
ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

The Journal of Systems and Software 0 0 0 (2016) 1–22

Contents lists available at ScienceDirect

The Journal of Systems and Software

journal homepage: www.elsevier.com/locate/jss

Recovering software product line architecture of a family of

object-oriented product variants

Anas Shatnawi a , c , ∗, Abdelhak-Djamel Seriai a , Houari Sahraoui b

a LIRMM, University of Montpellier, Montpellier, France
b DIRO, University of Montreal, Montreal, Canada
c LATECE, University of Quebec at Montreal, Montreal, Canada

a r t i c l e i n f o

Article history:

Received 17 June 2015

Revised 12 July 2016

Accepted 25 July 2016

Available online xxx

Keywords:

Software reuse

Software architecture recovery

Software product line

Object-oriented product variants

Software component

Formal concept analysis

a b s t r a c t

Software Product Line Engineering (SPLE) aims at applying a pre-planned systematic reuse of large-

grained software artifacts to increase the software productivity and reduce the development cost. The

idea of SPLE is to analyze the business domain of a family of products to identify the common and the

variable parts between the products. However, it is common for companies to develop, in an ad-hoc

manner (e.g. clone and own), a set of products that share common services and differ in terms of oth-

ers. Thus, many recent research contributions are proposed to re-engineer existing product variants to

a software product line. These contributions are mostly focused on managing the variability at the re-

quirement level. Very few contributions address the variability at the architectural level despite its major

importance. Starting from this observation, we propose an approach to reverse engineer the architecture

of a set of product variants. Our goal is to identify the variability and dependencies among architectural-

element variants. Our work relies on formal concept analysis to analyze the variability. To validate the

proposed approach, we evaluated on two families of open-source product variants; Mobile Media and

Health Watcher. The results of precision and recall metrics of the recovered architectural variability and

dependencies are 81%, 91%, 67% and 100%, respectively.

© 2016 Elsevier Inc. All rights reserved.

1

w

w

u

L

S

a

o

f

a

t

a

a

w

b

c

s

r

c

g

p

c

c

s

g

t

c

a

a

a

d

s

i

h

0

. Introduction

Instead of developing each software product individually, Soft-

are Product Line Engineering (SPLE) promotes a pre-planned soft-

are reuse by building and managing a family of software prod-

cts that are developed in the same domain (aka. Software Product

ine (SPL)) (Clements and Northrop, 2002; Pohl et al., 2005). An

PL is defined as “a set of software-intensive systems that share

 common, managed set of features satisfying the specific needs

f a particular market segment or mission and that are developed

rom a common set of core assets in a prescribed way” (Clements

nd Northrop, 2002). The main idea behind SPLE is to analyze

he business domain of an SPL in order to identify the common

nd the variable parts between the member products (Clements

nd Northrop, 2002; Pohl et al., 2005). This aims to build a soft-

are production line of a family of software products customized

ased on their common characteristics. Thus, a software product
an be instantiated based on SPL core assets which are a set of

∗ Corresponding author.

E-mail addresses: shatnawi@lirmm.fr , anasshatnawi@gmail.com (A. Shatnawi),

eriai@lirmm.fr (A.-D. Seriai), sahraoui@iro.umontreal.ca (H. Sahraoui).

S

(

r

v

i

ttp://dx.doi.org/10.1016/j.jss.2016.07.039

164-1212/© 2016 Elsevier Inc. All rights reserved.

Please cite this article as: A. Shatnawi et al., Recovering software produc

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
eusable software artifacts (Clements and Northrop, 2002). SPLE is

omposed of two phases; domain engineering and application en-

ineering (Pohl et al., 2005). The goal of the domain engineering

hase is to create reusable core assets based on the analysis of the

ommonality and the variability of a family of products. Core assets

onsist of requirement specifications, architecture descriptions, de-

ign models, source codes, test cases, etc (Pohl et al., 2005). The

oal of the application engineering phase is to (re)use core assets

o derive SPL products (Pohl et al., 2005; Linden et al., 2007).

One of the most important software artifacts composing SPL’s

ore assets is Software Product Line Architecture (SPLA) (Clements

nd Northrop, 2002; Linden et al., 2007; Pinzger et al., 2004). The

im of an SPLA is to highlight the commonality and the vari-

bility of an SPL at the architecture level (Pohl et al., 2005). It

oes not only describe the system structure at a high level of ab-

traction, but also describes the variability of an SPL by captur-

ng the variability of architecture elements (Pohl et al., 2005).

PLA can be either developed from scratch, i.e. proactive strategy

 Clements and Northrop, 2002; Pohl et al., 2005; Krueger, 2002), or

e-engineered based on the analysis of existing software product

ariants, i.e extractive strategy (Krueger, 2002). However, develop-

ng SPLA from scratch is known to be a highly costly and risky task
t line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
mailto:shatnawi@lirmm.fr
mailto:anasshatnawi@gmail.com
mailto:seriai@lirmm.fr
mailto:sahraoui@iro.umontreal.ca
http://dx.doi.org/10.1016/j.jss.2016.07.039
http://dx.doi.org/10.1016/j.jss.2016.07.039

2 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Fig. 1. UML object-to-component mapping model.

p

N

s

a

u

v

S

s

d

t

i

i

a

w

fi

c

2

t

2

m

c

t

t

t

p

n

i

c

c

p

t

i

c

t

t

t

t

p

a

r

a

1 ROMANTIC: Re-engineering of Object-oriented systeMs by Architecture extrac-

tioN and migraTIon to Component based ones.
(Clements and Northrop, 2002; Pohl et al., 2005; Krueger, 2002).

In addition, it is common for companies to develop a set of soft-

ware product variants that share common services and differ in

terms of other ones. These products are usually developed in an

ad-hoc manner (e.g. clone and own) by adding and/or removing

some services to/from an existing software product to meet the

requirement of a new need (Dubinsky et al., 2013). Nevertheless,

when the number of product variants grows, managing the reuse

and maintenance processes becomes a severe problem (Dubinsky

et al., 2013). As a consequence, it is necessary to identify and to

manage the variability between product variants as an SPL. This

allows to reduce the cost of SPL development by first starting it

from existing products and then being able to manage the reuse

and maintenance tasks in product variants using an SPL.

In the literature, there are few approaches that recover SPLA

from a set of product variants such as Frenzel et al. (2007) ;

Koschke et al. (2009) ; Pinzger et al. (2004) ; Kang et al. (2005) .

These approaches suffer from two main limitations. The first one

is that the architecture variability is partially addressed since they

recover only some variability aspects, no one recovers the whole

SPLA. The second one is that they are not fully-automatic since

they rely on the expert domain knowledge which is not always

available.

To address these limitations, we propose an approach to auto-

matically recover the architecture of a set of software product vari-

ants. This is done through the exploitation of the commonality and

the variability across the source code of these product variants. Our

contribution is twofold: on the one hand, we recover the architec-

ture variability concerning both component and configuration vari-

ability. On the other hand, we recover dependencies between the

architectural-elements based on formal concept analysis.

In order to validate the proposed approach, we evaluated on

two families of open-source product variants; Mobile Media and

Health Watcher. The evaluation shows that our approach is able to

identify the architectural variability and the dependencies as well.

The results of precision and recall metrics of the identification of

architectural variability and the dependencies are 81%, 91%, 67%

and 100%, respectively.

This journal paper is an extended version of our conference pa-

per published in Shatnawi et al. (2015b). This extension includes:

(i) identifying new categories of architecture variability (e.g. inter-

nal and external component variability, variability of groups of de-

pendencies, and dependencies related to optional component dis-

tribution). (ii) Deep analysis of the problem of SPLA identification.

(iii) More details and deep analysis of the proposed solution. (iv)

Related work classification. (v) Presentation of new results related

to the identification of groups of variability. (vi) The pros and cons

discussion. (vii) Threats to validity discussion.

The rest of this paper is organized as follows. Section 2 puts

the problem in context. Next, in Section 3 , we present the recov-

ery process of SPLA. Section 4 presents the identification of archi-

tecture variability. Then, Section 5 presents the identification of de-

pendencies among architectural-element variants. In Section 6 , we

identify groups of variability. Evaluation results of our approach

are discussed in Section 7 . A discussion about the pros and cons

of our approach is placed in Section 8 . Related work is analyzed

in Section 9 . Finally, concluding remarks and future directions are

presented in Section 10 .

2. Putting the problem in context

2.1. Background

2.1.1. Software product line architecture

SPLA is a special kind of software architecture. It is designed

to describe the software architecture of a set of similar software
Please cite this article as: A. Shatnawi et al., Recovering software produ

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
roducts that are developed in the context of an SPL Clements and

orthrop (2002) . In the literature, many definitions have been pre-

ented to define SPLA. These definitions consider SPLA as a core

rchitecture that captures the variability of a set of software prod-

cts at the architecture level. However, they differ in terms of the

ariability definition. For instance, DeBaud et al. (1998) defined an

PLA as an architecture shared by their member products and has

uch a variability degree. This is a very general definition since it

oes not specify the nature of the architecture variability. In con-

rast, Pohl et al. (2005) provide a more accurate definition by spec-

fying the nature of architecture variability. In this definition, SPLA

ncludes variation points and variants that are presented in such

 variability model. Gomaa (2005) links the architecture variability

ith the architectural-elements. Thus, in his definition, SPLA de-

nes the variability in terms of mandatory, optional, and variable

omponents, and their connections.

.1.2. Component-based architecture recovery from single software:

he ROMANTIC approach

For the evaluation, we use our previous works (Kebir et al.,

012b; Chardigny et al., 2008a), the ROMANTIC

1 approach, to auto-

atically recover a component-based architecture from the source

ode of a single object-oriented software. Components are ob-

ained by partitioning classes constituting the implementation of

his software. Each class is assigned to a unique subset forming

he implementation of an object-oriented component, i.e. a com-

onent that can be implemented using an object-oriented compo-

ent model such as OSGi (Tavares and Valente, 2008). ROMANTIC

s based on two main models. The first concerns the object-to-

omponent mapping model which allows to link object-oriented

oncepts (e.g. package, class) to component-based ones (e.g. com-

onent, interface). Following this model, a component consists of

wo parts; internal and external structures. The internal structure

s implemented by a set of classes that have direct links only to

lasses that belong to the component itself. The external struc-

ure is implemented by the set of classes that have direct links

o other components’ classes. Classes that form the external struc-

ure of a component define the component interface. Fig. 1 shows

he object-to-component mapping model. The second model pro-

osed is used to evaluate the quality of the recovered architectures

nd their architectural-element. For example, the quality-model of

ecovered components is based on three characteristics; compos-

bility, autonomy and specificity. These refer respectively to the
ct line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22 3

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Table 1

Formal context example.

Natural Artificial Stagnant Running Inland Maritime Constant

River X X X X

Sea X X X X

Reservoir X X X X

Channel X X X

Lake X X X X

a

t

w

n

fi

r

s

o

c

2

A

v

a

d

o

T

c

T

c

r

l

c

t

t

c

c

t

d

A

o

t

a

t

t

t

t

f

a

a

i

F

T

2

t

a

e

q

o

n

Fig. 2. The concept lattice of the formal context in Table 1 .

a

c

i

m

a

a

a

v

t

i

s

i

m

t

A

L

b

e

I

W

n

d

(

v

s

a

t

l

c

m

p
bility of the component to be composed without any modifica-

ion, to the possibility to reuse the component in an autonomous

ay, and to the fact that the component implements a limited

umber of closed services. Based on these models, ROMANTIC de-

nes a fitness function applied in a hierarchical clustering algo-

ithm (Kebir et al., 2012b; Chardigny et al., 2008a) as well as in

earch-based algorithms (Chardigny et al., 2008b) to partition the

bject-oriented classes into groups, where each group represents a

omponent.

.1.3. Formal concept analysis

To analyze the architectural variability, we use Formal Concept

nalysis (FCA). It is a mathematical data analysis technique de-

eloped based on the lattice theory (Ganter and Wille, 1996). It

llows the analysis of the relationships between a set of objects

escribed by a set of attributes. In this context, maximal groups

f objects sharing the same attributes are called formal concepts.

hese are extracted and then hierarchically organized into a graph

alled a concept lattice. Each formal concept consists of two parts.

he first allows the representation of the objects covered by the

oncepts called the extent of the concept. The second allows the

epresentation of the set of attributes shared by the objects be-

onging to the extent. This is called the intent of the concept. Con-

epts can be linked through sub-concept and super-concept rela-

ionships (Ganter and Wille, 1996) where the lattice defines a par-

ially ordered structure. A concept A is a sub-concept of the super-

oncept B , if the extent of the concept B includes the extent of the

oncept A and the intent of the concept A includes the intent of

he concept B .

