
Mining Reusable Software Components from Object-Oriented Source Code of a

Set of Similar Software

Anas Shatnawi, Abdelhak-Djamel Seriai

UMR CNRS 5506, LIRMM

Université Montpellier 2 Sciences et Techniques

Place Eugène Bataillon, Montpellier, France

{shatnawi, seriai}@lirmm.fr

Abstract

One of the most important approaches that support

software reuse is Component Based Software Engineering

(CBSE). Nevertheless the lack of component libraries is

one of the major obstacles to widely use CBSE in the

industry. To help filling this need, many approaches have

been proposed to identify components from existing

object-oriented software. These approaches identify

components from singular software. Therefore the

reusability of these components may be limited. In this

paper, we propose an approach to mine reusable

components from a set of similar object-oriented

software, which were developed in the same domain,

ideally by the same developers. Our goal is to enhance

the reusability of mined components compared to those

mined from single software. In order to validate our

approach, we have applied it onto two open source Java

applications of different sizes; small and large-scale ones.

The results show that the components mined from the

analysis of similar software are more reusable than those

which are mined from single ones.

Keywords: software component, similar software, mining,

reuse, object-oriented, source code, reverse engineering

1. Introduction

It is admitted that reuse improves the software quality

and productivity [1]. Component Based Software

Engineering (CBSE) is considered as one of the most

important approaches supporting software reuse [1, 2, 4].

Nevertheless, one of the major limitations against widely

use of CBSE is the lack of component libraries [12].

Therefore, mining reusable components from existing

software is an efficient way to supply component

libraries. Otherwise, as software components are admitted

as more reusable entities than object-oriented ones [12],

many approaches have proposed to identify components

from existing object-oriented software [3, 5, 6, 7]. These

approaches proposed to mine components by analyzing

single software. As a result, the mined components may

be useless in other software and consequently their

reusability is not guaranteed. In fact the probability of

reusing a component in new software is proportional to

the number of software that has already used it [18].

Moreover software companies often find themselves in

the situation where they have developed many software in

the same domain, but with functional or technical

variations [8]. In most cases, each software variant is

developed by adding some variations to an existing

software to meet the requirements of a new need. Thus in

this paper, we propose an approach to mine reusable

components from a set of similar object-oriented

software
1
 which were developed in the same domain,

ideally by the same developers. The goal is to analyze the

source code of these software to identify pieces of code

that may form reusable components. Our motivation is

that components mined from the analysis of several

existing software will be more useful (reusable) for the

development of new software than those mined from

singular ones. To validate our approach, we have applied

it onto two open source Java applications of different

sizes (i.e. small and large-scale ones). We propose an

empirical measurement to evaluate the reusability of the

mined components. According to this measurement, the

results show that the reusability of the mined components

using our approach is better than the reusability of those

mined from singular software.

The rest of this paper is organized as follows. In

section 2, we present the ROMANTIC approach, which

constitute a background for our work. Section 3 presents

the proposed approach. The experimental results are

presented and discussed in section 4. The related work

and conclusion are placed in sections 5 and 6 respectively.

2. Background: the ROMANTIC Approach

In our previous works [3] and [17], we have proposed

the ROMANTIC approach which aims to extract a

component-based architecture from an object-oriented

software. ROMANTIC is mainly based on two models:

first an object-to-component mapping model, second a

quality measurement model to evaluate the quality of

components which are mined from object-oriented source

code. In this paper, we rely on these two models to define

a process which allows to mine reusable components from

similar software.
1This work has been funded by grant ANR 2010 BLAN 021902.

2.1. From object to component: the mapping

model

A software component is defined based on two parts:

internal and external structures [16, 17]. The internal

structure implements services provided by the component

as well as those used by them. The external structure

consists of the accessible services structured as provided

and required interfaces. The provided interfaces are the

services accessed by other applications/components. The

required interfaces represent services that the component

needs to perform its provided ones. These are provided by

other applications/components. When a component is

object oriented (i.e. implemented by an object-oriented

language), its internal structure is represented by one or

more classes, which can belong to different packages. Fig.

1 shows the object-to-component mapping model.

