architecture from an object-oriented 

software. ROMANTIC is mainly based on two models: 

first an object-to-component mapping model, second a 

quality measurement model to evaluate the quality of 

components which are mined from object-oriented source 

code. In this paper, we rely on these two models to define 

a process which allows to mine reusable components from 

similar software. 
1This work has been funded by grant ANR 2010 BLAN 021902.



2.1. From object to component: the mapping 

model 
 

A software component is defined based on two parts: 

internal and external structures [16, 17]. The internal 

structure implements services provided by the component 

as well as those used by them. The external structure 

consists of the accessible services structured as provided 

and required interfaces. The provided interfaces are the 

services accessed by other applications/components. The 

required interfaces represent services that the component 

needs to perform its provided ones. These are provided by 

other applications/components. When a component is 

object oriented (i.e. implemented by an object-oriented 

language), its internal structure is represented by one or 

more classes, which can belong to different packages. Fig. 

1 shows the object-to-component mapping model. 

2.2. From object to component: the quality 

measurement model 
 

According to [4, 15, 16], a component is defined as “a 

software element that (a) can be composed without 

modification, (b) can be distributed in an autonomous 

way, (c) encapsulates the implementation of one or many 

functionalities, and (d) adheres to a component model” 

[3]. Based on this definition, we identified three quality 

characteristics of a component: composability, autonomy 

and specificity [3]. Composability is the ability of a 

component to be composed without any modification. 

Autonomy means that it can be reused in an autonomous 

way. Specificity characteristic is related to the fact that a 

component must implement a limited number of closed 

functionalities. Based on these characteristics we 

proposed a quality measurement model for object-

oriented components. The basis of this model is that 

characteristics are mapped to object-oriented metrics 

following ISO model 9126 [10]. First of all, the above 

characteristics are refined into sub-characteristics. Then, 

these sub-characteristics are refined into properties related 

to the external structure of a component. Next, these 

properties are mapped to the properties of the internal 

structure of a component. Finally, these properties are 

refined into object-oriented metrics. Fig. 2 shows how the 

component characteristics are refined following the 

proposed measurement model.  

Based on this measurement model, we defined a 

fitness function to measure the quality of an object-

oriented component based on its characteristics [3]. This 

function is given bellow: 
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Where: 

• �  is an object-oriented component composed of a 

group of classes. 

• ���� , 	����  and ����  refer to the specificity, 

autonomy, and composability of E respectively. 

• λ1, λ2, λ3 are weight values, situated in [0-1]. These are 

used by the architect to weight each characteristic as 

needed. 

We have proposed a specific fitness function to 

measure each of these characteristics. For example, the 

specificity characteristic of a component is calculated as 

follows: 
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This means that the specificity of a component E 

depends on the following object-oriented metrics: the 

cohesion of classes composing the internal structure of E 

( ������ ), the cohesion of all classes composing the 

external structure of E (������), the average cohesion of 

all classes composing the external structure of E (
�
|�| ∗

∑ �������∈� ), the coupling of internal classes of E 

(�� !"��� which is measured based on the number of 

dependencies between the classes of E), and the number 

of public methods belong to the external structure of E 

(#�$ %���). LCC (Loose Class Cohesion) is an object-

oriented metric that measures the cohesion of a set of 

classes [11]. For more details about the quality 

measurement model please refer [3, 17]. 

Figure 1. shows the object-to-component mapping model. 

Figure 2. Component quality measurement model. 



3. The Proposed Approach 
 

The aim of our approach is to mine reusable 

components based on the static analysis of the source 

code of a set of similar object-oriented software.  

The mining process is based on the following steps: 

first, each software is independently analysed to identify 

all potential components. These are identified based on 

the evaluation of their quality characteristics. Next, we 

identify similar components among all potential ones. 