The input of FCA is called a formal context. A formal context is

efined as a triple K = (O, A, R) where O refers to a set of objects,

 refers to a set of attributes and R is a binary relation between

bjects and attributes. This binary relation indicates a set of at-

ributes that are held by each object (i.e. R ⊆OXA). Table 1 shows

n example of a formal context for a set of bodies of water and

heir attributes. An X refers to the fact that an object holds an at-

ribute.

As stated before, a formal concept consists of extent E and in-

ent I , where E a subset of objects O (E ⊆O) and I a subset of at-

ributes A (I ⊆A). A pair of extent and intent (E, I) is considered a

ormal concept, if and only, if E consists of only objects that share

ll attributes in I and I consists of only attributes that are shared by

ll objects in E . The pair (”river, lake”, ”inland, natural, constant”)

s an example of a formal concept of the formal context in Table 1 .

ig. 2 shows the concept lattice of the formal context presented in

able 1 .

.2. Problem analysis

Software variability is the main theme of SPLE. It is related to

he susceptibility and flexibility of software to change (Clements

nd Northrop, 2002). The variability in an SPL is realized at differ-

nt levels of abstraction during the development life cycle, e.g. re-

uirement, and design. For instance, at the requirement level, it is

riginated starting from the differences in users’ wishes, and does

ot carry any technical sense (Pohl et al., 2005). This is related to
Please cite this article as: A. Shatnawi et al., Recovering software produc

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
 set of features that are needed to be included in such an appli-

ation (e.g. the user needs camera, WIFI, and color screen features

n the phone). Usually, this variability is documented by feature

odeling language (Kang et al., 1990). At the design level, the vari-

bility has more details related to technical solutions to form the

pplication architectures. These technical details describe how the

pplications are built and implemented with regard to the point of

iew of software architects (Pohl et al., 2005). Such technical de-

ails are those related to which software components are included

n the application (e.g. video recorder, photo capture, and media

tore components), how these components interact through their

nterfaces (e.g. video recorder provides a video stream interface to

edia store), and what topology forms the architectural configura-

ion (i.e. how components are composited) (Nakagawa et al., 2011).

ll of these technical details are described via Software Product

ine Architecture (SPLA) (Pohl et al., 2005).

SPLA realizes the software variability at the architecture level

y exploring the commonality and the variability of architecture

lements, i.e. component, connector and configuration variability.

n this paper, we focus on component and configuration variability.

e do not consider connector variability since the connectors are

ot considered as first class concepts in the most of architecture

escription languages such as Magee and Kramer (1996) Luckham

1996) Canal et al. (1999) . To better understand the architecture

ariability, we rely on the example provided in Fig. 3 . This example

chemes the architecture of three product variants related to an

udio player product family. Each architecture variant diverges in

he set of components constituting its architecture as well as the

inks between these components.

Components are considered as the main building unit of an ar-

hitecture. Their variability can be considered following two di-

ensions. The first one is related to the existence of several com-

onents having the same architectural meaning, i.e. almost provide
t line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

4 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Fig. 3. An illustrative example of architecture variability.

3

u

c

w

o

fi

i

t

p

o

b

p

w

o

c

4

e

p

s

a

4

i

v

n
the same services. We call these component variants. For example,

in Fig. 3 , MP3 Decoder and MP3 Decoder/Encoder are examples of

component variants. The second dimension is related to the com-

monality and the variability between component variants. This is

realized though internal and external variability. Internal variabil-

ity refers to the divergence related to the implementation details

of component variants which may lead to variability in the set of

services provided by these component variants, e.g. Decoder only

or Decoder/Encoder services. External variability refers to the way

that the component interacts with other components. This is re-

alized through the variability in the component interfaces. In our

example, the Sound Source component variants have either one or

two interfaces.

Furthermore, the architecture configuration does not only

define the topology of how components are composited and

connected, but also defines the set of included components.

Thus, the configuration variability is represented in terms of

presence/absence of components, on the one hand, and pres-

ence/absence of component-to-component-links on the other

hand. These respectively refer to the commonality (mandatory) and

the variability (optional) of components and component-links. For

example, in Fig. 3 , Sound Source is a mandatory component, while

Purchase Reminder is an optional one. The links that connect Player

and Sound Source are mandatory links, while the link that connects

MP3 Decoder/Encoder and Sound Source is an optional one.

The identification of components and component-links variabil-

ity is not enough to define a valid architectural configuration. It

also depends on the identification of architectural-element depen-

dencies, i.e. constraints, that may exist between the elements of

the architectures. For instance, components providing antagonism

services have an exclude dependency. Furthermore, a component

may need other components to perform its services. This refers to

a required dependency.
c

t

p

l

Please cite this article as: A. Shatnawi et al., Recovering software produ

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
. Architecture variability recovery process

The goal of our approach is to recover SPLA of a set of prod-

ct variants. This is obtained by identifying variability among ar-

hitectures respectively recovered from each single product. Thus,

e identify component-based architecture by analyzing the object-

riented source code of each single product. This constitutes the

rst step of the recovery process. To identify architectural variabil-

ty among the identified component-based architectures, we iden-

ify component variants based on the identification of components

roviding similar functionalities. This is the role of the second step

f the recovery process. Next, we identify configuration variability

ased on both the identification of mandatory and optional com-

onents as well as links between these components. In addition,

e capture the dependencies among optional components based

n FCA. These are mined in the fourth step of the recovery pro-

ess. Fig. 4 shows these steps.

. Identifying the architecture variability

The architecture variability is materialized either through the

xistence of variants of the same architectural-element (i.e. com-

onent variants) or through the configuration variability. In this

ection, we show how component variants and configuration vari-

bility are identified.

.1. Identifying component variants

The selection of a component to be used in an architecture

s based on its provided and required services. The provided ser-

ices define the role of the component. However, other compo-

ents may provide the same, or at least similar, core services. Each

omponent may also provide other specific services in addition

o the core ones. Considering these components, either as com-

letely different or as the same, does not allow the variability re-

ated to components to be captured. Thus, we consider them as
ct line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22 5

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Fig. 4. The process of architectural variability recovery.

c

c

c

c

t

o

v

4

l

d

c

i

(

d

a

c

i

a

p

(

u

i

b

o

fi

r

c

v

t

c

c

n

Algorithm 1: Building dendrogram for similar component

identification.

Input : Components(P C)

Output : Dendrogram Tree (d end rogram)

BinaryTree d end rogram = P C;

while (| d end rogram | > 1) do

c1 , c2 = mostLexicallySimilarNodes(d end rogram);

c = newNode(c1 , c2);

remove(c1 , d end rogram);

remove(c2 , d end rogram);

add(c, d end rogram);

end

return d end rogram

Algorithm 2: Dendrogram traversal for similar component

identification.

Input : Dendrogram Tree(d end rogram)

Output : A Set of Clusters of Components(clusters)

Stack tra v ersal;

tra v ersal. push(d end rogram. getRoot());

while (! tra v ersal. isEmpty()) do

Node father = tra v ersal. pop();

Node le f t = d end rogram. getLeftSon(father);

Node right = d end rogram. getRightSon(father);

if similarity(father) > (similarity(le f t) + similarity(right) /

2) then

cluster s. add(father)

else
tra v ersal . push(l e f t);

tra v er sal. push(r ight);

end

end

return clusters
omponent variants. We define component variants as a set of

omponents providing the same core services and differing con-

erning a few secondary ones. In Fig. 3 , MP3 Decoder and MP3 De-

oder/Encoder are considered as component variants. In this sec-

ion, we identify component variants based on the identification

f components providing similar services. Next, we analyze their

ariability in terms of internal and external variability.

.1.1. Identification of components providing similar services

We identify component variants based on their similarity. Simi-

ar components are those sharing the majority of their classes and

iffering in relation to some others. The identification of similar

omponents is based on the strength of similarity realized in their

mplementing classes. To do this, we use cosine similarity metric

 Han et al., 2006) where each component is considered as a text

ocument composed of the names of its classes. We use a hier-

rchical clustering algorithm (Han et al., 2006) to gather similar

omponents into clusters. It starts by considering components as

nitial leaf nodes in a binary tree. Next, the two most similar nodes

re grouped into a new one that forms their parent. This grouping

rocess is repeated until all nodes are grouped into a binary tree

see Algorithm 1). Note that two components from the same prod-

ct can not be grouped together in the same cluster. The cluster-

ng algorithm checks this situation and forbids it All nodes in this

inary tree are considered as candidates to be selected as groups

f similar components. To identify the best nodes, we use a depth

rst search algorithm (see Algorithm 2). Starting from the tree

oot to find the cut-off points, we compare the similarity of the

urrent node with its children. If the current node has a similarity

alue exceeding the average similarity value of its children, then

he cut-off point is in the current node. Otherwise, the algorithm

ontinues through its children. The results of this algorithm are

lusters where each one is composed of a set of similar compo-

ents that represent variants of one component.
Please cite this article as: A. Shatnawi et al., Recovering software product line architecture of a family of object-oriented product variants,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

6 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Table 2

An example of formal context of three component variants.

Class 1 Class 2 Class 3 Class 4 Class 5 Class 6 Class 7 Class 8

Variant 1 X X X X X X

Variant 2 X X X X X X

Variant 3 X X X X X X

Fig. 5. A lattice example of component variants.

Fig. 6. An example of interface variability.

T

a

s

a

t

i

e

c

v

I

t

b

fi

a

v

m

a

v

i

a

f

i

Algorithm 3: Identifying interface variability.

Input : A Set of Component Variants (CV)

Output : A Set of Mandatory and Optional Interfaces (MI, OI))

MI = identifyInterfaces(CV. getFirstVariant());

al l Inter faces = ∅ ;
$Identify the union and intersection of component variant

interfaces$

for each v ∈ CV do

M I = M I∩ identifyInterfaces(v);
al l Inter faces = al l Inter faces ∪ identifyInterfaces(v);

end

OI = al l Inter faces − MC;

return MI, OI
4.1.2. Identification of internal variability

Internal structure variability is related to the implementation

of components. Component variants are implemented by object-

oriented classes. Thus, we identify internal variability in terms of

class variability. We distinguish two categories of classes. The first

one refers to classes related to commonality. These belong to all

variants of the component. We call them common classes. The sec-

ond category refers to classes related to variability. These do not

belong to all variants of the component. We call them variable

classes.

The identification of common and variable classes and the dis-

tribution of variable classes is achieved using Formal Concept Anal-

ysis (FCA). To this end, we build the formal context, so that each

component variant is considered as an object and each class is an

attribute in this formal context. Table 2 shows an example of a for-

mal context built using three component variants. A cross in the

cell (V, C) denotes that the variant V holds the class C . In the lat-

tice generated based on this formal context, common classes are

grouped in the root, while the variable ones are hierarchically dis-

tributed to the non-root nodes. The leaf nodes represent compo-

nent variants. These variants have all classes that are attached to

the nodes placed in the path to the root node.

Fig. 5 shows the lattice extracted based on the formal con-

text presented in Table 2 . On the one hand, the commonality of

their implementation is represented by common classes grouped

together on the top of the lattice (i.e. the root). Class 1, Class 2,

Class 3 and Class 4 are the common classes. On the other hand,

the variability of their implementation is represented by variable

classes distributed on the non root nodes. For instance, Class 8 be-

longs to two variants; Variant 1 and Variant 3 , while Class 6 belongs

only to one variant; Variant 2 .

4.1.3. Identification of external variability

The interaction between components is realized through their

interfaces; provided and required interfaces. Provided interfaces

are abstract descriptions of services provided by a component.
Please cite this article as: A. Shatnawi et al., Recovering software produ

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
hese services may be required by other components in the same

rchitecture. In object-oriented components, an interface is the ab-

traction of a group of method invocations. This group provides an

ccess to the component services. As component variants are iden-

ified from different products, thus each variant may have some

nterfaces that are different compared to the other variants. For

xample, in Fig. 6 , CD Reader and CD Reader/Writer variants differ

ompared to their interfaces. In the former, it has only one pro-

ided interface that provides the service of reading the CD content.

n the latter, it has an additional required interface compared to

he first variant. This interface requires a source of information to

e written on the CD . The interfaces of a component can be classi-

ed into mandatory and optional interfaces. Mandatory interfaces

re ones existing in all variants of the component (e.g. the pro-

ided interface in Fig. 6). Optional interfaces are those that are not

andatory (e.g. the required interface in Fig. 6).