2.2. From object to component: the quality

measurement model

According to [4, 15, 16], a component is defined as “a

software element that (a) can be composed without

modification, (b) can be distributed in an autonomous

way, (c) encapsulates the implementation of one or many

functionalities, and (d) adheres to a component model”

[3]. Based on this definition, we identified three quality

characteristics of a component: composability, autonomy

and specificity [3]. Composability is the ability of a

component to be composed without any modification.

Autonomy means that it can be reused in an autonomous

way. Specificity characteristic is related to the fact that a

component must implement a limited number of closed

functionalities. Based on these characteristics we

proposed a quality measurement model for object-

oriented components. The basis of this model is that

characteristics are mapped to object-oriented metrics

following ISO model 9126 [10]. First of all, the above

characteristics are refined into sub-characteristics. Then,

these sub-characteristics are refined into properties related

to the external structure of a component. Next, these

properties are mapped to the properties of the internal

structure of a component. Finally, these properties are

refined into object-oriented metrics. Fig. 2 shows how the

component characteristics are refined following the

proposed measurement model.

Based on this measurement model, we defined a

fitness function to measure the quality of an object-

oriented component based on its characteristics [3]. This

function is given bellow:

���� � �
∑ �	

	�λ1∗ S�E� � λ2∗ A�E� � λ3∗ 	C�E�� (1)

Where:

• � is an object-oriented component composed of a

group of classes.

• ���� , 	���� and ���� refer to the specificity,

autonomy, and composability of E respectively.

• λ1, λ2, λ3 are weight values, situated in [0-1]. These are

used by the architect to weight each characteristic as

needed.

We have proposed a specific fitness function to

measure each of these characteristics. For example, the

specificity characteristic of a component is calculated as

follows:

						���� � �
� ∗ �

�
|�| ∗ ∑ �������∈� � ������ � ������ �

																				�� !"��� � #�$ %���& (2)

This means that the specificity of a component E

depends on the following object-oriented metrics: the

cohesion of classes composing the internal structure of E

(������), the cohesion of all classes composing the

external structure of E (������), the average cohesion of

all classes composing the external structure of E (
�
|�| ∗

∑ �������∈�), the coupling of internal classes of E

(�� !"��� which is measured based on the number of

dependencies between the classes of E), and the number

of public methods belong to the external structure of E

(#�$ %���). LCC (Loose Class Cohesion) is an object-

oriented metric that measures the cohesion of a set of

classes [11]. For more details about the quality

measurement model please refer [3, 17].

Figure 1. shows the object-to-component mapping model.

Figure 2. Component quality measurement model.

3. The Proposed Approach

The aim of our approach is to mine reusable

components based on the static analysis of the source

code of a set of similar object-oriented software.

The mining process is based on the following steps:

first, each software is independently analysed to identify

all potential components. These are identified based on

the evaluation of their quality characteristics. Next, we

identify similar components among all potential ones.

Similar components are those providing, mostly the same

services and differing compared to few others. After that,

we rely on the similarity of each group of components to

build a single component, which will be representative of

this group; this will be considered as a reusable

component. Only classes constituting the internal

structures (i.e. the implementation) of the reusable

components are identified in this step. Next, we identify

their external structure: their provided and required

interfaces. Finally, the last step of the mining process

aims at documenting the mined components. This

documentation includes suggestions to describe the

services that components provide. Fig. 3 summarizes the

mining process.

3.1. Identifying potential components

Potential components are mined based on the analysis

of each object-oriented software. Each potential

component is composed of a set of classes where the

corresponding value of the quality fitness function is

satisfactory (i.e. its quality value is higher than a

predefined threshold). The classes composing a potential

component are gradually identified starting from a core

class. Each class of the analyzed software can be selected

to be a core one depending on if an accepted component

can be formed starting from this one. This is decided as

the result of the next steps.

The selection of the classes to be added at each step is

decided based on the value of the quality function of the

formed component. In other words, classes are ranked

based on the obtained value of the quality function when

it is gathered to the current group. The class obtaining the

highest quality value is selected to extend the current

group. We do this until all classes are grouped into a

single group. The quality of the formed groups is

evaluated at each step (i.e. each time when a new class is

added). Some classes of this group will be excluded.

These are those added after the quality function reaches

the peak value.