Similar components are those providing, mostly the same 

services and differing compared to few others. After that, 

we rely on the similarity of each group of components to 

build a single component, which will be representative of 

this group; this will be considered as a reusable 

component. Only classes constituting the internal 

structures (i.e. the implementation) of the reusable 

components are identified in this step. Next, we identify 

their external structure: their provided and required 

interfaces. Finally, the last step of the mining process 

aims at documenting the mined components. This 

documentation includes suggestions to describe the 

services that components provide. Fig. 3 summarizes the 

mining process. 

3.1. Identifying potential components 
 

Potential components are mined based on the analysis 

of each object-oriented software. Each potential 

component is composed of a set of classes where the 

corresponding value of the quality fitness function is 

satisfactory (i.e. its quality value is higher than a 

predefined threshold). The classes composing a potential 

component are gradually identified starting from a core 

class. Each class of the analyzed software can be selected 

to be a core one depending on if an accepted component 

can be formed starting from this one. This is decided as 

the result of the next steps.  

The selection of the classes to be added at each step is 

decided based on the value of the quality function of the 

formed component. In other words, classes are ranked 

based on the obtained value of the quality function when 

it is gathered to the current group. The class obtaining the 

highest quality value is selected to extend the current 

group. We do this until all classes are grouped into a 

single group. The quality of the formed groups is 

evaluated at each step (i.e. each time when a new class is 

added). Some classes of this group will be excluded. 

These are those added after the quality function reaches 

the peak value.  

For example, in Fig. 4, classes 7 and 8 are put aside 

from the group of classes related to component 2 because 

when they are been added the quality of the component is 

decreased compared to the peak value. Thus classes 

retained in the group are those maximizing the quality of 

the formed component. After identifying all potential 

components of such software, the only ones retained are 

those where the quality values are higher than a 

predefined quality threshold. For example, in Fig. 4, 

component 1 does not reach the predefined threshold and, 

thus, not retained as a potential component. This means 

that the starting core class is not suitable. Algorithm 1 

below illustrates the process of potential components 

mining.  In this algorithm, Q refers to the quality fitness 

function and Q-threshold is a predefined quality 

threshold. 

Algorithm 1: PotentialComponents(OO source code): 

potential components 

---------------------------------------------------------------------- 
classes ← extractInformation(OO source code); 

for each C in classes 

   component ← C; 

   bestComponent ← component; 

   while (|classes – component.classes| > 1) do 

     c1←getNearestClass(component,classes–component); 

     component ← component + c1; 

     if (Q(component)) > Q(bestComponent) )then 

          bestComponent ← component; 

     end if        

  end while 

  if (Q(bestComponent) > Q-threshold) 

     add(Results, bestComponent);    

  end if 

end for 

return Results; 

Figure 4. Forming potential components by incremental 

selection of classes. 

Figure 3. The process of reusable components mining. 



3.2. Identifying similar components 
 

Potential components are mined based on the analysis 

of a set of similar software. As a consequence, some of 

them may be similar. Similar components are those 

providing mostly the same functionalities and differing in 

few ones. These can be considered as variants of a 

common component. The similarity as well as the 

difference between components appears compared to their 

internal structures composed of object-oriented classes. 

Thus similar components are those sharing the majority of 

their classes and differing considering the other ones. We 

gather similar component into groups from which we 

mine common ones.  

Groups of similar components are built based on a 

lexical similarity metric.  Thus components are identified 

as similar compared to the strength of similarity links 

between classes composing them. We use cosine 

similarity metric [9]. Following this metric each 

component is considered as a text document which 

consists of a list of component classes’ names.  

We use a hierarchal clustering algorithm to gather 

similar components into groups. It starts by considering 

individual components as initial leaf nodes in a binary 

tree. Next, the two most similar nodes are grouped into a 

new one (i.e. as a parent of them). This is continued until 

all nodes are grouped as a binary tree. This tree is 

composed of all candidate clusters. To identify the best 

ones (clusters), we use a depth first search algorithm. 

Starting from the tree root to find the cut-off points, we 

compare the similarity of the current node with its 

children. If the current node has a similarity value 

exceeding the average similarity value of its children, 

then the cut-off point is in the current node, otherwise, the 

algorithm continues through its children (c.f. Algorithm 

2). The results of this algorithm are clusters where each 

one groups a set of similar components. 

