
Feature-to-CodeTraceability in a Collection of

Product Variants Using Formal Concept Analysis

and Information Retrieval
Hamzeh Eyal-Salman, Abdelhak-Djamel Seriai, Christophe Dony

UMR CNRS 5506, LIRMM

Université Montpellier 2 Sciences et Techniques

Place Eugène Bataillon, Montpellier, France

{Eyalsalman, Seriai, Dony}@lirmm.fr

Abstract— Existing similar software variants, developed by ad-

hoc reuse technique such as “clone-and-own”, represent a

starting point to build software product line (SPL) core assets. To

re-engineer such legacy software variants into a SPL for

systematic reuse, it is important to be able to identify a mapping

between features and their implementing source code elements in

different variants. Information retrieval (IR) methods have been

used widely to support this mapping in single software product.

This paper proposes a new approach to improve the performance

of IR methods when they are applied on a collection of product

variants. The novelty of our approach is twofold. In the one hand,

it exploits what product variants have in common and how they

differ to improve the accuracy of results given by IR methods. On

the other hand, it reduces the abstraction gap between features

and source code by introducing an intermediate level called “code

topic” for increasing the number of correctly retrieved links. We

have applied our approach on a collection of seven variants of a

large-scale system by using the ArgoUML-SPL modeling tool.

The experimental results showed that our approach outperforms

the approaches that apply IR methods in conventional way as

well as the most relevant work on the subject in the term of the

most widely used metrics to evaluate IR methods: precision and

recall.

Keywords- Traceability; source code; features; product variants;

latent semantic indexing; vector space model; formal concept

analysis; product line.

I. INTRODUCTION

Software variants consist of similar software products that
share some features, called common features, and also differ in
others, called optional features. A feature is a prominent or
distinctive user-visible aspect, quality or characteristic of a
software system or systems [15]. Software variants often are
developed by ad-hoc reuse techniques such as “clone-and-own”
where an existing product is copied and later modified to meet
incremental demands of customers. For instance, the Wingsoft
Financial Management System (WFMS) was developed for
Fudan University and then evolved many times to be adapted to
different contexts. All variants of the WFMS systems have
been used in over 100 universities in China [4].

At first glance, clone-and-own technique represents an easy
and fast reuse mechanism. Indeed, it provides the ability to start
from an already existing tested code and to make some

modifications to produce a new variant. However, when the
number of product variants and features grows, such ad-hoc
reuse technique causes critical problems such as: maintaining
each variant individually is complex as well as reusing features
(i.e. sharing their implementations) from existing products into
new product will be more complicated [7]. When these
problems accumulate, it is needed to re-engineer product
variants into a software product line (SPL) for systematic reuse.
SPL is an engineering discipline supporting efficient
development and maintenance of related software products
[REF]. It manages common and optional features and promotes
systematic software reuse from SPL’s core assets (such as
features, code, documentation and etc.). It capitalizes on the
knowledge about available features, relationships among the
features and traceability between the features and software
artifacts that implement them [2].

In order to re-engineer a set of software variants into a SPL,
it is important to be able to identify a mapping between
features and their implementing source code elements (e.g.,
classes). Such a mapping is needed to understand product
variants code and then automatically derive concrete products
from SPL core assets by selecting features and consequently
their corresponding source code. This mapping is known as
traceability links recovery or feature location [12].

Information retrieval (IR) methods have been widely
accepted to automate traceability recovery in single software
product [7]. The conventional way for applying IR methods is
to map all features of a software product to its entire source
code. These features and this source code are called IR search
spaces. In this paper, we propose an approach to improve the
performance of IR-based methods when they are applied on a
collection of software variants. The novelty of our approach is
twofold. Firstly, it exploits commonalities and variabilities
across product variants to reduce search spaces of IR. As a
result, the accuracy of results given by IR methods increases by
mapping less number of features to less implementation to
prevent false positive links. Secondly, it reduces the abstraction
gap between features and source code levels as a
complementary part of reducing IR search spaces by
introducing an intermediate level, called “code topic”.
Consequently, the number of correctly retrieved links increases
because we map two similar software artifacts (features and

code topics).

The proposed approach uses lexical similarity and Formal
Concept Analysis (FCA) to reduce IR search spaces by
identifying common features and their associated source code
elements, and grouping optional features and their associated
source code elements into disjoint clusters. Regarding code
topics, our approach again uses FCA with Vector Space Model
(VSM) to derive code topics from the source code. Traceability
links between a given cluster of features and the corresponding
cluster of source code elements are recovered using Latent
Semantic Indexing (LSI) taking into account derived code
topics.