For example, in Fig. 4, classes 7 and 8 are put aside

from the group of classes related to component 2 because

when they are been added the quality of the component is

decreased compared to the peak value. Thus classes

retained in the group are those maximizing the quality of

the formed component. After identifying all potential

components of such software, the only ones retained are

those where the quality values are higher than a

predefined quality threshold. For example, in Fig. 4,

component 1 does not reach the predefined threshold and,

thus, not retained as a potential component. This means

that the starting core class is not suitable. Algorithm 1

below illustrates the process of potential components

mining. In this algorithm, Q refers to the quality fitness

function and Q-threshold is a predefined quality

threshold.

Algorithm 1: PotentialComponents(OO source code):

potential components

--
classes ← extractInformation(OO source code);

for each C in classes

 component ← C;

 bestComponent ← component;

 while (|classes – component.classes| > 1) do

 c1←getNearestClass(component,classes–component);

 component ← component + c1;

 if (Q(component)) > Q(bestComponent))then

 bestComponent ← component;

 end if

 end while

 if (Q(bestComponent) > Q-threshold)

 add(Results, bestComponent);

 end if

end for

return Results;

Figure 4. Forming potential components by incremental

selection of classes.

Figure 3. The process of reusable components mining.

3.2. Identifying similar components

Potential components are mined based on the analysis

of a set of similar software. As a consequence, some of

them may be similar. Similar components are those

providing mostly the same functionalities and differing in

few ones. These can be considered as variants of a

common component. The similarity as well as the

difference between components appears compared to their

internal structures composed of object-oriented classes.

Thus similar components are those sharing the majority of

their classes and differing considering the other ones. We

gather similar component into groups from which we

mine common ones.

Groups of similar components are built based on a

lexical similarity metric. Thus components are identified

as similar compared to the strength of similarity links

between classes composing them. We use cosine

similarity metric [9]. Following this metric each

component is considered as a text document which

consists of a list of component classes’ names.

We use a hierarchal clustering algorithm to gather

similar components into groups. It starts by considering

individual components as initial leaf nodes in a binary

tree. Next, the two most similar nodes are grouped into a

new one (i.e. as a parent of them). This is continued until

all nodes are grouped as a binary tree. This tree is

composed of all candidate clusters. To identify the best

ones (clusters), we use a depth first search algorithm.

Starting from the tree root to find the cut-off points, we

compare the similarity of the current node with its

children. If the current node has a similarity value

exceeding the average similarity value of its children,

then the cut-off point is in the current node, otherwise, the

algorithm continues through its children (c.f. Algorithm

2). The results of this algorithm are clusters where each

one groups a set of similar components.

Algorithm 2: ComponentsClustering(Potential

Components): clusters of potential components

--
binaryTree ← PotentialComponents

while (|binaryTree| > 1) do

 c1, c2← nearestNodes(binaryTree);// cosine similarity

 c ← newNode(c1, c2);

 remove(c1, binaryTree);

 remove(c2, binaryTree);

 add(c, binaryTree);

end while

clusters← depthFirstSearch.getBestClsuters(binaryTree);

return clusters;

3.3. Reusable component mining from similar

potential ones

As previously mentioned, similar components are

considered as variants of a common one. Thus, from each

cluster of similar components, we extract a common

component which is considered as the most reusable

compared to the members of the analyzed group. It is

composed based on all shared classes and some selected

non-shared ones. Shared classes form the core of the

reusable component. These classes may not form a correct

component following our quality measurement model.

Thus some non-shared classes are added based on the

following criteria:

• The quality of the component obtained by adding a

non-shared class to the core ones.

• The density of a non-shared class in a cluster of

similar components which refers to the occurrence ratio of

the class compared to the components of this group. We

consider that a class, which has high density, contributes

to build a reusable component.

Consequently the following algorithm generates

classes forming the reusable components. First, for each

cluster of similar component, we extract all candidate

subsets of classes among the set of non-shared ones.

Then, the subsets that reach a predefined density

threshold are only selected. The density of a subset is the

average densities of all classes in this subset. Next, we

evaluate the quality of the component formed by grouping

core classes with classes of each subset resulting from the

previous step. Thus the subset maximizing the quality

value is grouped with the core classes to form the reusable

component. Only components with a quality value higher

than a predefined threshold are retained.

