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Abstract— Existing similar software variants, developed by ad-

hoc reuse technique such as “clone-and-own”, represent a 

starting point to build software product line (SPL) core assets. To 

re-engineer such legacy software variants into a SPL for 

systematic reuse, it is important to be able to identify a mapping 

between features and their implementing source code elements in 

different variants. Information retrieval (IR) methods have been 

used widely to support this mapping in single software product. 

This paper proposes a new approach to improve the performance 

of IR methods when they are applied on a collection of product 

variants. The novelty of our approach is twofold. In the one hand, 

it exploits what product variants have in common and how they 

differ to improve the accuracy of results given by IR methods. On 

the other hand, it reduces the abstraction gap between features 

and source code by introducing an intermediate level called “code 

topic” for increasing the number of correctly retrieved links. We 

have applied our approach on a collection of seven variants of a 

large-scale system by using the ArgoUML-SPL modeling tool. 

The experimental results showed that our approach outperforms 

the approaches that apply IR methods in conventional way as 

well as the most relevant work on the subject in the term of the 

most widely used metrics to evaluate IR methods: precision and 

recall.  

Keywords- Traceability; source code; features; product variants; 

latent semantic indexing; vector space model; formal concept 

analysis; product line. 

I.  INTRODUCTION 

Software variants consist of similar software products that 
share some features, called common features, and also differ in 
others, called optional features. A feature is a prominent or 
distinctive user-visible aspect, quality or characteristic of a 
software system or systems [15]. Software variants often are 
developed by ad-hoc reuse techniques such as “clone-and-own” 
where an existing product is copied and later modified to meet 
incremental demands of customers. For instance, the Wingsoft 
Financial Management System (WFMS) was developed for 
Fudan University and then evolved many times to be adapted to 
different contexts. All variants of the WFMS systems have 
been used in over 100 universities in China [4]. 

At first glance, clone-and-own technique represents an easy 
and fast reuse mechanism. Indeed, it provides the ability to start 
from an already existing tested code and to make some 

modifications to produce a new variant. However, when the 
number of product variants and features grows, such ad-hoc 
reuse technique causes critical problems such as: maintaining 
each variant individually is complex as well as reusing features 
(i.e. sharing their implementations) from existing products into 
new product will be more complicated [7]. When these 
problems accumulate, it is needed to re-engineer product 
variants into a software product line (SPL) for systematic reuse. 
SPL is an engineering discipline supporting efficient 
development and maintenance of related software products 
[REF]. It manages common and optional features and promotes 
systematic software reuse from SPL’s core assets (such as 
features, code, documentation and etc.). It capitalizes on the 
knowledge about available features, relationships among the 
features and traceability between the features and software 
artifacts that implement them [2]. 

In order to re-engineer a set of software variants into a SPL, 
it is important to be able to identify a mapping between 
features and their implementing source code elements (e.g., 
classes). Such a mapping is needed to understand product 
variants code and then automatically derive concrete products 
from SPL core assets by selecting features and consequently 
their corresponding source code. This mapping is known as 
traceability links recovery or feature location [12]. 

Information retrieval (IR) methods have been widely 
accepted to automate traceability recovery in single software 
product [7]. The conventional way for applying IR methods is 
to map all features of a software product to its entire source 
code. These features and this source code are called IR search 
spaces. In this paper, we propose an approach to improve the 
performance of IR-based methods when they are applied on a 
collection of software variants. The novelty of our approach is 
twofold.  Firstly, it exploits commonalities and variabilities 
across product variants to reduce search spaces of IR. As a 
result, the accuracy of results given by IR methods increases by 
mapping less number of features to less implementation to 
prevent false positive links. Secondly, it reduces the abstraction 
gap between features and source code levels as a 
complementary part of reducing IR search spaces by 
introducing an intermediate level, called “code topic”. 
Consequently, the number of correctly retrieved links increases 
because we map two  similar  software  artifacts  (features  and  



 

code topics). 

The proposed approach uses lexical similarity and Formal 
Concept Analysis (FCA) to reduce IR search spaces by 
identifying common features and their associated source code 
elements, and grouping optional features and their associated 
source code elements into disjoint clusters. Regarding code 
topics, our approach again uses FCA with Vector Space Model 
(VSM) to derive code topics from the source code. Traceability 
links between a given cluster of features and the corresponding 
cluster of source code elements are recovered using Latent 
Semantic Indexing (LSI) taking into account derived code 
topics. 