Algorithm 3 shows the procedure for identifying mandatory

nd optional interfaces of a set of component variants. For each

ariant, we identify its interfaces in the corresponding products

n which the variant has been identified. This is done using our

pproach presented in Kebir et al. (2012b) which identifies inter-

aces as groups of methods. To identify whether interfaces are sim-

lar or not, we rely on the textual similarity between the source
ct line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22 7

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Fig. 7. A lattice example of similar configurations.

c

t

a

b

u

w

(

b

s

a

d

4

t

a

t

t

t

c

m

t

4

m

W

b

c

t

c

t

g

a

a

a

F

i

4

i

p

c

Fig. 8. An example of component-link.

p

a

i

t

t

n

p

A

t

n

a

a

c

a

t

w

p

u

o

5

r

S

5

a

t

e

c

s

2

c

g

o

T

o

s

o

(

t

r

i

c

t

n

t

c
ode of their implemented methods. In this context, we compare

he complete method implementations. If the similarity exceeds

 pre-defined threshold value defined by the software architects

ased on their knowledge about the variability degree of prod-

ct variants, then they are considered as the same interface. Soft-

are architects can use software metrics presented in Berger et al.

2010) that measure the variability degree of a product variants

ased on commonality size, impact of commonality, etc. The inter-

ection of the sets of interfaces from all the products determines

ll mandatory interfaces for the given component. Interfaces that

o not belong to this intersection are optional ones.

.2. Identifying configuration variants

In the previous section, we identified component variability in

erms of component variants and their internal and external vari-

bility. In this section, we present how to recover the configura-

ion variability. The architectural configuration is defined based on

he list of components composing the architecture, as well as the

opology of the links existing between these components. Thus, the

onfiguration variability is related to these two aspects; the lists of

andatory (core) and optional components and the list of manda-

ory and optional links between the selected components.

.2.1. Identification of component variability

To identify mandatory and optional components, we use For-

al Concept Analysis (FCA) to analyze architecture configurations.

e present each software architecture as an object and each mem-

er component as an attribute in the formal context. In the con-

ept lattice, common attributes are grouped into the root while

he variable ones are hierarchically distributed among the non-root

oncepts.

Fig. 7 shows an example of a lattice for three similar architec-

ure configurations. The mandatory components are grouped to-

ether at the root concept of the lattice (the top). In Fig. 7 , Com 1

nd Com 4 are the mandatory components presented in the three

rchitectures. By contrast, optional components are represented in

ll lattice concepts except the root. e.g., according to the lattice of

ig. 7 , Com 2 and Com 5 are presented in Arch 1 and Arch 2 but not

n Arch 3 .

.2.2. Identification of component-link variability

A component-link is defined as a connection that material-

zes the composition of two components respectively through their

rovided and required interfaces. Fig. 8 shows an example of how

omponents are linked through their interfaces.
Please cite this article as: A. Shatnawi et al., Recovering software produc

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
A component may be linked with different components. A com-

onent may have links with a set of components in one product,

nd it may have other links with a different set of components

n another product. Thus, the component-link variability is related

o the component variability. This means that the identification of

he component-link variability is based on the identified compo-

ent variability. For instance, the existence of a link between Com-

onent A and Component B is related to the selection of Component

 and Component B in the architecture. Thus considering a manda-

ory link is based on the occurrence of the linked components, but

ot on the occurrence in the architecture of products. In this way,

 mandatory link is defined as a link that should be occur in the

rchitecture configuration as well as the linked components are in-

luded in the configuration. To identify the component-link vari-

bility, we proceed similar to Algorithm 3 in terms of identifying

he union and the intersection. For each architectural component,

e collect the set of components that are connected to it in each

roduct. The intersection of the sets extracted from all the prod-

cts determines all mandatory links for the given component. The

ther links are optional ones.

. Identifying architecture dependencies

In the previous sections, we identified component and configu-

ation variability. In this section, we complete the identification of

PLA by recovering the architectural dependencies.

.1. Identification of dependencies related to feature variability

The most common types of dependencies can be of five kinds:

lternative, OR, AND, require, and exclude dependencies. To iden-

ify these dependencies, we rely on the same concept lattice gen-

rated in Section 4.2.1 . In the lattice, each node groups a set of

omponents representing the intent (e.g. Com 5 and Com 2) and a

et of architectural configurations representing the extent (e.g. Arch

). The configurations are represented by paths starting from their

oncepts to the lattice concept root. The idea is that each object is

enerated starting from its node up going to the top. This is based

n sub-concept to super-concept relationships (c.f. Section 2.1.3).

his process generates a path for each object. A path contains an

rdered list of nodes based on their hierarchical distribution; i.e.

ub-concept to super-concept relationships).

The extraction of these paths is based on two steps. The first

ne is node numbering. This is done using Breadth First Search

BFS) algorithm (Cormen et al., 2009). In this context, BFS is used

o identify a tree representation of a given graph. Starting from the

oot node (i.e. the top), BFS visits the nodes at distance 1 , then

t visits the nodes at distance 2 and so on. Fig. 9 shows the pro-

ess of how BFS orders the nodes, where node numbering refers

o the distance of visiting a given node and ∞ denotes unvisited

odes. In the second step, starting from a node that holds an ex-

ent (e.g. Arch 1), we go up through links guiding us to nodes that

arry a lower numbering and so on. This is recursively repeated,
t line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

8 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Fig. 9. An example of BFS process.

Fig. 10. An example of paths extracted from FCA lattice.

Algorithm 4: Identifying exclude pairs.

Input : All Pairs of Lattice Nodes and Paths(P airs, P aths)

Output : A Set of Pairs Having Exclude Dependency(ED)

ED = ∅ ;
$Search for pairs having an exclude$

for each pair ∈ Pairs do

isF ound = false;

for each path ∈ Paths do

if path .contains(pair) then

isF ound = true;

break;
end

$If the pair is not found in the paths$

if isF ound == false then

ED = ED ∪ pair ;

end

return ED

n

p

c

t

i

s

A

t

s

c

o

a

A

n

t

5

i

e

r

b

n

c

n
where the termination condition is reaching the node having 0

numbering. Fig. 10 presents the paths identified in our example.

There are three paths respectively presented by solid, dashed and

double dashed arrows. For instance, the path corresponding to Arch

1 includes the node of Com 3 , the node of Com 5 and Com 2 and

the node of Com 1 and Com 4 . According to these paths, we pro-

pose extracting the dependencies between each pair of nodes as

follows.

5.1.1. Required dependency identification

Required dependency refers to the obligation selection of a

component to select another one; i.e. Component B is required to

select Component A . Based on the extracted paths, we analyze their

nodes by identifying parent-to-child relation (i.e. top to bottom).

Thus, node A requires node B if node B appears before node A in

all paths, i.e., node A is a sub-concept of the super-concept corre-

sponding to node B . In other words, to reach node A in any path,

it is necessary to traverse node B . For example, if we consider the

lattice in Fig. 7 , Com 6 requires Com 2 and Com 5 since Com 2 and

Com 5 are traversed before Com 6 in all paths including Com 6 and

linking root node to object nodes.

5.1.2. Exclude and alternative dependencies identification

Exclude dependency refers to the antagonistic relationship; i.e.

Component A and Component B cannot occur in the same architec-

ture. This dependency is identified based on the extracted paths. A
Please cite this article as: A. Shatnawi et al., Recovering software produ

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
ode is excluded with respect to another node if they never ap-

ear together in any of the existing paths; i.e. there is no sub-

oncept to super-concept relationship between them. This means

hat there exists no object containing both nodes. For example,

f we consider the lattice in Fig. 7 , Com 6 and Com 7 are exclu-

ives since they never appear together in any of the lattice paths.

lgorithm 4 presents the procedure of extracting pairs of nodes

hat have the exclude dependency.

Alternative dependency generalizes the exclude one by exclu-

ively selecting only one component from a set of components. It

an be identified based on the exclude dependencies. Indeed, a set

f nodes in the lattice having each an exclude dependency with

ll other nodes forms an alternative situation. For example, if node

 is excluded compared to nodes B and C on the one hand, and

ode B is excluded compared to node C , on the other hand, then

he group of A, B and C forms an alternative group.

.1.3. AND dependency identification

AND dependency is the bidirectional form of the required one;

.e. Component A requires Component B and vice versa. More gen-

rally, the selection of one component among a set of components

equires the selection of all the other components. According to the

uilt lattice, this dependency is identified when a group of compo-

ents is grouped in the same concept node in the lattice; i.e. all

omponents grouped in this node should be selected together and

ot only a part of its components. For example if we consider the
ct line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22 9

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Algorithm 5: Identifying OR-groups.

Input : All Pairs (ap), Require Dependencies (rd), Exclude

Dependencies (ed) and Alternative Dependencies (ad)

Output : Sets of Nodes Having OR Dependencies (orGroups)

$Remove pairs and groups having required, exclude and

alternative$

OrDep = ap.exclusionPairs(rd, ed, ad);

$Remove pairs having transitive required$

OrDep = orDep.removeTransitiveRequire(rd);

$Identify nodes that share some components$

ORPairsSharingNode = orDep.getPairsSharingNode();

$Process the dependencies among the unshared components$

for each p ∈ ORPair sShar ingNode do

if otherNodes.getDependency() == require then

orDep.removePair(childNode);

else if otherNodes.getDependency()= exclude || alternative

then

orDep.removeAllPairs(p);

end

orGroups = orDep.getPairsSharingOrDep();

return orGroups

l

p

5

m

u

t

i

w

n

d

s

w

h

n

n

b

a

l

i

C

l

C

w

O

a

d

p

p

A

p

5

d

c

o

u

o

t

o

o

r

t

fi

c

i

t

n

v

t

p

6

w

d

i

p

c

a

a

r

w

6

d

t

h

e

c

h

o

A

d

d

p

c

t

t

6

c

n

n

o

d

t

d

r

N

a

l

a

t

A

O

t

c

attice in Fig. 7 , Com 2 and Com 5 are concerned by an AND de-

endency.

.1.4. OR dependency identification

When components are concerned by an OR dependency, this

eans that at least one of them should be selected; i.e. the config-

ration may contain any combination of the components. Thus, in

he case of absence of other dependency, any pair of components

s concerned by an OR dependency. Accordingly, pairs concerned

ith required, exclude, alternative, or AND dependencies are ig-

ored as well as those concerned with transitive require depen-

encies; e.g. Com 6 and Com 7 are ignored since they are exclu-

ives.

The process of identifying the OR groups is as follows. Firstly,

e check the relationships between each pair of nodes. Pairs that

ave required, exclude, alternative, and AND dependencies are ig-

ored. All pairs having transitive require dependencies are also ig-

ored. The reason for this exclusion is that these dependencies

reak the OR one. Then, the remaining pairs of nodes are assigned

n OR dependency. Next, we analyze these pairs by testing the re-

ation of their nodes. Pairs sharing a node need to be resolved (e.g.

n Fig. 7 , a pair of (Com 5 - Com 2, Com 7) and a pair of (Com 5 -

om 2, Com 3), where Com 5 - Com 2 is a shared node). The reso-

ution is based on the relation between the other two nodes (e.g.

om 3 and Com 7). If these nodes have a require dependency, then

e select the highest node in the lattice (i.e. the parent causes the

R dependency to its children). If the dependency is excluded or

lternative, then we remove all OR dependencies (i.e. an exclude

ependency violates an OR one). In the case of sharing an OR de-

endency, the pairs are grouped to one OR dependency. AND de-

endency will not occur in this case according to AND definition.

lgorithm 5 shows the procedure of identifying groups of OR de-

endency.

.2. Identification of dependencies related to optional component

istribution

These dependencies reflect association rules between optional

omponents. Association rules refer to the frequency of co-

ccurrences between two groups of components. These can be

sed to discover interesting correlations between a large number

f optional components. For instance, if an architectural configura-
Please cite this article as: A. Shatnawi et al., Recovering software produc

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
ion contains Component A and Component B , it has a probability

f 70% of also containing Component C and Component D . We rely

n FP Growth algorithm (Han et al., 2006) to mine the association

ules. Each architectural configuration is considered as a transac-

ion and each component is an item that can exist in such a con-

guration. For example, in Fig. 7 , we see that if a configuration

ontains Com 1, Com 2 , and Com 4 , there is a 100% probably that

t also contains Com 5 . In addition to association rules, we recover

he ratio of component occurrences in the products (e.g. Compo-

ent A has occurred in 80% of products). These can be used to pro-

ide information about which components are frequently used in

he products. Fig. 7 shows, for example, that Com 6 and Com 3 are

resent respectively in 33% and 67% of the configurations.

. Identification of groups of variability

In the previous steps, mandatory and optional components, as

ell as the dependencies among them are identified. However, un-

erstanding a large number of dependencies is a challenge fac-

ng software architects. Furthermore, some of these are overlap-

ing dependencies. This means that many dependencies represent

onstraints on a shared set of components (e.g. a component has

n OR dependency with components having AND dependencies

mong themselves). Such dependencies need to be hierarchically

epresented in a tree form, in order to facilitate the task of soft-

are architects (e.g. similar to feature model).