Nevertheless the above algorithm is NP-complete (i.e.

the complexity of identifying all subsets of a collection of

classes is 2
n
-1). This means that the computing time will

be accepted only for components with a small number of

non-shared classes. This algorithm is not scalable for a

large number of non-shared classes (e.g. 10 non-shared

classes need 1024 operations, while 20 classes need

1048576 operations).

Consequently, we propose the following heuristic

algorithm as an alternative. First of all, non-shared classes

are evaluated based on their density. The Classes that do

not reach a predefined density threshold are rejected.

Then, we identify the greater subset that reaches a

predefined quality threshold when it is added to the core

classes. To identify the greater subset, we consider the set

composed of all non-shared classes as the initial one. This

subset is grouped with the core classes to form a

component. If this component reaches the predefined

quality threshold, then it represents the reusable

component. Otherwise, we remove the non-shared class

having the lesser quality value compared to the quality of

the component formed when this class is added to the core

ones. We do this until a component reaching the quality

threshold or the subset of non-shared classes becomes

empty. Algorithm 3 shows the process of reusable

components mining, where Q refers to the quality

function (1), Q-threshold refers to the predefined quality

threshold.

Algorithm 3: MiningReusableComponents(Clusters of

Components) : reusable components

--
for each cluster in Clusters of Components do

 shared ← getSharedClasses(cluster);

 nonShared ← getNonSharedClasses(cluster);

 component ← shared;

 removeClassesLessThanDensityThreshold(nonShare);

 while (|nonShare|>0) do

if(Q(component + nonShare)>=Q-threshold)

 add(Results,component);

 break while;

end if

removeLessQualityClass(NonShare, shared);

 end while

end for

return Results;

3.4. Identifying structure of the reusable

components

As it is illustrated in section II, a component is used

based on its provided and required interfaces. For an

object-oriented component, provided interfaces are

composed of the public methods of classes that compose

its external structure. The required interfaces are

composed of the methods that are used from the other

components (i.e. the provided interfaces of the other

components). We rely on the following heuristics to

identify these interfaces. First, we consider that when a

group of methods belongs to the same object-oriented

interface, then they may belong to the same component’s

interface. Second, cohesive and lexically similar methods

have high probability to belong to the same interface.

Third, when a component provides services for another

component, it provides them through the same interface.

Finally, when methods are called many times together,

this is an indicator of a high correlation of use. We

consider these methods as belonging to the same provided

interface.

According to the above heuristics, we defined the

following function. It is used to measure the quality of a

component’s interface.

�#'()*+,(�-� � �
∑ .

/0� ∗ ���-� � 01 ∗ �-�-� �
																																		02 ∗ �3�-� � 04 ∗ ���-�5 (3)

Where:

• M: a set of methods.

• SI: measures how much a set of methods M belongs to

the same object-oriented interface.

• SM: measures how much a set of methods M is similar

using cosine and cohesion (LCC) metrics.

• CU: measures how many times a set of methods M

has been called together by the same component.

• CI: measures how many times a set of methods M is

invocated together.

Based on the above function we use a hierarchical

clustering algorithm to partition a set of public methods

into a set of clusters, where each cluster is a component’s

interface. First, this clustering algorithm produces a

binary tree that contains all candidate clusters. Then we

use a depth first search algorithm to travel through the

binary tree, in order to identify the best partition of the

methods.

3.5. Documentation of Components

The documentation of a component helps the

developers to find a component that meets their needs.

The description of the component functionalities forms an

important part of its documentation. Thus we propose to

identify for each mined component its main

functionalities. We do this based on two steps: the

identification of the component functionalities and the

generation of a description for each of them. These steps

are detailed below.

3.5.1. Identifying the component functionalities. As we

mentioned it in section II, the quality function is based on

three sub-characteristics. One of them is used to measure

the specificity of a component. It is related to the

functionalities provided by this component. The

specificity depends on three properties. The first is that

the number of public methods is proportional to the

number of functionalities. The second is that classes

providing the same functionalities must be cohesive. The

last property is that elements of source code participating

in the same functionality must have a high cohesion with

themselves and low coupling with other parts in the

component. Thus, we use equation 2 (Cf. section 2.2) as a

fitness function in a hierarchical clustering algorithm in

order to decompose component classes into partitions,

where each one represents one of the functionality of the

analyzed component.