We have applied our approach on a collection of seven 
variants of a large-scale system by using the ArgoUML-SPL 
modeling tool. The experimental results showed that our 
approach outperforms the approaches that apply IR methods in 
conventional way as well as the most relevant work on the 
subject in the term of the most widely used metrics to evaluate 
IR methods: precision and recall. 

The remainder of this paper is organized as follows. Section 
II presents background. Section III describes features versus 
object oriented building elements. Section IV presents the 
proposed approach. Section V represents experimental results 
and evaluation. Section VI discusses the threats to the validity 
of our approach. Section VII presents related work. Finally, 
section VIII presents conclusion and future work.  

II. BACKGROUND 

A. An Illustrative Example 

As an illustrative example through this paper, we consider 
four text editor software variants as shown in the Table 1. 
Editor_V1.0 supports just core features for any text editor: 
Open, Create, Edit and Save a file. Editor_V1.1 has, in addition 
to the core features, Search, Replace and Undo features. 
Editor_V1.2 supports not only core features but also new 
features (Print, Help, Redo and Undo). Editor_V2.0 is an 
advanced text editor. It supports all previous features together. 

B. Basics Concepts of FC A  

Formal Concept Analysis (FCA) is a technique for data 
analysis and knowledge representation based on lattice theory. 
It identifies meaningful groups of objects that share common 
attributes as well as provides a theoretical model to analyze 
hierarchies of these groups. The main goal of FCA is to define 
a concept as a unit of two parts: extension and intension. The 
extension of a concept is the objects covered by the concept, 
while the intension comprises all the attributes, which are 
shared by all the objects covered by the concept [10]. 

In order to apply FCA, the formal context or incidence table 
of objects and their attributes is needed. The formal context is a 
triple K = (O, A, R) where O and A are sets of objects and 
attributes respectively and R is a binary relation between 
objects and attributes, indicating which attributes are possessed 
by each object, i.e., R ⊆ O × A. For a given formal context K, a 
formal concept is a pair (E, I) composed of an object set E ⊆ O 
and an attribute set I ⊆ A. E = {o ∈ O | ∀�	 ∈ �, 	
, �� ∈ �} is 
the extent of the concept. I={a ∈ A | ∀
 ∈ �, 	
, �� 	∈ �}  is 
the intent of the concept. The set of all concepts of a formal 

context constitutes a concept lattice. There are several 
algorithms to compute concepts and concept lattices from a 
given formal context. In this work, we depend on Galois 
lattices that ignore empty concept [10]. Due to the space 
limitation, we will suffice the formal context and concept 
lattices displayed through the paper. 

C. IR-based Traceability Recovery  

Information retrieval (IR) methods have proved positive 
results to address traceability recovery [5].  The IR methods, 
such as Vector Space Model (VSM) and Latent Semantic 
Indexing (LSI), identify traceability links using the textual 
information from the software artifacts. For example, the 
keywords from features description may match keywords in 
the identifiers and comments of source code. One type of 
software artifact is treated as query and another type of artifact 
is treated as document. The IR methods rank these documents 
against queries by extracting information about the occurrences 
of terms within them. This information is used to find 
similarity between queries and documents [5]. In our case, the 
documents are source code classes and queries are features 
description where we create for each class and feature a 
document. 

In VSM, documents and queries are represented by vectors 
of terms. Each term is a word appearing in the documents.  The 
weight of a term can be computed with different schemes based 
on the task at hand. A collection of documents forms a term-
by-document matrix with size m	×	n, where m is the number of 
documents and n is the number of terms in all documents and 
queries. An  entry [i,j]

th
 indicates the association between the  

i
th
  term  and  j

th
  document. For a collection of queries, VSM 

also creates a term-by-query matrix with size	� × 	�, where l is 
the number of queries and n is number of terms in all 
documents and queries. The similarity between documents and 
queries is typically measured by the cosine of the angle 
between their corresponding vectors [5]. 