.1. Variability between groups of dependencies

The idea is to identify dependencies among groups of depen-

encies. For example, a group of components holding an alterna-

ive dependency can have an OR dependency with another group

olding an AND one. To identify these dependencies, our consid-

rations are as follows. Since an AND can be considered as one

oherent entity, it is not allowed for its components to partially

ave internal dependencies, e.g. dependent through an OR with

ther groups. This implies that all components belonging to an

ND group should have the dependency. For alternative and OR

ependencies, it is allowed to take AND ones as a member. In ad-

ition, the internal dependencies between alternative and OR de-

endencies are allowed. In other words, an alternative dependency

an be a member an OR dependency and vice versa. According to

hat, the AND dependency has a high priority to be added before

he others while OR and alternative have the same priority.

.2. The identification algorithm

Algorithm 6 describes the procedure to identify the hierarchi-

al tree. Firstly, we start from the root of the tree by directly con-

ecting all mandatory components to it. At this stage, the tree does

ot have a hierarchy. Then, we add optional components based

n their relationships. Groups of components having AND depen-

encies are added by creating an abstract node that carries out

hese components. The relation between the parent and the chil-

ren is an AND dependency. Next, alternative dependencies are

epresented by an abstract node that carries out these components.

ext, OR dependencies are applied by adding an abstract node as

 parent to components having an OR. In the case where the re-

ation is between a set of components having AND dependency

s well as alternative dependency, the connection is made with

heir abstract nodes (i.e. the abstract nodes corresponding to the

ND dependency and the alternative one become children of the

R parent). Next, the remaining components are directly added to

he root with optional notation. Finally, the cross-tree dependen-

ies are added (i.e. required and exclude ones).
t line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

10 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Algorithm 6: Identifying hierarchical representation.

Input : Sets of Dependencies

(OR, AND, Require, Exclude, Alternati v e) and Mandatory

and Optional Components (MC, OC)

Output : A Tree (tree)

$Adding mandatory components to the root node$

tree .root.addChildren(MC);

$Adding AND groups to the root node$

for each and ∈ AND do

tree .addChild(and);

end

$Adding OR groups to the tree$

for each or ∈ OR do

for each node ∈ or do

$Check if the OR contains a member composed of an

AND group$

if AND. isContiant(node) then

$Remove the AND from the root and add it as a

child in the OR $

tree .remove(node);

nodeOR .addChildren(node);

else
nodeOR .addChildren(node);

end

tree .addChild(nodeOR);

end

end

$Adding alternative groups to the tree$

for each al t ∈ Al ternati v e do

for each node ∈ alt do

$Check if it is a member in any already added group$

if OR. isContiant(node) then

break;

else if AND. isContiant(node) then

tree .remove(node);

nodeAlt .addChildren(node);

else
nodeAlt .addChildren(node);

end

t ree .addChild(nodeAlt);

end

end

$Add the rest of the components as optional$

tree .addChildren(OC. getRemainingOptional());

$add cross tree dependencies$

tree .addExcludeCrossTree(Exclude);

tree .addRequireCrossTree(Require);

return tree

p

i

m

t

s

i

7

a

o

s

t

d

t

t

c

t

o

g

s

7

7

p

n

v

d

s

t

h

s

6

7

o

n

b

c

s

p

v

i

m

B

r

n

s
7. Evaluation results

7.1. Evaluation design

7.1.1. Data collection

We select two sets of product variants. These sets are Mobile

Media 2 (MM) and Health Watcher 3 (HW). We select these prod-

ucts due to the availability of their source codes, the availability of

architectural model for Mobile Media. This is way they were used

in many published research papers such as Tizzei et al. (2012) ;

Eyal Salman et al. (2015) . Our study considers 8 variants of MM

and 10 variants of HW. MM variants manipulate music, video and
2 Available at: http://ptolemy.cs.iastate.edu/design-study/#mobilemedia .
3 Available at: http://ptolemy.cs.iastate.edu/design-study/#healthwatcher .

v

c

l

v

Please cite this article as: A. Shatnawi et al., Recovering software produ

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
hoto on mobile phones. They are developed starting from the core

mplementation of MM. Then, the other features are added incre-

entally for each variant. HW variants are web-based applications

hat aim at managing health records and customer complaints. The

ize of each variant of MM and HW, in terms of classes, is shown

n Table 3 .

.1.2. Research questions and evaluation method

Our evaluation aims to show how the proposed approach is

pplied to identify the architectural variability and validating the

btained results. To this end, we applied it to the collected case

tudies. We utilize the ROMANTIC approach (Kebir et al., 2012b)

o extract architectural components from each variant indepen-

ently. Then, the components derived from all variants are clus-

ered to identify component variants. Next, we identify the archi-

ecture configurations of the products that are used as a formal

ontext to extract a concept lattice. Then, we extract the manda-

ory and optional components as well as the dependencies among

ptional components. Next, we present the results of identifying

roups of variability. Finally, we show the identified variability.

In order to evaluate the resulting architecture variability, we

tudy the following research questions:

• RQ1: What is the accuracy of the recovered architectural

variability? This research question focuses on measuring the

precision of the resulting architecture variability. This is done

by comparing it with a pre-existing architecture variability

model.
• RQ2: Are the identified dependencies correct? This research

question aims to measure the correctness of the identified com-

ponent dependencies.

.2. Results

.2.1. Component-based architecture extraction

Table 4 shows the results of component extraction from each

roduct variant independently, in terms of the number of compo-

ents, for each product variant of MM and HW. We check the ser-

ices provided by each group of classes based on their source code

ocumentation. The results show that classes related to the same

ervice are grouped into the same component. The difference in

he numbers of the identified components in each product variant

as resulted from the fact that each product variant has a different

et of user requirements. On average, a product variant contains

.25 and 7.7 main services respectively for MM and HW.

.2.2. Identifying component variants

Table 5 summarizes the results of component variants in terms

f the number of components having variants (NOCV), the average

umber of variants of a component (ANVC), the maximum num-

er of component variants (MXCV) and the minimum number of

omponent variants (MNCS). The results show that there are many

ets of components sharing most of their classes. Each set of com-

onents mostly provides the same service. Thus, they represent

ariants of the same architectural component. Table 6 presents an

nstance of 6 component variants identified from HW, where X

eans that the corresponding class is a member in the variant.

y analyzing these variants, it is clear that these components rep-

esent the same architectural component. In addition to that, we

oticed that there are some component variants having the same

et of classes in multiple product variants. For internal component

ariability, we provide the lattice that presents the distribution of

lasses composing the component variants, see Fig. 11 . From this

attice, we can note that there are 8 common classes between the

ariants. These represent the implementation of shared services.
ct line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://ptolemy.cs.iastate.edu/design-study/#mobilemedia
http://ptolemy.cs.iastate.edu/design-study/#healthwatcher
http://dx.doi.org/10.1016/j.jss.2016.07.039

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22 11

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Table 3

Size of MM variants and HW ones.

Variant no. 1 2 3 4 5 6 7 8 9 10 Avg.

No. of classes in MM 25 34 36 36 41 50 60 64 X X 43 .25

No. of classes in HW 115 120 132 134 136 140 144 148 160 167 136 .9

Table 4

Component extraction results.

Variant no. 1 2 3 4 5 6 7 8 9 10 Avg. Total

No. of components in MM variants 3 5 5 5 7 7 9 9 X X 6 .25 50

No. of components in HW variants 6 7 9 10 7 9 8 8 7 6 7 .7 77

Fig. 11. The distribution of classes composing the component variants.

Table 5

Component variants identification.

Name NOCV ANVC MXCV MNCV

MM 14 3 .57 8 1

HW 18 4 .72 10 1

A

n

t

7

v

a

t

t

t

a

a

i

T

Fig. 12. The concept lattice of MM architecture configurations.
dditionally, the distribution of variable classes is easy to recog-

ize. For example, the difference between Variant3 and Variant6 is

hat Variant6 has an additional variable class (i.e. Connection).

.2.3. Analyzing architecture configuration: communality and

ariability

The identification of component variants allows to identify the

rchitecture configurations. Table 7 and Table 8 show respectively

he configuration of MM and HW variants, where X means that

he component is a part of the product variants. The results show

hat the products are similar in their architectural configurations

nd differ considering other ones. The reason behind the similarity

nd the difference is in the fact that these products are common

n some of their user requirements and variable in some others.

hese architecture configurations are used as a formal context to
Please cite this article as: A. Shatnawi et al., Recovering software product line architecture of a family of object-oriented product variants,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

12 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Table 6

Instance of 6 component variants.

Class Name Variant 1 Variant 2 Variant 3 Variant 4 Variant 5 Variant 6

BufferedReader X X X X X X

ComplaintRepositoryArray X X X X X X

ConcreteIterator X X X X X X

DiseaseRecord X

IIteratorRMITargetAdapter X X X X X X

IteratorRMITargetAdapter X X X X X X

DiseaseType X

InputStreamReader X X X X X X

Employee X X

InvalidDateException X X X X

IteratorDsk X X X X X X

PrintWriter X X X X X

ObjectNotValidException X X X

RemoteException X X X

PrintStream X X X

RepositoryException X X

Statement X X X X X X

Throwable X X X

HWServlet X

Connection X X

Table 7

Architecture configuration for all MM variants.

Variant No. Com 1 Com 2 Com 3 Com 4 Com 5 Com 6 Com 7 Com 8 Com 9 Com 10 Com 11 Com 12 Com 13 Com 14

1 X X X

2 X X X X X

3 X X X X X

4 X X X X X

5 X X X X X X X

6 X X X X X X X

7 X X X X X X X X X

8 X X X X X X X X X

Table 8

Architecture configuration for all HW variants.

Variant No. Com 1 Com 2 Com 3 Com 4 Com 5 Com 6 Com 7 Com 8 Com 9 Com 10 Com 11 Com 12 Com 13 Com 14 Com 15 Com 16 Com 17 Com 18

1 X X X X X X

2 X X X X X X X

3 X X X X X X X X X

4 X X X X X X X X X X

5 X X X X X X X

6 X X X X X X X X X

7 X X X X X X X X

8 X X X X X X X X

9 X X X X X X X

10 X X X X X X

a

R

t

s

o

d

A

d

t

c

s

d

extract the concept lattice. We use the Concept Explorer 4 tool to

generate the concept lattice. We give the concept lattices of MM

and HW respectively in Fig. 12 and Fig. 13 .

In Table 9 , the numbers of mandatory and optional components

are given for MM and HW, together with examples of their asso-

ciation rules and component occurrence ratios. An example of an

association rule in MM is “when a configuration has Com 5 and

Com 8 , it is 86% likely to also contain Com 9 ”. The results show

that there are some components that represent the mandatory ar-

chitecture, while some others represent optional components.

7.2.4. Identifying components dependencies

The results of the identification of optional component depen-

dencies are given in Table 10 and Table 11 respectively for MM

and HW (Com 5 from MM and Com 2, Com 3 from HW are ex-

cluded since they are mandatory components). The dependencies
4 Presentation of the Concept Explorer tool is available in Yevtushenko (20 0 0)

7

w

Please cite this article as: A. Shatnawi et al., Recovering software produ

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
re represented between all pairs of components in MM (where

 = Require, E = Exclude, O = OR, RB = Required By, TR = Transi-

ive Require, TRB = Transitive Require By, and A = AND). Table 12

hows a summary of MM and HW dependencies between all pairs

f components. This includes the number of direct require depen-

encies (NRC), the number of exclude ones (NE), the number of

ND groups (NOA), and the number of OR groups (NO). Alternative

ependencies are represented as exclude ones. The results show

hat there are dependencies among components that help the ar-

hitect to avoid creating invalid configurations. For instance, a de-

ign decision of AND components indicates that these components

epend on each other, thus, they should be selected all together.

.2.5. Identifying groups of variability

Based on the identified mandatory and optional components as

ell as the dependencies among the optional ones, we use the
ct line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22 13

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Fig. 13. The concept lattice of HW architecture configurations.

Table 9

Mandatory and optional components.

Product Name MM HW

Mandatory 1 2

Optional 13 16

Some Association Rules Com 5, Com 8 = > Com 9 : 86% Com 2, Com 3, Com 11 = > Com 6 : 100%

Com 1, Com 5 = > Com 8, Com 9 : 80% Com 2, Com 3, Com 4 = > Com 6 : 86%

Com 5, Com 12 = > Com 8, Com 9, Com 11 : 100% Com 2, Com 3, Com 12 = > Com 4, Com 6, Com 7, Com 11 : 100%

Some Component Occurrence Ratio Component Ratio Component Ratio

Com 8 80% Com 6 90%

Com 12 38% Com 7 50%

Com 4 12% Com 14 20%

Table 10

Component dependencies of MM.