3.5.2. Generation of the functionality description. In

the previous step, the component classes are partitioned

according to their functionalities. In this step, we present

how the description of each partition (i.e. functionality) is

generated. This description consists of the most frequent

words in the partition classes’ names. We consider that in

an object-oriented language, a class name is often a set of

nouns concatenated by the camel-case notation. These

nouns are representing a meaningful name for the main

purpose of the class. Usually, the first noun in a class

name holds the main goal of the class, and so on.

Accordingly we propose the following three steps. First,

tokens are extracted by separating the words which form

the class name according to the camel-case syntax (e.g.

MediaControllerAlbum is divided into Media, Controller,

and Album). Second, a weight is affected to each

extracted token. The tokens which are the first word of a

class name are given a large weight. Other tokens are

given a small weight. The weight is calculated as follows:

6(�7ℎ'�9� � �
∑ :

∗ �1 ∗ <� � 0.75 ∗ <1 � 0.50 ∗
																																<2 � 	0.25 ∗ <4� (4)

Where:

• W: refers to a word.

• Ni refers to the number of occurrence of the word

w in the position i.

Last, we use tokens which have the highest weight to

construct the functionality description in an orderly

manner. Meaning, the token that has the highest weight

will become the first word of the functionality description

and so on. The architect defines the number of words as

needed.

4. Experimental Results and Evaluation

To validate the proposed approach, we applied it onto

product variants of two open source Java applications.

These are Mobile Media
1
 [13] as a small-scale software,

and ArgoUML-SPL
2
 [14] as a large-scale one.

Mobile Media is a software product line. It is used to

manipulate music, video and photo on mobile devices.

Using the latest version, the user can generate 200

variants. In our experimentation, we use 8 variants, where

each variant contains 43.25 classes on average.

ArgoUML-SPL [14] is a UML modeling tool. It is

developed based on software product line. We applied our

approach on 9 variants, where each variant is generated

by changing a set of the needed features. Each variant

contains 2198.11 classes on average.

4.1. Identifying potential components

To consider that a group of classes forms a component,

its quality function value should exceed a predefined

quality threshold. We tested the quality threshold value

from 0 up to 1 by incrementing it 0.05 in each run. The

results obtained from Mobile Media and ArgoUML are

respectively shown in Fig. 5.a and Fig. 5.b. where the

value of the threshold is in the X-axis, and the average

number of the mined components in a variant is in the Y-

axis.

Table 1 shows the total number of potential

components (TNOCV) mined based on the analysis of all

variants, the average number of classes (size) of these

components (ASOC), the average value of the specificity

characteristic (AS), the average value of the autonomy

characteristic (AA) and the average value of the

composability characteristic (AC). We assign 0.70 and

0.83 as threshold value respectively for Mobile Media and

ArgoUML case studies.

Table 1. The results of potential components extraction.
Product Name TNOCV ASOC AS AA AC

Mobile Media 24.5 6.45 0.56 0.71 0.83

ArgoUML-SPL 811 11.38 0.64 0.83 0.89

As an example of a potential component extracted

from ArgoUML-SPL, consider the one identified by

considering GoClassToNavigableClass as the core class

Fig. 6 shows how this component is formed and when the

quality fitness function reaches the peak after adding the

18th classes. Thus the 18 first classes form this potential

component. The remaining classes are rejected.

4.2. Identifying similar components

The results of the clustering algorithm are presented in

Table 2. For each case study, Table II shows the number

of clusters (NOC), the average numbers of components in

the identified clusters (ANOC), the average number of

shared classes in these clusters (ANSC), the average value

of the specificity characteristic (ASS), the average value

of the autonomy characteristic (AAS), and the average

value of composability characteristic of the shared classes

(ACS) in these clusters.

Table 2. The results of component’s clustering.
Product NOC ANOC ANSC ASS AAS ACS

Mobile Media 42 5.38 5.04 0.59 0.71 0.89

ArgoUML-SPL 325 5.26 8.67 0.57 0.87 0.93

4.3. Reusable component mining by analyzing

similar potential ones

Table 3 summarizes the final set of reusable

components mined using our approach. We assign 0.50 to

the density threshold value. For each product, we present

the number of the mined components (NOMC), the

average component size (ACS), and the average value of

the specificity (AS), the autonomy (AA), and the

composability (AC) of the mined components.

Table 3. The final set of mined components.