   LSI extends VSM by using singular value decomposition 
technique (SVD). This technique is used to mitigate noise 
introduced by stop words like “the, an, above, etc.” and to 
overcome the two common issues of natural language 
processing i.e., synonymy and polysemy. SVD divides the 
term-by-document matrix to create LSI subspaces based on a 
parameter called “number of topics

1
”. For further details about 

SVD, the reader can refer to [13]. In the LSI space each 
document will have a corresponding vector. We use this vector 
representation to compute similarity. Like VSM, the textual 
similarity between documents and queries is measured by the 
cosine of the angle between their corresponding vectors [1].  

Different strategies for identifying candidate traceability 
links are used, such as cut-points and thresholds. Our work 
uses a strategy based on similarity threshold values where all 
documents with a textual similarity value above or equal to the 
threshold are considered as candidate traceability links.  

Promising results have been achieved using LSI to address 
concept location issue [19], and  recovery of  traceability  links  

                                                           
1
 The term topic in LSI terminologies differs from the term topic in our 

approach. 



 

between source code and documentation [1]. In our approach, 
we use LSI to match feature descriptions with source code 
information.  

III. FEATURE VERSUS OBJECT-ORIENTED ELEMENTS 

For the purpose of this work, we adhere to the classification 
given by [14] which distinguishes three categories of features. 
Firstly, functional features express the behavior or the way 
users may interact with a product. Secondly, interface features 
express the product’s conformance to a standard or a 
subsystem. Finally, parameter features express enumerable, 
listable environmental or non-functional properties. In our 
work, we focus on functional features. 

As there are several ways to implement features (e.g., 
programming language level, meta language level) [6], we 
assume that functional features are implemented at the 
programming language level. Thus in an object-oriented source 
code, a functional feature can be implemented by packages, 
classes, methods, attributes, etc. As a class represents a main 
building unit in all object oriented languages, we assume that a 
functional feature is implemented at source code level by a set 
of classes. 

Due to the abstraction gap between features and source 
code, recovering traceability links is a challenging problem. In 
order to overcome this problem, we propose an intermediate 
level, called “code topics”. A code topic is a cluster of classes 
which are lexically similar and cover the same topic. A single 
code topic can represent a complete feature or some aspect of a 
feature. In addition, code topic can be shared between two or 
more features. The underlying intuition behind code topics is 
that a cluster of classes that implement a concept or a feature 
has a high probability to be linked lexically because domain 
knowledge represented by features is recorded in vocabularies 
used in identifiers and comments. By the time the traceability 
links between features and code topics were identified, we had 
also identified traceability links between features and source 
code where each code topic is a cluster of classes.   

All concepts defined in our traceability recovery process are 
illustrated in feature-to-code mapping model of Fig.1. 

IV. THE PROPOSED APPROACH 

Fig.2 shows our traceability recovery process. This   
process takes as input source code and features of a set of given 
product variants. Each feature is identified by its name and 
description which consists of short paragraph. Such feature 
information is available in product variants due to the need for 
product customization. As an example of a feature description, 
Edit feature in our illustrative example can be described as 
follows: “To allow user to do copy, paste and cut operations on 
a selected text in text area …etc.” .  

In Fig. 2, FCA and Lexical similarity computing are used 
separately to divide product variants at feature and source code 
levels into a common partition and a set of disjoint clusters 
(See parts A and B in Fig. 2). At feature level, common 
features form common partition while optional features are 
organized as a set of disjoint clusters so that each cluster 
consists of one or more features. At source code level, a 
common partition is composed of classes associated to 
common features while each disjoint cluster is composed of 
classes associated to corresponding disjoint cluster of optional 
features. Also, FCA is used another time combined with VSM 
to derive code topics from source code. Common code topics in 
Fig.2 refer to topics derived from the common partition at 
source code level while variable code topics refer to topics 
derived from each disjoint cluster at source code level (see part 
C in Fig. 2). Traceability links between each cluster of features 
and its corresponding code topics are identified by LSI. After 
determining the topics that correspond to each feature, we 
easily determine classes that implement a feature by 
decomposing each topic to its classes. The following 
subsection explains each step on our recovery process in more 
details. 