Algorithm 2: ComponentsClustering(Potential 

Components ): clusters of potential components 

---------------------------------------------------------------------- 
binaryTree ← PotentialComponents 

while (|binaryTree| > 1) do 

   c1, c2← nearestNodes(binaryTree);// cosine similarity 

   c ← newNode(c1, c2); 

   remove(c1, binaryTree); 

   remove(c2, binaryTree); 

   add(c, binaryTree); 

end while 

clusters← depthFirstSearch.getBestClsuters(binaryTree); 

return clusters; 

3.3. Reusable component mining from similar 

potential ones 
 

As previously mentioned, similar components are 

considered as variants of a common one. Thus, from each 

cluster of similar components, we extract a common 

component which is considered as the most reusable 

compared to the members of the analyzed group. It is 

composed based on all shared classes and some selected 

non-shared ones. Shared classes form the core of the 

reusable component. These classes may not form a correct 

component following our quality measurement model. 

Thus some non-shared classes are added based on the 

following criteria: 

 

• The quality of the component obtained by adding a 

non-shared class to the core ones. 

 

• The density of a non-shared class in a cluster of 

similar components which refers to the occurrence ratio of 

the class compared to the components of this group. We 

consider that a class, which has high density, contributes 

to build a reusable component. 

 

Consequently the following algorithm generates 

classes forming the reusable components. First, for each 

cluster of similar component, we extract all candidate 

subsets of classes among the set of non-shared ones. 

Then, the subsets that reach a predefined density 

threshold are only selected. The density of a subset is the 

average densities of all classes in this subset. Next, we 

evaluate the quality of the component formed by grouping 

core classes with classes of each subset resulting from the 

previous step. Thus the subset maximizing the quality 

value is grouped with the core classes to form the reusable 

component. Only components with a quality value higher 

than a predefined threshold are retained.  

Nevertheless the above algorithm is NP-complete (i.e. 

the complexity of identifying all subsets of a collection of 

classes is 2
n
-1).  This means that the computing time will 

be accepted only for components with a small number of 

non-shared classes. This algorithm is not scalable for a 

large number of non-shared classes (e.g. 10 non-shared 

classes need 1024 operations, while 20 classes need 

1048576 operations).  

Consequently, we propose the following heuristic 

algorithm as an alternative. First of all, non-shared classes 

are evaluated based on their density. The Classes that do 

not reach a predefined density threshold are rejected. 

Then, we identify the greater subset that reaches a 

predefined quality threshold when it is added to the core 

classes. To identify the greater subset, we consider the set 

composed of all non-shared classes as the initial one. This 

subset is grouped with the core classes to form a 

component. If this component reaches the predefined 

quality threshold, then it represents the reusable 

component. Otherwise, we remove the non-shared class 

having the lesser quality value compared to the quality of 

the component formed when this class is added to the core 

ones. We do this until a component reaching the quality 

threshold or the subset of non-shared classes becomes 



empty. Algorithm 3 shows the process of reusable 

components mining, where Q refers to the quality 

function (1), Q-threshold refers to the predefined quality 

threshold. 

Algorithm 3: MiningReusableComponents(Clusters of 

Components) : reusable components 

---------------------------------------------------------------------- 
for each cluster in Clusters of Components do 

     shared ← getSharedClasses(cluster); 

     nonShared ← getNonSharedClasses(cluster); 

     component ← shared; 

     removeClassesLessThanDensityThreshold(nonShare); 

    while (|nonShare|>0) do 

if(Q(component + nonShare)>=Q-threshold) 

          add(Results,component); 

    break while; 

end if 

removeLessQualityClass(NonShare, shared); 

     end while 

end for 

return Results; 

3.4. Identifying structure of the reusable 

components 
 

As it is illustrated in section II, a component is used 

based on its provided and required interfaces. For an 

object-oriented component, provided interfaces are 

composed of the public methods of classes that compose 

its external structure. The required interfaces are 

composed of the methods that are used from the other 

components (i.e. the provided interfaces of the other 

components). We rely on the following heuristics to 

identify these interfaces. First, we consider that when a 

group of methods belongs to the same object-oriented 

interface, then they may belong to the same component’s 

interface. Second, cohesive and lexically similar methods 

have high probability to belong to the same interface. 