Product NOC ACS AS AA AC

Mobile Media 39 5.61 0.58 0.74 0.90

ArgoUML-SPL 324 9.77 0.61 0.84 0.84
1Available at http://homepages.dcc.ufmg.br/~figueiredo/spl/icse08
2Available at http://argouml-spl.tigris.org/

Table 4 shows some of the reusable components that

are mined based on the analysis of Mobile Media. DOF is

the description of the functionalities provided by the

considered component. NOV is the number of variants

that contains this component. NOC represents the number

of classes that forms the component. S, A and C

represents respectively the specificity, the autonomy, and

the composability of each component.

As shown in Table 4, the second component provides

two functionalities, which are Add Constants Photo

Album, and Count Software Splash Down Screen. The

former one deals with adding a photo to an album. The

letter dedicated to splash screen service.

Table 4. Some components.

DOF

N

O

V

N

O

C

S A C

New Constants Screen Album

Image
6 6 0.59 0.75 0.94

Add Constants Photo Album

8 10 0.57 0.75 0.89 Count Software Splash Down

Screen

Base Image Constants Album

Screen Accessor List
6 9 0.67 0.50 0.85 Controller Image Interface

Thread

4.5. Reusability validation

In order to validate the reusability of components that

are mined based on our approach, we compare their

reusability with ones that are mined from singular

software. We consider that the reusability of a component

in a collection of software is evaluated by calculating the

ratio between the number of software that can reuse this

component to the number of all software. The component

can be reused in a software if it provides functionalities

required by this software. In other words, we analyze the

software functionalities, and then we check if a

component provides some of these functionalities. The

functionalities are identified based on potential

components in this software.

We measure the reusability of the mined components

based on K-fold cross validation method [9]. K-fold is an

evaluation model that is used to validate the results of the

mining model by dividing the data set into two parts: train

data, and test data. Train data are used to learn the mining

model, while test data are then used to validate the mining

model. The idea of K-fold method is to divide the data set

into K parts. The validation is applied K times by

considering K-1 parts as train data and the other one as

test data. After that, the validation result is the average of

all K trails. In the same manner, we validate our approach

by dividing the variants of the product into K parts. Then,

we mine components from train variants only (i.e. K-1

parts). Next, we validate the reusability of these

components in the test variants. We evaluate the result by

assigning 2, 4, and 8 to the K in each validation time.

Due to limited space, we give only the results obtained

from the Mobile Media case study (c.f. Table 5). These

results show that the reusability of the components which

is mined from a collection of similar software is better

than the reusability of components which is mined from

singular software. Also, the reusability is decreased when

the number of K is increased because of the number of

test variants is decreased (i.e. when K=8, there is only one

test variant). The slight difference between the reusability

results comes from the nature of our case studies, where

these case studies are very similar. Consequently, the

resulting components are closely similar (i.e. there are

many groups of similar components containing exactly

the same classes which resulted the same reusable

component). Therefore, there is very small difference in

the results, as shown in Table 5.

Table 5. The reusability validation
K Similar Software Singular Software

2 0.32 0.28

4 0.18 0.15

8 0.09 0.07

Figure 6. An instance of a potential

component extraction.

 (a) (b)

Figure 5. Changing threshold value to extract all potential components.

5. Related Work

Numerous approaches have been presented to address

the problem of component identification from object-

oriented software such as [3], [5], [6], and [7]. All

existing approaches mined components from single

software.

In [3], the authors presented an approach to extract

components from object-oriented software. Classes

composing the extracted components form a partition.

Mined component are considered as a part of the

component-based architecture of the corresponding

software.

The authors in [5] presented an approach to migrate an

object-oriented software into a component-based

software. The authors extract services from the software,

and then these services are converted into components.

They depended on use case, sequence diagrams, and class

diagrams to identify the structural relationship between

the objects, and object usage. The limitation of this

approach is that sequence diagrams, use case, and class

diagrams are not always available.

In [6], the authors depended on dynamic dependencies

between software classes, in order to reengineer an

object-oriented software into a component-based

software. They relied on the use-case diagram to identify

the execution trace scenarios. Classes that frequently

occur in the execution traces are grouped into a

component.