A. Determining Common Partition at Feature and Source 

Code Levels 

As product variants share features and classes, our approach 
exploits this to identify common partition at feature and source 
code levels. At feature level, we rely on lexical similarity of 
features names and their descriptions for determining common 
partition at feature level of a collection of product variants.  For 
a given set of features of product variants, we firstly define a 
subset of same name features.  Secondly, as a feature may be 
renamed to respond to changes in software environment or to 
the adoption of different technology, we rely on the longest 
common subsequence (LCS) algorithm [16] to find features 
that have the same description but do not have the same name. 
We consider that two features identical if they have the same 

Fig.2. An overview of our approach. 

Fig.1. Feature-to-source code mapping model. 



 

subsequence terms of their description. In our illustrative 
example, all core features (e.g., Open, Save, Edit and Create) 
represent common partition at feature level. 

At source code level, we analyze source code of a set of 
product variants itself in order to determine common partition 
at the source code level. The source code for each product 
variant is abstracted into a set of elementary construction units 
(ECUs). Each ECU has the following format:  

 ECU = PackageName_ClassName 

This representation is inspired by the model construction 
operations proposed by [18]. Each product variant Pi is 
abstracted as a set of ECUs, i.e.  Pi={ECU1,ECU2,…,ECUn}. 
An ECU reveals any changes at package and class levels (e.g., 
add or remove packages or classes). These changes can reflect 
any variation at feature level (e.g. add or remove features). 

In order to identify common ECUs shared by all product 
variants, we compare ECUs for all product variants together. 
This comparison process is done by conducting a lexical 
matching among ECUs for all variants such that ECUs for each 
product variant are lexically matched with ECUs for other 
variants. The shared ECUs across product variants represent 
common classes that represent the common partition at source 
code level. 

B. Grouping Optional Features and their Classes into 

Disjoint Clusters by FCA 

After determining common features and their associated 
classes, the reaming features and classes in each product 
variant represent optional features and their associated classes. 
The following steps reduce the search space related to these 
optional features and their classes using FCA.   

1. Identifing optional feature clusters Using FCA 
In order to reduce the search space related to optional 

features, we use FCA to group optional features via concept 
lattice into disjoint clusters. To achieve that, we define the 
formal context as follows: product scenarios (defined below) 
and optional features of a collection of product variants 
represent objects (extent) and attributes (intent) in the formal 
context respectively. A relation between a product scenario and 
an optional feature describes that the product scenario possess 
the optional feature. Table 1 shows a formal context of our 
illustrative example. In this context rows and columns are 
product scenarios and optional features respectively. Any 
entry in this context refers to that a scenario possesses certain 
optional features.  

For any two product variants P1 and P2, we build two product 
scenarios P1-P2 (features exist only in P1 but not in P2) and 
P2-P1 (features exist only in P2 but not in P1).  Consider 
Editor_V1.1 (V1.1) and Editor_V1.2 (V1.2) as an example. 
Two product scenarios can be created as follows:  V1.1-V1.2 = 
{Search, Replace} and V1.2-V1.1 = {Print, Help, Redo}. The 
product scenarios aim at identifying differences between each 
pair of products at feature level taking into account all 
combinations between product variants. Thus the formal 
context is constructed based on these differences and the 
concept   lattice   associates   these   differences   with their 
product scenarios to form the lattice concepts. 

TABLE 1.  FORMAL CONTEXT FOR DESCRIBING TEXT  
EDITORS SCENARIOS. 
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V1.1-V1.2 x x     

     V1.2-V1.1    x x x 

     V1.1-V2.0       

V2.0-V1.1    x x x 

……….       

Fig. 3 shows the concept lattice of formal context defined in 
Table 1. Each concept in the lattice consists of three fields. The 
upper field refers to concept name (generated automatically). 
The middle field represents disjoint cluster of optional features 
(intent). The bottom field shows scenarios (extent). Product 
scenarios help to determine which product variants must be 
compared to identify classes that implement a relevant cluster 
of optional features. Our approach compares two product 
variants by conducting a lexical matching between ECUs 
(classes) that abstracts these variants (see subsection IV.A). 

We are interested in concepts associated with a set of 
features (such as the Concept_5 in Fig.3). They allow us to 
know how to obtain disjoint clusters of features and determine 
corresponding classes implementing these features. 