Third, when a component provides services for another 

component, it provides them through the same interface. 

Finally, when methods are called many times together, 

this is an indicator of a high correlation of use. We 

consider these methods as belonging to the same provided 

interface. 

According to the above heuristics, we defined the 

following function. It is used to measure the quality of a 

component’s interface. 
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Where: 

• M: a set of methods. 

• SI: measures how much a set of methods M belongs to 

the same object-oriented interface. 

• SM: measures how much a set of methods M is similar 

using cosine and cohesion (LCC) metrics.  

• CU: measures how many times a set of methods M 

has been called together by the same component. 

• CI: measures how many times a set of methods M is 

invocated together. 

 

Based on the above function we use a hierarchical 

clustering algorithm to partition a set of public methods 

into a set of clusters, where each cluster is a component’s 

interface. First, this clustering algorithm produces a 

binary tree that contains all candidate clusters. Then we 

use a depth first search algorithm to travel through the 

binary tree, in order to identify the best partition of the 

methods.  

 

3.5. Documentation of Components 
 

The documentation of a component helps the 

developers to find a component that meets their needs. 

The description of the component functionalities forms an 

important part of its documentation. Thus we propose to 

identify for each mined component its main 

functionalities. We do this based on two steps: the 

identification of the component functionalities and the 

generation of a description for each of them. These steps 

are detailed below. 

 

3.5.1. Identifying the component functionalities. As we 

mentioned it in section II, the quality function is based on 

three sub-characteristics. One of them is used to measure 

the specificity of a component.  It is related to the 

functionalities provided by this component. The 

specificity depends on three properties. The first is that 

the number of public methods is proportional to the 

number of functionalities. The second is that classes 

providing the same functionalities must be cohesive. The 

last property is that elements of source code participating 

in the same functionality must have a high cohesion with 

themselves and low coupling with other parts in the 

component. Thus, we use equation 2 (Cf. section 2.2) as a 

fitness function in a hierarchical clustering algorithm in 

order to decompose component classes into partitions, 

where each one represents one of the functionality of the 

analyzed component. 

 

3.5.2. Generation of the functionality description. In 

the previous step, the component classes are partitioned 

according to their functionalities. In this step, we present 

how the description of each partition (i.e. functionality) is 

generated. This description consists of the most frequent 

words in the partition classes’ names. We consider that in 

an object-oriented language, a class name is often a set of 

nouns concatenated by the camel-case notation. These 



nouns are representing a meaningful name for the main 

purpose of the class. Usually, the first noun in a class 

name holds the main goal of the class, and so on. 

Accordingly we propose the following three steps. First, 

tokens are extracted by separating the words which form 

the class name according to the camel-case syntax (e.g. 

MediaControllerAlbum is divided into Media, Controller, 

and Album). Second, a weight is affected to each 

extracted token. The tokens which are the first word of a 

class name are given a large weight. Other tokens are 

given a small weight. The weight is calculated as follows: 
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Where: 

• W: refers to a word. 

• Ni refers to the number of occurrence of the word 

w in the position i. 

 

Last, we use tokens which have the highest weight to 

construct the functionality description in an orderly 

manner. Meaning, the token that has the highest weight 

will become the first word of the functionality description 

and so on. The architect defines the number of words as 

needed. 

 

4. Experimental Results and Evaluation 

 
To validate the proposed approach, we applied it onto 

product variants of two open source Java applications. 

These are Mobile Media
1
 [13] as a small-scale software, 

and ArgoUML-SPL
2
 [14] as a large-scale one. 

Mobile Media is a software product line. It is used to 

manipulate music, video and photo on mobile devices. 

Using the latest version, the user can generate 200 

variants. In our experimentation, we use 8 variants, where 

each variant contains 43.25 classes on average. 