In [7], the authors proposed an approach to extract

stable components. The authors identify a set of candidate

components from requirements and use case using formal

concept analysis. The extracted components represent the

functional units that can be reused in the future [7]. The

authors focused on the component stability rather than the

component reusability.

7. Conclusion

Mining components from similar software provides

more guarantees for the reusability of the mined

components rather than depending on single software. In

this paper, we proposed an approach to mine reusable

components from a set of similar object-oriented

software. We validate our approach by applying it on two

sets of variants of two open source Java applications.

There are two aspects to be considered regarding the

hypothesis of our approach. First, we consider that the

variability between software is in the class level (i.e.

classes that have the same name should have the same

implementation). Second, forming a component by adding

a non-shared class to the core ones may cause a dead code

(i.e. a piece of code which is executed but there is no need

for its result).

Our future directions will focus on migrating similar

software into component based software product line.

8. References
[1] W.B. Frakes, K. Kang, "Software reuse research: status and

future," IEEE Transactions on Software Engineering, vol.31, no.7,
pp.529-536, 2005.

[2] N.M.J. Basha, S.A. Moiz, "Component based software
development: A state of art," International Conference on
Advances in Engineering, Science and Management (ICAESM),
pp.599-604, 2012.

[3] S. Kebir, A.-D. Seriai, S. Chardigny, A. Chaoui, "Quality-Centric
Approach for Software Component Identification from Object-
Oriented Code," Joint Working Conference on Software
Architecture IEEE/IFIP WICSA and ECSA, pp.181-190, 2012.

[4] C. Szyperski, Component Software: Beyond Object-Oriented
Programming, 2nd ed. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc., 2002.

[5] S. K. Mishra, D. S. Kushwaha, A. K. Misra, “Creating reusable
software component from object-oriented legacy software through
reverse engineering,” Journal of Object Technology, vol. 8, no. 5,
pp. 133-152, 2009.

[6] S. Allier, H. A. Sahraoui, S. Sadou, Vaucher S., “Restructuring
object-oriented applications into componentoriented applications
by using consistency with execution traces,” in Proceedings of
CBSE’10. Berlin, Heidelberg: Springer-Verlag, pp. 216–231,
2010.

[7] H.S. Hamza, "A Framework for Identifying Reusable Software
Components Using Formal Concept Analysis," Conference on
Information Technology: New Generations. ITNG '09. Sixth
International, pp.813-818, 2009.

[8] J. Rubin and M. Chechik. Locating distinguishing features using
diff sets. InProceedings of ASE 2012. ACM, New York, NY,
USA, 242-245..

[9] J. Han, M. Kamber, Data Mining Concepts and Techniques, 2nd
Edition. Elsevier Inc, 2006.

[10] ISO, “Software engineering – Product quality – Part 1: Quality
model,” International Organization for Standardization, Tech. Rep.
ISO/IEC 9126-1, 2001.

[11] J. M. Bieman, B.-K. Kang, “Cohesion and reuse in an object-
oriented software,” in Proceedings of SSR ’95. New York, NY,
USA: ACM, pp. 259-262, 1995.

[12] O. Nierstrasz, L. Dami, “Component-Oriented Software
Technology,” Object-Oriented Software Composition, O.
Nierstrasz and D. Tsichritzis (Eds.), Prentice Hall, pp.3-28, 1995.

[13] E. Figueiredo, N. Cacho, C. Sant’Anna, et al., “Evolving Software
Product Lines with Aspects: an empirical study on design
stability,” ICSE, pp. 261-270. 2008.

[14] M.V. Couto, M.T. Valente, E. Figueiredo, "Extracting Software
Product Lines: A Case Study Using Conditional Compilation,"
CSMR 2011 , pp.191-200, 2011.

[15] G. T. Heineman, W. Councill T., Eds., “Component-based
software engineering: putting the pieces together,” Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc., 2001.

[16] C. Luer, A. V. D. Hoek,“Composition environments for
deployable software components,” Tech. Rep., 2002.

[17] S. Chardigny, A. Seriai, M. Oussalah, and D. Tamzalit,“Extraction
of component-based architecture from objectoriented software,” in
Proceedings of WICSA 2008. Washington, DC, USA: IEEE
Computer Society, pp. 285–288, 2008.

[18] J Sametinger,“Software Engineering with Reusable Components,”
Springer Verlag Berlin Heidelberg New York, 1997.