Com 1 Com 2 Com 3 Com 4 Com 6 Com 7 Com 8 Com 9 Com 10 Com 11 Com 12 Com 13 Com 14

Com 1 X R E E O E E E

Com 2 X E A RB R TR A RB RB

Com 3 RB E X E E O E E E

Com 4 A E X RB R TR A RB RB

Com 6 E R E R X TR TR E R E E A A

Com 7 E RB RB TRB X R O RB TRB TRB

Com 8 TRB O TRB TRB RB X RB TRB TRB TRB TRB TRB

Com 9 E O R X RB TRB E E

Com 10 A E A RB R TR X RB RB

Com 11 O E TR R X RB E E

Com 12 E E TR TR R X E E

Com 13 E R E R A TR TR E R E E X A

Com 14 E R E R A TR TR E R E E A X

Please cite this article as: A. Shatnawi et al., Recovering software product line architecture of a family of object-oriented product variants,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

14 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Table 11

Component dependencies of HW.

Com 1 Com 4 Com 5 Com 6 Com 7 Com 8 Com 9 Com 10 Com 11 Com 12 Com 13 Com 14 Com 15 Com 16 Com 17 Com 18

Com 1 X TR TR R ALT ALT E ALT ALT ALT ALT

Com 4 TRB X O RB RB TRB E E E RB RB RB

Com 5 X R O O O O E TRB E E E E

Com 6 TRB O RB X RB RB RB TRB RB TRB TRB TRB TRB E E E

Com 7 RB R O R X O O O RB E E E E E E

Com 8 O R O X O O E RB E E E E

Com 9 R O R O O X O E E E E E E E

Com 10 TR X R E RB E E E E E

Com 11 O R RB X RB TRB RB TRB E E E

Com 12 ALT TR E TR R E E E R X ALT E ALT ALT ALT ALT

Com 13 ALT E TR TR E R E R TR ALT X E ALT ALT ALT ALT

Com 14 E E TR E E E R E E X RB E E E

Com 15 ALT E E TR E E E E TR ALT ALT R X ALT ALT ALT

Com 16 ALT R E E E E E E E ALT ALT E ALT X A A

Com 17 ALT R E E E E E E E ALT ALT E ALT A X A

Com 18 ALT R E E E E E E E ALT ALT E ALT A A X

Fig. 14. The architecture variability trees of MM and HW.

Table 12

Summarization of MM and HW dependencies.

Name NDR NE NA NO

MM 17 20 6 3

HW 18 62 3 11

7

t

i

m

t

n

o

H

l

s

c
FeatureIDE 5 tool to visualize the tree in the form of a feature

model. Fig. 14 shows the trees of both MM and HW, where Com i

= > Com j refers to a required dependency, and ¬ (Com i ∧ Com j)
refers to an exclude one.

5 Presentation of the FeatureIDE tool is available in Thüm et al. (2014)

m

m

p

Please cite this article as: A. Shatnawi et al., Recovering software produ

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
.2.6. Architectural variability description

To the best of our knowledge, there is no architecture descrip-

ion language supporting all kinds of identified variability. The ex-

sting languages, like Hendrickson and van der Hoek (2007) , are

ainly focused on modeling component variants, links and in-

erfaces, while they do not support dependencies among compo-

ents such as AND-group, OR-group, and require. Thus, on the

ne hand, we use notations presented in Hendrickson and van der

oek (2007) to represent the concept of component variants and

inks’ variability. On the other hand, we propose notations in-

pired from feature modeling languages to model the dependen-

ies among components. For understandability concern, we docu-

ent the resulting components by assigning a name based on the

ost frequent tokens in their classes’ names. This is automatically

erformed using the lexical analysis of classes’ names. In many
ct line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22 15

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Fig. 15. Architectural variability model for MM.

c

c

a

t

b

a

a

c

c

S

A

7

7

v

a

t

p

t

p

n

m

e

i

O

1

i

m

h

o

f

c

m

d

a

i

t
ases, this was enough to produce meaningful names. In some

ases, we had to manually adapt the selected tokens to produce

 more appropriate component name. Fig. 15 shows the architec-

ural variability model identified for MM variants, where the large

oxes denote design decisions (dependencies). For instance, core

rchitecture refers to components that should be selected to create

ny concrete product architecture. In MM, there is one mandatory

omponent manipulating the base controller of the product. This

omponent has two variants. A group of Multi Media Stream, Video

creen Controller , and Multi Screen Music components represents an

ND design decision.

.3. Answering research questions

.3.1. RQ1: what is the accuracy of the recovered architectural

ariability?

In our case studies, MM is the only case study that has an

vailable architectural-model containing some variability informa-

ion. In Figueiredo et al. (2008) , the authors presented the as-

ect oriented architecture for MM variants. This contains informa-
Please cite this article as: A. Shatnawi et al., Recovering software produc

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
ion about which products added components, as well as in which

roduct a component implementation was changed (i.e. compo-

ent variants). We compare both models to validate the resulting

odel. We firstly check the number of components constituting

ach architecture model. On the first hand, we find that our model

s composed of 15 components, where each one has its variants.

n the other hand, we find that the other model is composed of

4 components with their variants. Then, we map each component

n our model to a corresponding component(s) in the pre-existing

odel based on services provided. If the mapped components both

ave variants, we consider that we correctly identify the variants

f these components.

Fig. 16 shows the results in terms of precision and recall metrics

or respectively (1) the identified components, (2) the identified

omponent variants, and (3) the correct labeling of components as

andatory or optional. The architecture description of mobile me-

ia (reference architecture) given in Figueiredo et al. (2008) being

spect-based, each component of this architecture represents an

mplemented aspect. Two kinds of aspects are represented, func-

ional/business and technical aspects. We note that components
t line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

16 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Fig. 16. The validation of MM architectural variability.

t

o

i

b

i

b

T

f

t

c

e

n

7

T

7

i

representing technical aspects (e.g., CommandListener component)

are related to implementation details. Thus, at the architectural

level, these components are typically embedded in components

representing functional/business aspects. They should not appear

at the same levels as the functional/business components. Software

architecture recovery approaches conform to this definition of ar-

chitecture and identify only the functional components (e.g., Allier

et al., 2011; Weinreich et al., 2012a; von Detten et al., 2013). The

ROMANRIC approach/tool that is used in our evaluation to recover

architecture of single software identifies only functional/business

components.

We compute the recall metric related to the identified compo-

nents by considering all components described in the preexisting

architecture model. In this context, the value of recall is 67%, i.e.,

we identified 67% of the reference components. These identified

components represent 100% of the functional/business aspect com-

ponents. This recall value is explained by the fact that the preex-

isting model describes additional components related to technical

aspects that are not identified by ROMANTIC.

We compute recall metric related to the identified component-

variants, and the correct labeling of components as mandatory or

optional by considering only functional/business components, i.e.,

we ignore the technical components because they are not related

to any architectural variability aspect.

Based on these results, the average precision and recall of the

recovered architectural variability are respectively 81% and 91%.

7.3.2. RQ2: are the identified dependencies correct?

The identification of component dependencies is based on the

occurrence of components. This method could provide additional

dependencies compared to the real ones. For example, an AND de-

pendency is generated for a group of components, when they are

constantly existing in the product architectures. However, these

components may coincidentally exist together, while they do not

have an AND dependency. To evaluate the accuracy of this method,

we manually validate the identified dependencies. This is based on

the services provided by the components. For instance, we check if

the component service(s) requires the service(s) of a required com-

ponent and so on. As an example of a real required dependency is

that SMS Controller component requires Invalid Exception one as it

performs an input/output operations. On the other hand, Image Util

component does not require Image Album Vector Stream one.
Please cite this article as: A. Shatnawi et al., Recovering software produ

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
Fig. 17 shows the correctness of component dependencies iden-

ification in terms of precision and recall. On the one hand, based

n the recall results (100% on average), our approach successfully

dentified all of architectural dependencies. On the second hand,

ased on the precision results (0.68% on average), our approach

dentified some additional superfluous dependencies that need to

e ignored. The reason is that our approach is statistical-based.

his means that the nature of the populations used as inputs af-

ects the obtained results. Each product has a different impact on

he results. This is based on the dependencies that its architecture

ould add to the recovered SPLA. To reduce the number of gen-

rated superfluous dependencies and improve the precision, the

umber of product variants to be studied should be increased.

.4. Threats to validity

Two types of threats to validity concern the proposed approach.

hese are internal and external.

.4.1. Threats to internal validity

The following three aspects have to be considered regarding the

nternal validity.

1. We use a static analysis technique to analyze the source code of

the product variants. However, this analysis affects our results

by two axes. The first one is that it does not address polymor-

phism and dynamic binding. Still in object-oriented, the most

important dependencies are realized through method calls and

access attributes. Thus, not dealing with polymorphism and dy-

namic binding does not have a high impact on the general

results of our approach. The second effect is that the analy-

sis does not differentiate the used and unused source code.

This may introduce noise dependencies. However, this situa-

tion rarely exists in the case of well-designed and implemented

software. In contrast, dynamic analysis addresses all of these

limitations. Nevertheless, the challenge with dynamic analysis

is to identify all use cases of software.

2. Our approach uses as input software architectures correspond-

ing to multiple product variants of a software family. These

architectures can be either the results of a forward-design or

a recovery process. In the latter, many software architecture

recovery (SAR) approaches can be used to identify the input

of our SPLA recovery approach. Two criteria, however, need
ct line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22 17

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

Fig. 17. The validation of component dependency correctness.

7

n

8

a

8

p

8

to be considered. The first one is related to the accuracy of

the SAR approach. As the accuracy of the SPLA recovery pro-

cess depends on the accuracy of the SAR approach, it is impor-

tant to use a SAR approach with high accuracy. Some of these

SAR approaches with high accuracy are cited in Garcia et al.

(2013) and Lutellier et al. (2015) . The second criterion is the ar-

chitecture style. We consider as a valid input of our SPLA re-

covery approach architectures that are described in terms of

component, where each component is implemented as a set

of object-oriented classes. Considering these two criteria, man-

ual adaptation may be needed to enhance the recovered archi-

tectures used as input of our SPLA recovery approach. For the

evaluation of our approach, we relied on the ROMANTIC ap-

proach to individually recover software architectures of each

single product variant based on the analysis of their source

code. This may produce a threat to validity since that ROMAN-

TIC does not provide 100% accuracy.

3. We evaluate ourselves the research questions. For the first

question, the identified architecture variability is compared to

the existing model. For the second question, we check the com-

ponent services to evaluate the identified dependencies. The

authors of this paper are familiar with the case studies since

they studied it in many previous research projects, such as

Eyal Salman et al. (2015) and Al-Msie’deen et al. (2014) .

.4.2. Threats to external validity

The two aspects that have to be considered regarding the exter-

al validity are:

1. The proposed approach is evaluated through product variants

that are implemented in Java . However, the obtained results

can be generalized for any object-oriented language. The reason

behind this generalization is that all object-oriented languages

(e.g. C++ and C #) are structured in terms of classes and their re-

lationships are realized through method calls, access attributes,

etc.

2. We applied our approach on two case studies; Mobile Media

and Health Watcher. We selected them due to the fact that

they have a number of variants may reflect the need to migrate

to product lines, the availability of their source codes and the

availability of a representative model for architectural variabil-
Please cite this article as: A. Shatnawi et al., Recovering software produc

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
ity of Mobile Media. For these same reasons, these case studies

were also used in many researches related to product lines.

. Discussion

In this section, we discuss the pros and cons of the proposed

pproach.

.1. Pros

We highlight the following advantages of the proposed ap-

roach:

1. It follows a fully-automatic process that does not need any

manual interaction from software architects. Thus it can be ap-

plied for product variants where software architects are not

available.

2. The only input required for our approach is source codes which

is always available. Thus it can be applied for any product vari-

ants wherever the other software artifacts are available or not.

3. The approach is designed based on exploiting pre-proven algo-

rithms, like breadth first search and formal concept analysis.

4. In the literature, no one recovers the whole SPLA. Our approach

fills this gap by recovering the architecture variability concern-

ing both component, configuration and component dependen-

cies.

5. Our approach is scalable for large product variants knowing the

complexity of the used algorithms. All of these algorithms re-

quire a polynomial time. For examples, breadth first search re-

quires is O(V+E) , hierarchical clustering algorithm is O(n 2) , other

algorithms with linear loops are O(n) . For generating FCA lat-

tice, a scalable version of AOCpoest algorithm was proposed in

Berry et al. (2014) .

.2. Cons

We identify the following limitations:

1. Component variants are identified based on the textual simi-

larity between the classes composing the components. In some

situations, a set of components may be implemented through
t line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

18 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

9

t

sets of classes that are textually similar, but they are com-

pletely unrelated. However, in the case of product variants de-

veloped using a copy-paste-modify technique, the modification

is mainly composed of method overriding, adding or deleting,

but the main services are always the same ones. In this con-

text, we recommend to investigate other techniques, like Clone

Detection and Latent Semantic Indexing.