ArgoUML-SPL [14] is a UML modeling tool. It is 

developed based on software product line. We applied our 

approach on 9 variants, where each variant is generated 

by changing a set of the needed features. Each variant 

contains 2198.11 classes on average. 

 

4.1. Identifying potential components 
 

To consider that a group of classes forms a component, 

its quality function value should exceed a predefined 

quality threshold. We tested the quality threshold value 

from 0 up to 1 by incrementing it 0.05 in each run. The 

results obtained from Mobile Media and ArgoUML are 

respectively shown in Fig. 5.a and Fig. 5.b. where the 

value of the threshold is in the X-axis, and the average 

number of the mined components in a variant is in the Y-

axis. 

Table 1 shows the total number of potential 

components (TNOCV) mined based on the analysis of all 

variants, the average number of classes (size) of these 

components (ASOC), the average value of the specificity 

characteristic (AS), the average value of the autonomy 

characteristic (AA) and the average value of the 

composability characteristic (AC). We assign 0.70 and 

0.83 as threshold value respectively for Mobile Media and 

ArgoUML case studies. 

 

Table 1. The results of potential components extraction. 
Product Name TNOCV ASOC AS AA AC 

Mobile Media 24.5 6.45 0.56 0.71 0.83 

ArgoUML-SPL 811 11.38 0.64 0.83 0.89 

 

As an example of a potential component extracted 

from ArgoUML-SPL, consider the one identified by 

considering GoClassToNavigableClass as the core class 

Fig. 6 shows how this component is formed and when the 

quality fitness function reaches the peak after adding the 

18th classes. Thus the 18 first classes form this potential 

component. The remaining classes are rejected.  

 

4.2. Identifying similar components 
 

The results of the clustering algorithm are presented in 

Table 2. For each case study, Table II shows the number 

of clusters (NOC), the average numbers of components in 

the identified clusters (ANOC), the average number of 

shared classes in these clusters (ANSC), the average value 

of the specificity characteristic (ASS), the average value 

of the autonomy characteristic (AAS), and the average 

value of composability characteristic of the shared classes 

(ACS) in these clusters. 

 

Table 2. The results of component’s clustering. 
Product NOC ANOC ANSC ASS AAS ACS 

Mobile Media 42 5.38 5.04 0.59 0.71 0.89 

ArgoUML-SPL 325 5.26 8.67 0.57 0.87 0.93 

 

4.3. Reusable component mining by analyzing 

similar potential ones 
 

Table 3 summarizes the final set of reusable 

components mined using our approach. We assign 0.50 to 

the density threshold value. For each product, we present 

the number of the mined components (NOMC), the 

average component size (ACS), and the average value of 

the specificity (AS), the autonomy (AA), and the 

composability (AC) of the mined components. 

 

Table 3. The final set of mined components. 

Product NOC ACS AS AA AC 

Mobile Media 39 5.61 0.58 0.74 0.90 

ArgoUML-SPL 324 9.77 0.61 0.84 0.84 
1Available at http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08 
2Available at http://argouml-spl.tigris.org/ 



Table 4 shows some of the reusable components that 

are mined based on the analysis of Mobile Media. DOF is 

the description of the functionalities provided by the 

considered component. NOV is the number of variants 

that contains this component. NOC represents the number 

of classes that forms the component. S, A and C 

represents respectively the specificity, the autonomy, and 

the composability of each component.  

As shown in Table 4, the second component provides 

two functionalities, which are Add Constants Photo 

Album, and Count Software Splash Down Screen. The 

former one deals with adding a photo to an album. The 

letter dedicated to splash screen service. 

 

Table 4. Some components. 