2. Identifying clusters of classes 
For a given cluster of optional features (i.e., a concept 

computed by FCA), we analyze the relevant scenarios to 
determine variants that have to compare. This allows us to 
isolate a cluster of classes that implements this given cluster of 
features by considering two cases. First, if a concept is directly 
associated with a set of scenarios (see Concept_5 in Fig. 3); we 
randomly select only one scenario from this set. For instance, 
given a Concept_5 (where the second scenario is chosen), our 
approach compares Editor_V1.2 with Editor_V1.1 to determine 
a cluster of classes that are present in Editor_V1.2 but absent in 
Editor_V1.1. The resulting cluster of classes implements a 
cluster of features in the Concept_5 (Print, Help, Redo 
features). The second case is if a concept does not associate 
directly with a set of scenarios (see Concept_6 in Fig. 3), we 
randomly select only one scenario from each concept located 
immediately below and directly related to this concept. For 

Fig.3. The concept lattice of formal context defined in Table 1. 



 

example, given a Concept_6, our approach selects a scenario 
from Concept_1 and a scenario from Concept_2. For the undo 
feature in Concept_6, its corresponding classes are in both 
Editor_V1.1 and Editor_V1.2 but are not in Editor_V1.0. Our 
approach compares two product variants at source code level 
by conducting a lexical matching between ECUs that abstracts 
these variants.  

C. Derivation of Code Topics by VSM and FCA 

In the two previous steps, we considered just one factor to 
enhance LSI results (reducing LSI search space at feature and 
source code levels). This step considers a complement part of 
reducing LSI search space by reducing the abstraction gap 
between feature and source code levels using code topics.  

Our approach groups classes of common partition and any 
disjoint cluster at source code level into a set of code topics. 
Our approach depends on a two-step process to derive code 
topics from source code: computing lexical similarity among 
classes using VSM and applying FCA. In the following 
subsections, we will explain each step in more details.  

1.  Lexical Similarity Computing Using VSM  
As each code topic is a set of similar classes, a similarity 

measure is needed. In this paper, we consider lexical similarity 
as similarity measure.  

Lexical similarity refers to textual matching between terms 
derived from identifiers and comments related to classes. In 
order to compute lexical similarity among classes, we create a 
document for each class. Each document contains lines of all 
identifiers and comments of corresponding class. These 
identifiers and comments should be manipulated such as 
tokenization, stop word removal and stemming performing.  

We use VSM to measure lexical similarity between classes. 
VSM starts with a term-document matrix as mentioned earlier 
in section II. Each entry ai,j is the weight of term ti in document 
dj. In this paper, we used Term-Frequency/Inverse-Document-
Frequency (TF/IDF) weight. The TF/IDF weight is often used 
in IR-based feature location approaches [13]. A geometric 
interpretation for term-document matrix is a set of document 
vectors as for each document there is a vector.   

VSM computes lexical similarity between two documents 
(classes) one of them is a query using cosine similarity between 
their corresponding vectors. Two documents are considered 
similar, if the cosine of angle of their corresponding vectors 
greater is than or equal to 0.70. This value represents the most 
widely used threshold for cosine similarity [1]. After 
computing cosine similarity among all classes, we can build 
cosine similarity matrix which its columns and rows are 
identical and represent the documents. An entry in this matrix 
refers to cosine similarity value. This matrix is used an input to 
the next step. 

2. Determining Code Topics Using FCA 
The second use of FCA in our approach is to group similar 

classes into code topics. The formal context here is the cosine 
similarity matrix defined in the previous step:  documents 
(classes) represent objects and attributes at the same time. A 
relation between a document (as object) and another document 
(as attribute) represent cosine similarity value. As   FCA   is  a 
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textEditor.print_print x x x x   

textEditor.print_printSetting x x x x   

textEditor.print_BufferPrintRemove x x x x   

textEditor.print_printer x x x x   

textEditor.help_View     x  

…………       

binary relationship, we use again the threshold (0.70) to 
transform the numerical values of the similarity matrix into 
binary formal contexts. This means that only pairs of 
documents having a similarity greater than or equal to 0.70 are 
considered similar.  Table 2 shows a part of the formal context 
obtained by transforming the similarity matrix corresponding to 
Concept_5 from Fig. 3. The cross sign refers to similarity 
relation while null refers to there is no relation according to the 
threshold value.  