2. Dependencies among components are identified based on com-

ponent occurrences in the product architectures. This means

that if the product variants included in the study are changed

the resulting SPLA maybe also changed. For this point, we rec-

ommend to select product variants that cover a large number

of dependencies. In addition, we propose to invest new source

of information for the identification process, like feature model

which contains the dependencies at the requirement level.

3. In our analysis, we only focus on component and configu-

ration variability. This means that connectors are not taken

into account during the reverse engineering process. We based

ourselves on the fact that connectors are not considered as

first class concepts in many architecture description languages

such as Magee and Kramer (1996) Luckham (1996) Canal et al.

(1999) .

4. Refactored methods do not have a special manipulation. This

may only affect our analysis process in interface variability

identification step where we only focus on methods similarities.

On the other hand, the other steps relied on class and compo-

nent similarities. For example, during the identification of com-

ponent variants, refactored methods do not affect our approach

if they still belong to the same component. In addition, there

is some refactoring cases that do not affect our approach. For

instance, renamed methods or changed parameters do not have

any impacts on the approach since the have the same imple-

mentations.

9. Related work

In this section, we discuss works related to reverse engineering

software architectures research area. We provide our classification

schema of the related approaches. Next, we provide a summariza-

tion of approaches aimed to identify SPLA.

9.1. Classification schema

In the literature, existing architecture identification approaches

can be mainly classified based on three axes; the required input,

the applied process and the obtained output.

9.1.1. The input of identification approaches

It can be source codes, documentations and human expert

knowledge.

• Source code is used to identify the system structure, i.e.,

high cohesive and low coupling parts, by analysis relationships

among classes. Classes are grouped into disjoint clusters, such

that each cluster represents a component of an architecture

view (Chardigny et al., 2008b; von Detten et al., 2013; Erdemir

et al., 2011; Adjoyan et al., 2014). Some approaches allow the

overlapping between the clusters (Mende et al., 2008; Shatnawi

and Seriai, 2013; Shatnawi et al., 2016; 2015a).
• Software documentations are used to reduce the search space.

For example, use cases are used to derive scenarios for dynamic

analysis (Allier et al., 2011) or to extract a set of business func-

tional components (Chardigny et al., 2008b). Some approaches

used configuration files to extract information about the pre-

vious architecture (Weinreich et al., 2012b). Design documents

are used to provide information about how components have
Please cite this article as: A. Shatnawi et al., Recovering software produ

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
been designed (Kolb et al., 2006). Class diagrams is used to

identify the structural and behavioral dependencies among the

system classes (Hamza, 2009).
• Human expert knowledge is used to select the main architec-

ture view that needs to be the core of SPLA (Pinzger et al.,

2004), to guide the identification by classifying the architecture

units and identifying the dependencies among the components

(Kang et al., 2005), or to add a new architectural information

that is not immediately evident from source codes.
• A combination of different input resources can be used. For ex-

ample, a combination is made to invest human expert knowl-

edges to analyze and modify the resulted architecture (Erdemir

et al., 2011). Another example is the usage of previous archi-

tectural information to guide of the identification approaches

(Weinreich et al., 2012b; Pinzger et al., 2004).

.1.2. The process of identification approaches

It is mainly composed of five aspects; algorithm applied, au-

omation degree, process direction and analysis type.

• Several algorithms are used by existing approaches. These can

be classified mainly into five types; search-based, clustering,

FCA, clone detection, and authors defined heuristics. Exist-

ing approaches mainly used two kinds of search-based algo-

rithms to partition classes. These are genetic algorithm (Kebir

et al., 2012a) and simulating annealing (Chardigny et al., 2008b)

or a combination of them Allier et al. (2011) . Clustering al-

gorithms used by von Detten et al. (2013) ; Boussaidi et al.

(2012) ; Erdemir et al. (2011) ; Adjoyan et al. (2014) . Formal Con-

cept Analysis (FCA) is used as a clustering technique by Allier

et al. (2009) to cluster object-oriented classes and by Hamza

(2009) to partition software requirements into functional com-

ponents. Clone detection algorithms are used to identify peaces

of source codes that exist in many product variants to recover

SPLA (Koschke et al., 2009; Frenzel et al., 2007). In Kolb et al.

(2006) , the authors used clone detection algorithms to iden-

tify similar components that could integrate the variability. In

Mende et al. (20 08) ; 20 09), it is used to identify pairs of func-

tions sharing most of their implementation. Some approaches

proposed their own heuristic algorithms, instead of using pre-

defined algorithms (Weinreich et al., 2012b; Kang et al., 2005;

Pinzger et al., 2004).
• The automation of identification process refers to the degree in

which this process needs human expert interactions. It can be

manual, semi-automatic and full automatic process. Manual ap-

proaches fully depend on human experts. These ones only pro-

vide guides for the software architects (Wu et al., 2011; Lan-

gelier et al., 2005). Semi-automatic approaches need human

expert recommendations to perform their tasks (Kang et al.,

2005). In Pinzger et al. (2004) , the authors relies on human

experts to select the main architecture view that needs to be

the core of SPLA and to manually analyze design documents. In

Erdemir et al. (2011) , software architects need to interact with

the approach steps. Full-automated approaches do not have a

high impact of human interactions on their results. For exam-

ple, software architects need to determine some threshold val-

ues (Kebir et al., 2012a; Mende et al., 2008; Shatnawi et al.,

2016; 2015a; Adjoyan et al., 2014).
• The process of identification approaches can be performed in

three directions. These are top-down, bottom-up and hybrid

directions. Top-down process partitions software requirements

into architectural components (Hasheminejad and Jalili, 2015).

Bottom-up process starts from source codes to extract software

architectures (Boussaidi et al., 2012; Adjoyan et al., 2014; Kang

et al., 2005; Koschke et al., 2009; Frenzel et al., 2007; Shatnawi

et al., 2016; 2015a). Hybrid process refers to the analysis of
ct line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22 19

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

9

s

p

e

c

T

r

9

o

t

w

s

a

w

t

t

p

d

t

(

s

t

H

t

g

o

i

T
a

b
le

1

3

T
h

e

re

su
lt

s
o

f
re

la
te

d

w

o
rk

cl

a
ss

ifi
ca

ti
o

n
.

A
p

p
ro

a
ch

In

p
u

t
P

ro
ce

ss

O
u

tp
u

t

C
o

d
e

D
o

c.

E
x

p
.

k
n

o
w

le
d

g
e

A
lg

o
ri

th
m

A
u

to
m

a
ti

o
n

D
ir

e
ct

io
n

A
n

a
ly

si
s

S
in

g
le

so

ft
w

a
re

S
P

L
A

O
u

r
a

p
p

ro
a

ch

X

F
C

A
,

cl
u

st
e

ri
n

g

&

B

F
S

Fu
ll

B
o

tt
o

m
-u

p

S
ta

ti
c

C
o

m
p

le
te

S

P
L

A

C
h

a
rd

ig
n

y

e

t
a

l.

(2

0
0

8
b
)

X

X

S
im

u
la

ti
n

g

a

n
n

e
a

li
n

g

Fu
ll

B
o

tt
o

m
-u

p

S
ta

ti
c

X

v
o

n

D

e
tt

e
n

e

t
a

l.

(2

0
1

3
)

X

C
lu

st
e

ri
n

g

Fu
ll

B
o

tt
o

m
-u

p

S
ta

ti
c

X

E
rd

e
m

ir

e

t
a

l.

(2

0
11

)
X

X

C
lu

st
e

ri
n

g

S
e

m
i

B
o

tt
o

m
-u

p

S
ta

ti
c

X

A
d

jo
y

a
n

e

t
a

l.

(2

0
1

4
)

X

C
lu

st
e

ri
n

g

Fu
ll

B
o

tt
o

m
-u

p

S
ta

tc
i

X

A
ll

ie
r

e
t

a
l.

(2

0
11

)
X

X

G
e

n
e

ti
c

&

si

m
u

la
ti

n
g

a

n
n

e
a

l.

Fu
ll

H
y

b
ri

d

S
ta

ti
c,

D

y
n

.
X

M
e

n
d

e

e

t
a

l.

(2

0
0

8
)

X

C
lo

n
e

d

e
te

ct
io

n

Fu
ll

B
o

tt
o

m
-u

p

S
ta

ti
c,

le

x
.

R
e

u
sa

b
le

co

m
p

o
n

e
n

ts

S
h

a
tn

aw
i

e
t

a
l.

(2

0
1

6
)

X

Fr
e

q
u

e
n

t
u

sa
g

e

p

a
tt

e
rn

s
Fu

ll

B
o

tt
o

m
-u

p

S
ta

ti
c,

le

x
.

X

W
e

in
re

ic
h

e

t
a

l.

(2
0

1
2

b
)

X

X

A
u

th
o

rs

h

e
u

ri
st

ic

Fu
ll

H
y

b
ri

d

S
ta

ti
c

K
o

lb

e

t
a

l.

(2

0
0

6
)

X

X

C
lo

n
e

d

e
te

ct
io

n

Fu
ll

B
o

tt
o

m
-u

p

S
ta

ti
c,

le

x
.

C
o

m
.

v
a

ri
a

n
ts

H
a

m
za

(2

0
0

9
)

X

F
C

A

Fu
ll

To
p

-d
o

w
n

D
y

n
.

X

P
in

zg
e

r
e

t
a

l.

(2

0
0

4
)

X

X

A
u

th
o

rs

h

e
u

ri
st

ic

S
e

m
i

B
o

tt
o

m
-u

p

S
ta

ti
c,

d

y
n

.,
le

x
.

C
o

m
.

v
a

ri
a

b
il

it
y

K
a

n
g

e

t
a

l.

(2

0
0

5
)

X

X

A
u

th
o

rs

h

e
u

ri
st

ic

S
e

m
i

B
o

tt
o

m
-u

p

S
ta

ti
c

C
o

m
.

v
a

ri
a

b
il

it
y

&

d

e
p

.

K
e

b
ir

e

t
a

l.

(2

0
1

2
a
)

X

G
e

n
e

ti
c

&

cl

u
st

e
ri

n
g

Fu
ll

B
o

tt
o

m
-u

p

S
ta

ti
c

X

A
ll

ie
r

e
t

a
l.

(2

0
0

9
)

X

X

F
C

A

S
e

m
i

H
y

b
ri

d

D
y

n
.

X

K
o

sc
h

k
e

e

t
a

l.

(2

0
0

9
)

X

C
lo

n
e

d

e
te

ct
io

n

S
e

m
i

B
o

tt
o

m
-u

p

S
ta

ti
c,

le

x
.

C
o

m
.

v
a

ri
a

n
ts

&

v

a
ri

a
b

il
it

y

software requirements (top-down) and source codes (bottom-

up) to identify the corresponding software architecture (Allier

et al., 2009).
• Analysis type can be static, dynamic or lexical. Static analysis is

performed without executing software (Pinzger et al., 2004; Ke-

bir et al., 2012a; Weinreich et al., 2012b; Boussaidi et al., 2012;

Shatnawi et al., 2016; 2015a). Dynamic analysis is performed by

examining software at the run time (Allier et al., 2009). Lexical

analysis refers to the textual analysis of source codes (Koschke

et al., 2009; Frenzel et al., 2007; Mende et al., 20 08; 20 09; Kolb

et al., 2006; Shatnawi et al., 2016; 2015a).

.1.3. The output of identification approaches

It can be software architecture for single software or multiple

oftware (SPLA).

• Most of the existing approaches identify the software architec-

ture of single software (Erdemir et al., 2011; Hamza, 2009; Ke-

bir et al., 2012a; Allier et al., 2011; Weinreich et al., 2012b).

Some approaches provide a documentation about the extracted

architecture (Ducasse and Pollet, 2009; von Detten et al., 2013).

Some others support hierarchical architecture by providing

a multi-layer architecture (Boussaidi et al., 2012). Some ap-

proaches tackled the problem of refactoring object-oriented

code to be conform to a recovered component-based archi-

tecture. As a result, the recovered architecture can be imple-

mented in component-based language such as OSGI, SOFA, etc.

Alshara et al. (2015) and Alshara et al. (2016) are examples of

these approaches.
• SPLA is recovered in terms of identifying component variants

(Kolb et al., 2006; Koschke et al., 2009; Frenzel et al., 2007),

component variability (Pinzger et al., 2004; Kang et al., 2005;

Koschke et al., 2009; Frenzel et al., 2007), and dependencies be-

tween components (Kang et al., 2005). Some approaches identi-

fied reusable components from the source code of a set of prod-

uct variants (Mende et al., 2008; 2009).