DOF 

N

O

V 

N

O

C 

S A C 

New Constants Screen Album 

Image 
6 6 0.59 0.75 0.94 

Add Constants Photo Album 

8 10 0.57 0.75 0.89 Count Software Splash Down 

Screen 

Base Image Constants Album 

Screen Accessor List 
6 9 0.67 0.50 0.85 Controller Image Interface 

Thread 

 

4.5. Reusability validation 
 

In order to validate the reusability of components that 

are mined based on our approach, we compare their 

reusability with ones that are mined from singular 

software. We consider that the reusability of a component 

in a collection of software is evaluated by calculating the 

ratio between the number of software that can reuse this 

component to the number of all software. The component 

can be reused in a software if it provides functionalities 

required by this software. In other words, we analyze the 

software functionalities, and then we check if a 

component provides some of these functionalities. The 

functionalities are identified based on potential 

components in this software. 

We measure the reusability of the mined components 

based on K-fold cross validation method [9]. K-fold is an 

evaluation model that is used to validate the results of the 

mining model by dividing the data set into two parts: train 

data, and test data. Train data are used to learn the mining 

model, while test data are then used to validate the mining 

model. The idea of K-fold method is to divide the data set 

into K parts. The validation is applied K times by 

considering K-1 parts as train data and the other one as 

test data. After that, the validation result is the average of 

all K trails. In the same manner, we validate our approach 

by dividing the variants of the product into K parts. Then, 

we mine components from train variants only (i.e. K-1 

parts). Next, we validate the reusability of these 

components in the test variants.  We evaluate the result by 

assigning 2, 4, and 8 to the K in each validation time.  

Due to limited space, we give only the results obtained 

from the Mobile Media case study (c.f. Table 5). These 

results show that the reusability of the components which 

is mined from a collection of similar software is better 

than the reusability of components which is mined from 

singular software. Also, the reusability is decreased when 

the number of K is increased because of the number of 

test variants is decreased (i.e. when K=8, there is only one 

test variant). The slight difference between the reusability 

results comes from the nature of our case studies, where 

these case studies are very similar. Consequently, the 

resulting components are closely similar (i.e. there are 

many groups of similar components containing exactly 

the same classes which resulted the same reusable 

component). Therefore, there is very small difference in 

the results, as shown in Table 5. 

 

Table 5. The reusability validation 
K Similar Software Singular Software 

2 0.32 0.28 

4 0.18 0.15 

8 0.09 0.07 

 

Figure 6. An instance of a potential 

component extraction. 

 (a)                     (b) 

Figure 5. Changing threshold value to extract all potential components. 



5. Related Work 
 

Numerous approaches have been presented to address 

the problem of component identification from object-

oriented software such as [3], [5], [6], and [7]. All 

existing approaches mined components from single 

software.  

In [3], the authors presented an approach to extract 

components from object-oriented software. Classes 

composing the extracted components form a partition. 

Mined component are considered as a part of the 

component-based architecture of the corresponding 

software. 

The authors in [5] presented an approach to migrate an 

object-oriented software into a component-based 

software. The authors extract services from the software, 

and then these services are converted into components. 

They depended on use case, sequence diagrams, and class 

diagrams to identify the structural relationship between 

the objects, and object usage. The limitation of this 

approach is that sequence diagrams, use case, and class 

diagrams are not always available. 

In [6], the authors depended on dynamic dependencies 

between software classes, in order to reengineer an 

object-oriented software into a component-based 

software. They relied on the use-case diagram to identify 

the execution trace scenarios. Classes that frequently 

occur in the execution traces are grouped into a 

component.  

In [7], the authors proposed an approach to extract 

stable components. The authors identify a set of candidate 

components from requirements and use case using formal 

concept analysis. The extracted components represent the 

functional units that can be reused in the future [7]. The 

authors focused on the component stability rather than the 

component reusability. 

 

7. Conclusion 
 

Mining components from similar software provides 

more guarantees for the reusability of the mined 

components rather than depending on single software. In 

this paper, we proposed an approach to mine reusable 

components from a set of similar object-oriented 

software. We validate our approach by applying it on two 

sets of variants of two open source Java applications.  

There are two aspects to be considered regarding the 

hypothesis of our approach. First, we consider that the 

variability between software is in the class level (i.e. 

classes that have the same name should have the same 

implementation). Second, forming a component by adding 

a non-shared class to the core ones may cause a dead code 

(i.e. a piece of code which is executed but there is no need 

for its result).  