Concept_17 in Fig. 4 shows an example of a code topic. 
This concept is taken from the lattice corresponding to the 
formal context of Concept_5 in Fig. 3. The extent of this 
concept represent a cluster of similar documents (classes) that 
are grouped together to form a code topic. Each line in this 
cluster represents an ECU (class). It is noticed that classes’ 
names in Concept_17 are similar and they also belong to the 
same package (textEditor.print). By manually analyzing these 
classes, we found that they represent the print feature in our 
illustrative example. The intent and extent of Concept_17 are 
the same because objects and attributes in the formal context 
are identical (see Table 2). 

D. Mapping features to code topics based on LSI 

For a given set of features represented by common partition 
or any disjoint cluster at feature level, our approach used LSI to 
identify traceability links between these features and their 
associated code topics. Our applying of LSI is similar to [1]. It 
involves building LSI corpus and queries. 

1. Building LSI Corpus 
LSI corpus consists of documents which each one 

corresponds to a code topic. Each document consists of terms 
extracted from identifiers and comments of classes that 
represent the code topic. After building LSI corpus, LSI creates 
term-document matrix, where columns represent code topic 
documents and rows represent terms extracted from these 

Fig4. An example of a code topic. 



 

documents. Each term is weighted according to TD/IDF 
weight. 

2. Building Queries 
In our approach, LSI uses feature name and description as a 

query to retrieve code topics relevant to each feature. Our 
approach creates a document for each feature.  Each document 
contains the feature name and description that must be 
normalized by splitting them into tokens, removing stop words 
and token stemming. 

3. Establishing Traceability Links  
LSI takes as input documents and queries generated in the 

two previous steps. It builds a vector of weights for each 
document (code topic) and query (feature). Each term is 
weighted by TF/IDF. Then, LSI measures the similarity 
between queries and documents using cosine similarity. It 
returns a list of documents ordered based on their cosine 
similarity against each query. We consider again the same 
threshold value used in VSM for cosine similarity, i.e., the 
retrieved documents have a cosine similarity with a query 
greater than or equal to 0.70. 

After establishing traceability links between each feature 
and all corresponding code topics, we can easily relate each 
feature with their corresponding classes by decomposing each 
code topic to its classes. For example, if feature f1 is linked to 
two code topics: topic1= {c1, c2, c3} and topic2= {c1, c5, c6}. 
By decomposing these topics into its classes; we can say that f1 
is implemented by five classes {c1, c2, c3, c5, c6}.  

V. EXPERIMENTAL RESULTS AND EVALUATION 

In this section, we show the case study used for the 
evaluation of our approach, present the evaluation metrics and 
then discuss the experimental results. 

A. Case Study and Experimental setting  

To validate our approach, we applied it on a collection of 
seven variants of a large-scale system by using the ArgoUML-
SPL modeling tool [8]. ArgoUML-SPL

2
is Java open-source 

which supports all standard UML 1.4 diagrams. It is well-
documented and real implementation for each feature can be 
determined by preprocessor directives to delimit the code 
associated to each feature. The main advantage of ArgoUML-
SPL is that it implements features at class level. The seven 
selected variants support all ArgoUML-SPL features.  They 
consist of two common features (class diagram and cognitive 

TABLE 3. PRODUCT VARIANTS SIZE. 

Products  NOP NOC LOC 

Product#1 63 1455 99243 

Product#2 67 1488 103969 

Product#3 70 1554 107334 

Product#4 74 1587 112060 

Product#5 69 1541 110168 

Product#6 72 1607 113533 

Product#7 81 1666 118189 

Product#8 65 1508 105442 

support features) and six optional features (state, collaboration, 
use-case, activity, deployment and sequence diagram). Table 3 

                                                           
2 Available at  http://argouml-spl.tigris.org/ 

presents the size of selected product variants in terms of 
number of packages (NOP), number of classes (NOC) and 
number of lines of code (LOC).  