Table 13 presents the classification results of some related ap-

roaches based on the proposed classification schema. In Lutellier

t al. (2015) and Garcia et al. (2013) , the authors evaluated and

ompared some of the existing architecture recovery approaches.

his aims to allows software architects to select the appropriate

ecovery approach.

.2. SPLA identification approaches

Existing approaches suffer from two main limitations. The first

ne is that the architecture variability is partially addressed since

hey recover only some variability aspects, no one recovers the

hole SPLA. The second one is that they are not fully-automatic

ince they rely on expert domain knowledge which is not always

vailable.

In Koschke et al. (2009) , an approach aiming to recover SPLA

as presented. It identifies component variants based on the de-

ection of cloned code among the products. However, the limita-

ion of this approach is that it is semi-automated, while our ap-

roach is fully automated. Moreover, it does not identify depen-

encies among the components. In Kang et al. (2005) , the au-

hors presented an approach to reconstruct Home Service Robots

HSR) products into an SPL. Although this approach identifies

ome architectural variability, it has some limitations compared

o our approach. For instance, it is specialized on the domain of

SR as the authors classified, at an earlier stage, the architec-

ural units based on three categories related to HSR. These cate-

ories guide the identification process. In addition, they only rely

n the feature modeling language (hierarchical trees) to realize the

dentified variability, this is not efficient since it is not able to
Please cite this article as: A. Shatnawi et al., Recovering software product line architecture of a family of object-oriented product variants,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

20 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

1

r

R

A

A

A

A

A

A

B

B

B

C

C

C

C
C
represent the configuration of architectures. The software archi-

tect plays the main role to identify the architecture of each sin-

gle product and the dependencies among components. In some

cases, the software architect is not always available. The authors

in Acher et al. (2011) proposed an approach to reverse engineering

architectural feature model. This is based on the software archi-

tect’s knowledge, the architecture dependencies, and the feature

model that is extracted based on a reverse engineering approach

presented in She et al. (2011) . The idea, in Acher et al. (2011) , is

to take the software architect’s variability point of view in the ex-

tracted feature model (i.e. still at the requirement level); this is

why it is named architecture feature model. However, the major

limitations of this approach are, firstly, that the software archi-

tect is not available in most cases of legacy software, and secondly

that the architecture dependencies are generally missing as well.

In Pinzger et al. (2004) , an approach is presented to recover SPLA

of a family of software product variants. For each software product,

it recovers a set of architecture views from the source code. Then,

based on the software architect and documentations, they select

one representative architecture view. Next, architecture views cor-

responding to all software products are analyzed to identify the

community and the variability. The authors select one architecture

view that represents the core of SPLA. Then, variation points re-

sulted from the other products are incrementally added.

Another approaches are presented to identify reusable compo-

nents based on the analysis of object-oriented product variants in-

stead of SPLA recovery. In Shatnawi and Seriai (2013) , the authors

presented an approach to extract reusable software components

based on identifying the similarity between components identified

independently from each software. This approach can be related

only to the first step of our approach (i.e. grouping similar compo-

nents). In Mende et al. (20 08) ; 20 09), the authors presented an ap-

proach that aims to identify reusable components based on a clone

detection algorithm to identify pairs of functions that share most

of their implementation. Levenshtein metric is then used to mea-

sure the exact lexical similarity between the functions. Next, the

functions are considered as nodes in a graph, while links connect-

ing them are the lexical similarity value. Finally, nodes, i.e. func-

tions, are aggregated into a high level to identify a set of functions

that can be formed as a component. In Duszynski et al. (2011) , an

approach was presented to visually analyze the distribution of vari-

ability and commonality among the source code of product vari-

ants. The analysis includes multi-level of abstractions (e.g. line of

code, method, class, etc.). This aims to facilitate the interpretation

of variability distribution, to support identifying reusable entities.

10. Conclusion and future work

10.1. Conclusion

In SPLA, the variability is mainly represented in terms of com-

ponents and configurations. In the case of migrating product vari-

ants to an SPL, identifying the architecture variability among the

product variants is necessary to facilitate the software architect’s

tasks. Thus, in this paper, we proposed an approach to recover the

architecture variability of a set of product variants. The recovered

variability includes mandatory and optional components, the de-

pendencies among components, the variability of component-links,

and component variants. We relied on FCA to analyze the variabil-

ity. Then, we proposed two heuristics. The former is to identify the

architecture variability. The latter is to identify the architecture de-

pendencies.

The proposed approach was validated through two sets of prod-

uct variants derived from Mobile Media and Health Watcher soft-

ware. The results showed that our approach can identify the archi-

tectural variability and the dependencies as well.
Please cite this article as: A. Shatnawi et al., Recovering software produ

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
0.2. Future work

There are many future directions that can be indicated for this

esearch. These include:

1. Mapping the requirement variability and the architecture

variability. In the case of reengineering an SPL from product

variants, mapping the identified architectural variability with

the requirement variability is an important task. Thus, we plan

to extend the identified SPLA by mapping it to the feature

model which realizes the variability at the requirement level.

2. Developing a visual environment. The presented approach can

be extended by providing a visual environment, such that soft-

ware architects are allowed to interact with the approach at

each step of the identification process and modify the obtained

results when needed.

3. Experimenting with a large number of case studies. Our ap-

proach is statistical-based. This means that the quality and the

size of the input populations (products variants) impact the re-

sulting SPLA. For example, each product has its impact on the

results by considering dependencies included in its architecture.

These dependencies can be redundant between many product

architectures. However, certain dependencies can be only in-

cluded on some product architectures. Thus, we plan to extend

the evaluation of the proposed approach by conducting more

case studies which have different product variants.

4. Validating our approach by third-party human experts. We

plan to evaluate our approach by third-party human experts.

eferences

cher, M. , Cleve, A. , Collet, P. , Merle, P. , Duchien, L. , Lahire, P. , 2011. Reverse
engineering architectural feature models. In: Software architecture. Springer,

pp. 220–235 .
djoyan, S. , Seriai, A. , Shatnawi, A. , 2014. Service identification based on quality

metrics - object-oriented legacy system migration towards SOA. In: The 26th

international conference on software engineering and knowledge engineering,
Hyatt Regency, Vancouver, BC, Canada, July 1-3, 2013., pp. 1–6 .

Al-Msie’deen, R. , Huchard, M. , Seriai, A.-D. , Urtado, C. , Vauttier, S. , 2014. Automatic
documentation of [mined] feature implementations from source code elements

and use-case diagrams with the revpline approach. International Journal of Soft-
ware Engineering and Knowledge Engineering 24 (10), 1413–1438 .

llier, S. , Sadou, S. , Sahraoui, H. , Fleurquin, R. , 2011. From object-oriented applica-

tions to component-oriented applications via component-oriented architecture.
In: Proceedings of 9th WICSA. IEEE, pp. 214–223 .

llier, S. , Sahraoui, H.A. , Sadou, S. , 2009. Identifying components in object-oriented
programs using dynamic analysis and clustering. In: Proceedings of the 2009

conference of the center for advanced studies on collaborative research. IBM
Corp., pp. 136–148 .

lshara, Z., Seriai, A.-D., Tibermacine, C., Bouziane, H.L., Dony, C., Shatnawi, A., 2015.

Migrating large object-oriented applications into component-based ones: In-
stantiation and inheritance transformation. In: Proceedings of the 2015 ACM

SIGPLAN international conference on generative programming: Concepts and
experiences. ACM, New York, NY, USA, pp. 55–64. doi: 10.1145/2814204.2814223 .

lshara, Z. , Seriai, A.-D. , Tibermacine, C. , Bouziane, H.L. , Dony, C. , Shatnawi, A. , 2016.
Materializing architecture recovered from object-oriented source code in com-

ponent-based languages. In: Proceedings of European conference on software

architecture . Copenhagen, Denmark.
erger, C. , Rendel, H. , Rumpe, B. , 2010. Measuring the ability to form a product line

from existing products. In: Proceedings of the fourth international workshop on
variability modelling of software-intensive systems, pp. 151–154 .

erry, A. , Gutierrez, A. , Huchard, M. , Napoli, A. , Sigayret, A. , 2014. Hermes: a simple
and efficient algorithm for building the aoc-poset of a binary relation. Annals of

Mathematics and Artificial Intelligence 72 (1-2), 45–71 .

oussaidi, G., Belle, A., Vaucher, S., Mili, H., 2012. Reconstructing architectural views
from legacy systems. In: 2012 19th working conference on reverse engineering

(WCRE), pp. 345–354. doi: 10.1109/WCRE.2012.44 .
anal, C. , Pimentel, E. , Troya, J.M. , 1999. Specification and refinement of dynamic

software architectures. In: Software architecture. Springer, pp. 107–125 .
hardigny, S. , Seriai, A. , Oussalah, M. , Tamzalit, D. , 2008a. Extraction of compo-

nent-based architecture from object-oriented systems. In: Proceedings of 7th
WICSA,. IEEE, pp. 285–288 .

hardigny, S. , Seriai, A. , Oussalah, M. , Tamzalit, D. , 2008b. Search-based extraction

of component-based architecture from object-oriented systems. In: Software ar-
chitecture. Springer, pp. 322–325 .

lements, P. , Northrop, L. , 2002. Software product lines: Practices and patterns .
ormen, T.H. , Leiserson, C.E. , Rivest, R.L. , Stein, C. , 2009. Introduction to algorithms.

MIT Press .
ct line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0001
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0002
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0003
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0004
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0005
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0005
http://dx.doi.org/10.1145/2814204.2814223
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0007
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0008
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0009
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0009
http://dx.doi.org/10.1109/WCRE.2012.44
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0011
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0012
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0013
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0014
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0015
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0015
http://dx.doi.org/10.1016/j.jss.2016.07.039

A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22 21

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

D

v

D

D

D

E

E

F

F

G

G

G

H

H

H

H

K

K

K

K

K

K

K

L

L

L

L

M

M

M

N

P

P

S

S

S

S

S

T

T

T

W

W

W

Y

eBaud, J.-M. , Flege, O. , Knauber, P. , 1998. Pulse-dssa-a method for the development
of software reference architectures. In: Proceedings of the third international

workshop on software architecture. ACM, pp. 25–28 .
on Detten, M. , Platenius, M.C. , Becker, S. , 2013. Reengineering component-based

software systems with archimetrix. Software & Systems Modeling 1–30 .
ubinsky, Y. , Rubin, J. , Berger, T. , Duszynski, S. , Becker, M. , Czarnecki, K. , 2013. An

exploratory study of cloning in industrial software product lines. In: Software
maintenance and reengineering (CSMR), 2013 17th European conference on.

IEEE, pp. 25–34 .

ucasse, S. , Pollet, D. , 2009. Software architecture reconstruction: A process-ori-
ented taxonomy. Software Engineering, IEEE Transactions on 35 (4), 573–591 .

uszynski, S. , Knodel, J. , Becker, M. , 2011. Analyzing the source code of mul-
tiple software variants for reuse potential. In: Proceedings of WCRE. IEEE,

pp. 303–307 .
rdemir, U. , Tekin, U. , Buzluca, F. , 2011. Object oriented software clustering based

on community structure. In: 2011 18th Asia pacific software engineering con-

ference (APSEC). IEEE, pp. 315–321 .
yal Salman, H. , Seriai, A.-D. , Dony, C. , 2015. Feature-level change impact analysis

using formal concept analysis. International Journal of Software Engineering and
Knowledge Engineering 25 (01), 69–92 .

igueiredo, E. , Cacho, N. , Sant’Anna, C. , Monteiro, M. , Kulesza, U. , Garcia, A. ,
Soares, S. , Ferrari, F. , Khan, S. , Dantas, F. , et al. , 2008. Evolving software prod-

uct lines with aspects. In: Proceedings of 8th ICSE. IEEE, pp. 261–270 .

renzel, P. , Koschke, R. , Breu, A.P. , Angstmann, K. , 2007. Extending the reflexion
method for consolidating software variants into product lines. In: 14th Work-

ing Conference on Reverse Engineering (WCRE). IEEE, pp. 160–169 .
anter, B. , Wille, R. , 1996. Formal concept analysis. Wissenschaftliche

Zeitschrift-Technischen Universitat Dresden 45, 8–13 .
arcia, J. , Ivkovic, I. , Medvidovic, N. , 2013. A comparative analysis of software ar-

chitecture recovery techniques. In: Automated software engineering (ASE), 2013

IEEE/ACM 28th international conference on. IEEE, pp. 4 86–4 96 .
omaa, H., 2005. Designing software product lines with uml. In: Software engi-

neering workshop - tutorial notes, 2005. 29th annual IEEE/NASA, pp. 160–216.
doi: 10.1109/SEW.2005.5 .