Our future directions will focus on migrating similar 

software into component based software product line. 

 

8. References 
[1] W.B. Frakes, K. Kang, "Software reuse research: status and 

future," IEEE Transactions on Software Engineering, vol.31, no.7, 
pp.529-536, 2005. 

[2] N.M.J. Basha, S.A. Moiz, "Component based software 
development: A state of art," International Conference on 
Advances in Engineering, Science and Management (ICAESM), 
pp.599-604, 2012. 

[3] S. Kebir, A.-D. Seriai, S. Chardigny, A. Chaoui, "Quality-Centric 
Approach for Software Component Identification from Object-
Oriented Code," Joint Working Conference on Software 
Architecture IEEE/IFIP WICSA and ECSA, pp.181-190, 2012. 

[4] C. Szyperski, Component Software: Beyond Object-Oriented 
Programming, 2nd ed. Boston, MA, USA: Addison-Wesley 
Longman Publishing Co., Inc., 2002. 

[5] S. K. Mishra, D. S. Kushwaha, A. K. Misra, “Creating reusable 
software component from object-oriented legacy software through 
reverse engineering,” Journal of Object Technology, vol. 8, no. 5, 
pp. 133-152, 2009. 

[6] S. Allier, H. A. Sahraoui, S. Sadou, Vaucher S., “Restructuring 
object-oriented applications into componentoriented applications 
by using consistency with execution traces,” in Proceedings of 
CBSE’10. Berlin, Heidelberg: Springer-Verlag, pp. 216–231, 
2010. 

[7] H.S. Hamza, "A Framework for Identifying Reusable Software 
Components Using Formal Concept Analysis," Conference on 
Information Technology: New Generations. ITNG '09. Sixth 
International, pp.813-818, 2009. 

[8] J. Rubin and M. Chechik. Locating distinguishing features using 
diff sets. InProceedings of ASE 2012. ACM, New York, NY, 
USA, 242-245.. 

[9] J. Han, M. Kamber, Data Mining Concepts and Techniques, 2nd 
Edition. Elsevier Inc, 2006. 

[10] ISO, “Software engineering – Product quality – Part 1: Quality 
model,” International Organization for Standardization, Tech. Rep. 
ISO/IEC 9126-1, 2001. 

[11] J. M. Bieman, B.-K. Kang, “Cohesion and reuse in an object-
oriented software,” in Proceedings of SSR ’95. New York, NY, 
USA: ACM, pp. 259-262, 1995. 

[12] O. Nierstrasz, L. Dami, “Component-Oriented Software 
Technology,” Object-Oriented Software Composition, O. 
Nierstrasz and D. Tsichritzis (Eds.), Prentice Hall, pp.3-28, 1995. 

[13] E. Figueiredo, N. Cacho, C. Sant’Anna, et al., “Evolving Software 
Product Lines with Aspects: an empirical study on design 
stability,” ICSE, pp. 261-270. 2008. 

[14] M.V. Couto, M.T. Valente, E. Figueiredo, "Extracting Software 
Product Lines: A Case Study Using Conditional Compilation," 
CSMR 2011 , pp.191-200, 2011. 

[15] G. T. Heineman, W. Councill T., Eds., “Component-based 
software engineering: putting the pieces together,” Boston, MA, 
USA: Addison-Wesley Longman Publishing Co., Inc., 2001. 

[16] C. Luer, A. V. D. Hoek,“Composition environments for 
deployable software components,” Tech. Rep., 2002. 

[17] S. Chardigny, A. Seriai, M. Oussalah, and D. Tamzalit,“Extraction 
of component-based architecture from objectoriented software,” in 
Proceedings of WICSA 2008. Washington, DC, USA: IEEE 
Computer Society, pp. 285–288, 2008. 

[18] J Sametinger,“Software Engineering with Reusable Components,” 
Springer Verlag Berlin Heidelberg New York, 1997. 