B. Evaluation Measures 

The effectiveness of IR methods is commonly measured by 
their precision, recall and F-measure. For a given query, 
precision is the percentage of correctly retrieved links to the 
total number of retrieved links. Recall is the percentage of 
correctly retrieved links to the total number of relevant links. F-
measure makes a tradeoff between precision and recall so that 
it gives a high value only in the case that both recall and 
precision values are high. All measures have values between 
[0, 1]. If recall 1, it means that all correct links are retrieved, 
though they could be retrieved links that are not correct. If 
precision 1, it means that all retrieved links are correct, though 
they could be correct links that are not retrieved.  Higher 
precision, recall and F-measure mean better results [13].   

C. Performance of Our Approach 

The most important parameter to LSI is the number of 
chosen topics. A topic is a collection of terms that co-occur 
frequently in the documents of the corpus. We need enough 
topics to capture real term relations. Too many topics lead to 
associate irrelevant terms and too few number of topics leads to 
lost relevant terms. According to Dumais et al. [19], the 
number of topics is between 235 and 250 for natural language. 
For a corpus of source code files, Poshyvanyk et al. [20] 
recommended topic’s number of 750. 

In this work we cannot use a fixed number of topics for LSI 
because we have different sizes of clusters. Thus, we use a 
factor k between zero and one to determine the number of 
topics. The number of topics (#topics) = k × Docd, where Docd 
is document dimensionality of term-document matrix that is 
generated by LSI. We evaluate the performance of our 
approach for #topics where k= 0.1, 0.2, 0.3 and 0.4.   

A Fig.5 compares our approach against applying LSI in 
conventional way in term of the precision and recall metrics. 
The conventional way means applying LSI by considering each 
variant separately and also without taking into account the 
abstraction gap between features and source code levels. The 
graphs A to G given in Fig.5 correspond to Product 1 to 
Product 7 respectively. The X-axis in these graphs represents 
different values of k while Y-axis refers to precision and recall. 

The graphs in Fig.5 indicate that our approach gives higher 
precision and recall than the conventional way. This is 
attributed to two reasons. Firstly, our approach maps less 
number of features to less implementation by reducing the LSI 
search space at feature and source code level. As a result, the 
accuracy of LSI results increases because of reducing the 
number of false positive links. Secondly, our approach bridges 
the abstraction gap between features and source code levels 
using code topics that can be a feature or some aspect of a 
feature. This means that our approach maps two similar 
software artifacts (features and code topics) which leads to 
increase the number of correctly retrieved links. By increasing 
the number of correctly retrieved links, the precision and recall 
also increase at the same time. Tables 4 and 5 show F-measure 
results for our approach and the conventional way respectively. 



 

It is noticed that these results confirm that our approach gives 
higher precision and recall compared with the conventional 
way because when F-measure is high, this means that also 
precision and recall are high, too.  

Fig.6 compares our approach with the most relevant work 
on the subject, called FL-PV [9], in term of F-measure metric. 
FL-PV considers reducing the LSI search at feature and source 
code levels as a parameter to improve LSI performance in a 
collection of product variants.  Fig.6 shows that our approach 
outperforms FL-PL in term of F-measure. Since our approach 
gives higher F-measure values than FL-PV, this means that our 
approach also gives higher precision and recall than FL-PV 
according to the definition of F-measure.  This is attributed to 
the fact that our approach not only considers reducing LSI 
search space like FL-PV but also reduces the abstraction gap 
between feature and source code level as a complementary part 
of reducing LSI search space. It can be seen that in Fig.8 when 
the number of topics (k) increases, results of our approach and 
FL-PV decreases. This is because of increasing the number of 
code topics results in capturing irrelevant terms.  

Thanks to the integration of reducing LSI search space and 
bridging the gap between features and source code levels, our 
approach gives better results although ArgoUML-SPL features 
are similar and share code. For instance, there is a shared codes 

between Activity and State diagrams, between Collaboration 
and Deployment diagrams and Cognitive Support feature has 
crosscutting behavior across all other features.  

VI. THREATS TO VALIDITY 

The threat to the validity of our approach is that developers 
may not use the same vocabularies to name source code 
identifiers across product variants. This would mean that 
lexical matching at source code level would be affected. 
Nonetheless, when a company has to develop a new product 
that is similar, but not identical, to existing ones, an existing 
product is cloned and later modified according to new 
demands.  