amza, H.S. , 2009. A framework for identifying reusable software components us-
ing formal concept analysis. In: Sixth international conference on information

technology: New generations (ITNG), 2009. IEEE, pp. 813–818 .

an, J. , Kamber, M. , Pei, J. , 2006. Data mining: concepts and techniques. Morgan
Kaufmann .

asheminejad, S. , Jalili, S. , 2015. Ccic: Clustering analysis classes to identify software
components. Information and Software Technology 57, 329–351 .

endrickson, S.A., van der Hoek, A., 2007. Modeling product line architectures
through change sets and relationships. In: Proceedings of the 29th international

conference on software engineering. IEEE Computer Society, Washington, DC,

USA, pp. 189–198. doi: 10.1109/ICSE.2007.56 .
ang, K.C. , Cohen, S.G. , Hess, J.A. , Novak, W.E. , Peterson, A.S. , 1990. Feature-oriented

domain analysis (FODA) feasibility study. Technical Report. DTIC Document .
ang, K.C. , Kim, M. , Lee, J. , Kim, B. , 2005. Feature-oriented re-engineering of legacy

systems into product line assets–a case study. In: Software product lines.
Springer, pp. 45–56 .

ebir, S. , Seriai, A.-D. , Chaoui, A. , Chardigny, S. , 2012a. Comparing and combining
genetic and clustering algorithms for software component identification from

object-oriented code. In: Proceedings of the fifth international C ∗ conference on

computer science and software engineering. ACM, pp. 1–8 .
ebir, S. , Seriai, A.-D. , Chardigny, S. , Chaoui, A. , 2012b. Quality-centric approach for

software component identification from object-oriented code. In: Proceedings
of WICSA/ECSA,. IEEE, pp. 181–190 .

olb, R. , Muthig, D. , Patzke, T. , Yamauchi, K. , 2006. Refactoring a legacy component
for reuse in a software product line: a case study. Journal of Software Mainte-

nance and Evolution: Research and Practice 18 (2), 109–132 .

oschke, R. , Frenzel, P. , Breu, A.P. , Angstmann, K. , 2009. Extending the reflexion
method for consolidating software variants into product lines. Software Qual-

ity Journal 17 (4), 331–366 .
rueger, C. , 2002. Easing the transition to software mass customization. In: Software

product-family engineering. Springer, pp. 282–293 .
angelier, G. , Sahraoui, H. , Poulin, P. , 2005. Visualization-based analysis of quality

for large-scale software systems. In: Proceedings of the 20th IEEE/ACM interna-

tional conference on automated software engineering. ACM, pp. 214–223 .
Please cite this article as: A. Shatnawi et al., Recovering software produc

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.
inden, F.J.v.d. , Schmid, K. , Rommes, E. , 2007. Software product lines in action: The
best industrial practice in product line engineering. Springer-Verlag New York,

Inc., Secaucus, NJ, USA .
uckham, D. , 1996. Rapide: A language and toolset for simulation of distributed sys-

tems by partial orderings of events .
utellier, T. , Chollak, D. , Garcia, J. , Tan, L. , Rayside, D. , Medvidovic, N. , Kroeger, R. ,

2015. Comparing software architecture recovery techniques using accurate de-
pendencies. In: 2015 IEEE/ACM 37th IEEE international conference on software

engineering, 2. IEEE, pp. 69–78 .

agee, J. , Kramer, J. , 1996. Dynamic structure in software architectures. ACM SIG-
SOFT Software Engineering Notes 21 (6), 3–14 .

ende, T. , Beckwermert, F. , Koschke, R. , Meier, G. , 2008. Supporting the
grow-and-prune model in software product lines evolution using clone detec-

tion. In: 12th European conference on software maintenance and reengineering
(CSMR). IEEE, pp. 163–172 .

ende, T. , Koschke, R. , Beckwermert, F. , 2009. An evaluation of code similarity iden-

tification for the grow-and-prune model. Journal of Software Maintenance and
Evolution: Research and Practice 21 (2), 143–169 .

akagawa, E.Y. , Antonino, P.O. , Becker, M. , 2011. Reference architecture and prod-
uct line architecture: a subtle but critical difference. In: Software architecture.

Springer, pp. 207–211 .
inzger, M. , Gall, H. , Girard, J.-F. , Knodel, J. , Riva, C. , Pasman, W. , Broerse, C. , Wijn-

stra, J.G. , 2004. Architecture recovery for product families. In: Software produc-

t-family engineering. Springer, pp. 332–351 .
ohl, K. , Böckle, G. , Van Der Linden, F. , 2005. Software product line engineering, 10.

Springer .
hatnawi, A. , Seriai, A. , Sahraoui, H. , Al-Shara, Z. , 2015a. Mining software compo-

nents from object-oriented apis. In: Software reuse for dynamic systems in the
cloud and beyond - 14th international conference on software reuse, ICSR 2015.

Springer, pp. 330–347 .

hatnawi, A ., Seriai, A ., Sahraoui, H.A ., 2015b. Recovering architectural variability
of a family of product variants. In: Software reuse for dynamic systems in the

cloud and beyond - 14th international conference on software reuse, ICSR2015,
pp. 17–33. doi: 10.1007/978- 3- 319- 14130- 5 _ 2 . Miami, FL, USA.

hatnawi, A., Seriai, A.-D., 2013. Mining reusable software components from object-
oriented source code of a set of similar software. In: Proceedings of IEEE 14th

international conference on information reuse and integration (IRI), pp. 193–

200. doi: 10.1109/IRI.2013.6642472 .
hatnawi, A . , Seriai, A .-D. , Sahraoui, H. , Alshara, Z. , 2016. Reverse engineering

reusable software components from object-oriented apis. Journal of Systems
and Software .

he, S. , Lotufo, R. , Berger, T. , Wasowski, A. , Czarnecki, K. , 2011. Reverse engineering
feature models. In: Proceedings of 33rd ICSE. IEEE, pp. 461–470 .

avares, A.L.C., Valente, M.T., 2008. A gentle introduction to osgi. SIGSOFT Software

Engineering Notes 33 (5), 8:1–8:5. doi: 10.1145/1402521.1402526 .
hüm, T. , Kästner, C. , Benduhn, F. , Meinicke, J. , Saake, G. , Leich, T. , 2014. Featureide:

An extensible framework for feature-oriented software development. Science of
Computer Programming 79, 70–85 .

izzei, L.P. , Rubira, C.M. , Lee, J. , 2012. An aspect-based feature model for architecting
component product lines. In: Software engineering and advanced applications

(SEAA), 2012 38th euromicro conference on. IEEE, pp. 85–92 .
einreich, R. , Miesbauer, C. , Buchgeher, G. , Kriechbaum, T. , 2012a. Extracting and

facilitating architecture in service-oriented software systems. In: Proceedings of

WICSA/ECSA. IEEE, pp. 81–90 .
einreich, R., Miesbauer, C., Buchgeher, G., Kriechbaum, T., 2012b. Extracting and fa-

cilitating architecture in service-oriented software systems. In: 2012 joint work-
ing IEEE/IFIP conference on software architecture (WICSA) and European confer-

ence on software architecture (ECSA), pp. 81–90. doi: 10.1109/WICSA-ECSA.212.
16 .

u, Y. , Yang, Y. , Peng, X. , Qiu, C. , Zhao, W. , 2011. Recovering object-oriented frame-

work for software product line reengineering. In: Top productivity through soft-
ware reuse. Springer, pp. 119–134 .

evtushenko, A.S. , 20 0 0. System of data analysis “concept explorer”. (In Russian)
Proceedings of the 7th National Conference on Artificial Intelligence KII, Russia

79, 127–134 .
t line architecture of a family of object-oriented product variants,

jss.2016.07.039

http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0016
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0017
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0018
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0019
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0020
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0021
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0022
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0023
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0024
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0025
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0026
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0026
http://dx.doi.org/10.1109/SEW.2005.5
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0028
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0029
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0030
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0030
http://dx.doi.org/10.1109/ICSE.2007.56
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0032
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0033
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0034
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0035
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0036
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0037
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0038
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0039
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0040
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0041
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0042
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0043
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0044
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0045
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0045
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0045
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0045
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0046
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0046
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0046
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0046
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0047
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0048
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0049
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0049
http://dx.doi.org/10.1007/978-3-319-14130-5_2
http://dx.doi.org/10.1109/IRI.2013.6642472
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0052
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0053
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0053
http://dx.doi.org/10.1145/1402521.1402526
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0055
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0056
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0057
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0057
http://dx.doi.org/10.1109/WICSA-ECSA.212.16
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0059
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0059
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0059
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0059
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0059
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0059
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0060
http://refhub.elsevier.com/S0164-1212(16)30132-7/sbref0060
http://dx.doi.org/10.1016/j.jss.2016.07.039

22 A. Shatnawi et al. / The Journal of Systems and Software 0 0 0 (2016) 1–22

ARTICLE IN PRESS

JID: JSS [m5G; August 1, 2016;15:31]

ratory for research on technology for ecommerce (LATECE) at University of Quebec at

 Montpellier, France. He obtained a M.Sc. in Computer Science from the Jordon University
y interest is in software engineering with a particular focus on reengineering, reverse

ility, software architectures, component and service development, and software product

ty of Montpellier. He obtained his engineer degree in 1994. He obtained his PhD degree

interests include software reuse, software architecture, software reengineering, reverse
t line, software evolution, source code analysis, search-based algorithms, etc. He is author

 journals and conferences. He is the scientific editor of the first French book on “software
ientific excellence reward from 2009 to 2013 and from 2014 to 2018 (award given by the

 of a researcher).

puter science and operations research (GEODES, software engineering group) of University

neering automation, model-driven engineering, software visualization, and search-based
ittee member in several IEEE and ACM conferences, as a member of the editorial boards

conferences and workshops.
Anas Shatnawi is a post-doctoral researcher at the labo

Montreal, Canada. He has a PhD degree from University of
of Science and Technology in 2012, Jordan. His primaril

engineering, empirical software engineering, APIs reusab

lines.

Abdelhak-Djamel Seriai is associate professor at Universi

from University of Nantes, France in 2001. His research
engineering, software component/service, software produc

or co-author of more than 50 publications in international
evolution and maintenance”. He is owner of the French sc

French government in recognition of the scientific quality

Houari A. Sahraoui is professor at the department of com

of Montreal. His research interests include software engi
software engineering. He has served as a program comm

of four journals, and as an organization member of many
Please cite this article as: A. Shatnawi et al., Recovering software product line architecture of a family of object-oriented product variants,

The Journal of Systems and Software (2016), http://dx.doi.org/10.1016/j.jss.2016.07.039

http://dx.doi.org/10.1016/j.jss.2016.07.039

	Recovering software product line architecture of a family of object-oriented product variants
	1 Introduction
	2 Putting the problem in context
	2.1 Background
	2.1.1 Software product line architecture
	2.1.2 Component-based architecture recovery from single software: the ROMANTIC approach
	2.1.3 Formal concept analysis

	2.2 Problem analysis

	3 Architecture variability recovery process
	4 Identifying the architecture variability
	4.1 Identifying component variants
	4.1.1 Identification of components providing similar services
	4.1.2 Identification of internal variability
	4.1.3 Identification of external variability

	4.2 Identifying configuration variants
	4.2.1 Identification of component variability
	4.2.2 Identification of component-link variability

	5 Identifying architecture dependencies
	5.1 Identification of dependencies related to feature variability
	5.1.1 Required dependency identification
	5.1.2 Exclude and alternative dependencies identification
	5.1.3 AND dependency identification
	5.1.4 OR dependency identification

	5.2 Identification of dependencies related to optional component distribution

	6 Identification of groups of variability
	6.1 Variability between groups of dependencies
	6.2 The identification algorithm

	7 Evaluation results
	7.1 Evaluation design
	7.1.1 Data collection
	7.1.2 Research questions and evaluation method

	7.2 Results
	7.2.1 Component-based architecture extraction
	7.2.2 Identifying component variants
	7.2.3 Analyzing architecture configuration: communality and variability
	7.2.4 Identifying components dependencies
	7.2.5 Identifying groups of variability
	7.2.6 Architectural variability description

	7.3 Answering research questions
	7.3.1 RQ1: what is the accuracy of the recovered architectural variability?
	7.3.2 RQ2: are the identified dependencies correct?

	7.4 Threats to validity
	7.4.1 Threats to internal validity
	7.4.2 Threats to external validity

	8 Discussion
	8.1 Pros
	8.2 Cons

	9 Related work
	9.1 Classification schema
	9.1.1 The input of identification approaches
	9.1.2 The process of identification approaches
	9.1.3 The output of identification approaches

	9.2 SPLA identification approaches

	10 Conclusion and future work
	10.1 Conclusion
	10.2 Future work

	 References