VII. RELATED WORKS 

We classify feature location techniques into two 
categories. The first category is related to feature location in 
single software product. The second one includes techniques 
which support feature  location  in  a  collection  of  software  

TABLE 4 F-MEASURE RESULTS OF OUR APPROACH. 

K/Product P1 P2 P3 P4 P5 P6 P7 

0.01 0.64 0.64 0.65 0.67 0.67 0.67 0.67 

0.02 0.64 0.65 0.65 0.67 0.67 0.67 0.67 

0.03 0.63 0.63 0.64 0.66 0.66 0.66 0.66 

0.04 0.64 0.64 0.64 0.66 0.66 0.66 0.66 

 
TABLE 5.F-MEASURE RESULTS OF APPLYING LSI IN 

CONVENTIONAL WAY. 

K/Product P1 P2 P3 P4 P5 P6 P7 

0.01 0.40 0.39 0.32 0.30 0.31 0.24 0.41 

0.02 0.42 0.42 0.30 0.31 0.29 0.24 0.42 

0.03 0.48 0.46 0.32 0.33 0.33 0.27 0.47 

0.04 0.39 0.50 0.35 0.34 0.37 0.25 0.44 

Fig.5. Comparing our approach with applying LSI in conventional way in term of the Precision and Recall metrics. 

            (A) Product 1.                                         (B) Product 2.                                (C) Product 3.                                           (D) Product 4. 

                  (E) Product 5.                                       (F) Product 6.                                           (G) Product 7. 

Fig.6. Comparing our approach with FL-PV in term of F-measure metric. 



 

products. A comprehensive study about techniques in the first 
category can be found in [7] while the works of Ghanam et al. 
[3], Rubin et al. [11] and Xue et al. [9] belong to the second 
category. 

Ghanam et al. have put forward a method to keep 
traceability links between features of a family of software 
products and their source codes up-to-date. They start from pre-
existing links to make them up to date executable acceptance 
tests. Rubin et al focused on only locating distinguished 
features of two product variants implemented via code cloning 
and do not consider common features between them. In our 
recent work [17], we have proposed to consider not only two 
software variants but also consider all variants together. This 
allowed us to isolate both: the common and the optional 
features with their associated source code elements in each 
variant. LSI is used to map a group of features to its 
corresponding group of source code elements. As a result, the 
recall and precision of results given by LSI will be enhanced 
because of mapping less number of features to less 
implementation. 

The most recent and relevant work on the subject is called 
FL-PV [9] (Xue et al work). FL-PV analyzes commonalities 
and differences at feature and source code levels across product 
variants to reduce search space related to features and 
respectively their source code elements into minimal disjoint 
partitions. Then LSI is used to retrieve code elements that 
implement a specific feature. The limit of FL-PV is if any 
partition consists of a large number of features, FL-PV remains 
inefficient because LSI search space also becomes large at 
feature and source code level.  

Our approach differs from FL-PV by reducing the 
abstraction gap between features and source code levels as a 
complementary part of reducing the IR search spaces. 
Compared to Ghanam et al. work, the proposed approach starts 
from scratch and assumes no pre-existing links. With respect to 
Rubin et al.’s work, our approach not only locates 
distinguishing feature between two software variants but also 
locates all features across variants. Comparing with our recent 
work [17], the current work groups optional features and their 
associated source code elements across product variants into 
disjoint clusters at feature and source code levels.  

VIII. CONCLUSION AND FUTURE WORK 

We presented in this paper a new approach which combines 
FCA with IR, namely LSI and VSM, to establish traceability 
links between object oriented source code of a collection of 
product variants and given features of these variants. The 
contribution of this paper is twofold. Firstly, it improves the 
accuracy of results given by LSI via reducing the LSI search 
space at feature and source code levels. Secondly, it increases 
the number of correctly retrieved links by reducing the 
abstraction gap between feature and source code levels using 
code topics. The evaluation of our approach with seven variants 
of ArgoUML-SPL shows that our approach outperforms the 
approaches that apply IR methods in conventional way as well 
as the most relevant work on the subject (FL-PV).  

In   our   future   work,   we   plan   to   combine lexical 
similarity with structural similarity (e.g. method call and shared 

field access relationships) to enhance derived code topics. This 
requires a definition for structural similarity measure between 
source code elements. 
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