We have applied our approach on a collection of seven
variants of a large-scale system by using the ArgoUML-SPL
modeling tool. The experimental results showed that our
approach outperforms the approaches that apply IR methods in
conventional way as well as the most relevant work on the
subject in the term of the most widely used metrics to evaluate
IR methods: precision and recall.

The remainder of this paper is organized as follows. Section
II presents background. Section III describes features versus
object oriented building elements. Section IV presents the
proposed approach. Section V represents experimental results
and evaluation. Section VI discusses the threats to the validity
of our approach. Section VII presents related work. Finally,
section VIII presents conclusion and future work.

II. BACKGROUND

A. An Illustrative Example

As an illustrative example through this paper, we consider
four text editor software variants as shown in the Table 1.
Editor_V1.0 supports just core features for any text editor:
Open, Create, Edit and Save a file. Editor_V1.1 has, in addition
to the core features, Search, Replace and Undo features.
Editor_V1.2 supports not only core features but also new
features (Print, Help, Redo and Undo). Editor_V2.0 is an
advanced text editor. It supports all previous features together.

B. Basics Concepts of FC A

Formal Concept Analysis (FCA) is a technique for data
analysis and knowledge representation based on lattice theory.
It identifies meaningful groups of objects that share common
attributes as well as provides a theoretical model to analyze
hierarchies of these groups. The main goal of FCA is to define
a concept as a unit of two parts: extension and intension. The
extension of a concept is the objects covered by the concept,
while the intension comprises all the attributes, which are
shared by all the objects covered by the concept [10].

In order to apply FCA, the formal context or incidence table
of objects and their attributes is needed. The formal context is a
triple K = (O, A, R) where O and A are sets of objects and
attributes respectively and R is a binary relation between
objects and attributes, indicating which attributes are possessed
by each object, i.e., R ⊆ O × A. For a given formal context K, a
formal concept is a pair (E, I) composed of an object set E ⊆ O
and an attribute set I ⊆ A. E = {o ∈ O | ∀�	 ∈ �, 	
, �� ∈ �} is
the extent of the concept. I={a ∈ A | ∀
 ∈ �, 	
, �� 	∈ �} is
the intent of the concept. The set of all concepts of a formal

context constitutes a concept lattice. There are several
algorithms to compute concepts and concept lattices from a
given formal context. In this work, we depend on Galois
lattices that ignore empty concept [10]. Due to the space
limitation, we will suffice the formal context and concept
lattices displayed through the paper.

C. IR-based Traceability Recovery

Information retrieval (IR) methods have proved positive
results to address traceability recovery [5]. The IR methods,
such as Vector Space Model (VSM) and Latent Semantic
Indexing (LSI), identify traceability links using the textual
information from the software artifacts. For example, the
keywords from features description may match keywords in
the identifiers and comments of source code. One type of
software artifact is treated as query and another type of artifact
is treated as document. The IR methods rank these documents
against queries by extracting information about the occurrences
of terms within them. This information is used to find
similarity between queries and documents [5]. In our case, the
documents are source code classes and queries are features
description where we create for each class and feature a
document.

In VSM, documents and queries are represented by vectors
of terms. Each term is a word appearing in the documents. The
weight of a term can be computed with different schemes based
on the task at hand. A collection of documents forms a term-
by-document matrix with size m	×	n, where m is the number of
documents and n is the number of terms in all documents and
queries. An entry [i,j]

th
 indicates the association between the

i
th
 term and j

th
 document. For a collection of queries, VSM

also creates a term-by-query matrix with size	� × 	�, where l is
the number of queries and n is number of terms in all
documents and queries. The similarity between documents and
queries is typically measured by the cosine of the angle
between their corresponding vectors [5].

 LSI extends VSM by using singular value decomposition
technique (SVD). This technique is used to mitigate noise
introduced by stop words like “the, an, above, etc.” and to
overcome the two common issues of natural language
processing i.e., synonymy and polysemy. SVD divides the
term-by-document matrix to create LSI subspaces based on a
parameter called “number of topics

1
”. For further details about

SVD, the reader can refer to [13]. In the LSI space each
document will have a corresponding vector. We use this vector
representation to compute similarity. Like VSM, the textual
similarity between documents and queries is measured by the
cosine of the angle between their corresponding vectors [1].

Different strategies for identifying candidate traceability
links are used, such as cut-points and thresholds. Our work
uses a strategy based on similarity threshold values where all
documents with a textual similarity value above or equal to the
threshold are considered as candidate traceability links.

Promising results have been achieved using LSI to address
concept location issue [19], and recovery of traceability links

1
 The term topic in LSI terminologies differs from the term topic in our

approach.

between source code and documentation [1]. In our approach,
we use LSI to match feature descriptions with source code
information.

III. FEATURE VERSUS OBJECT-ORIENTED ELEMENTS

For the purpose of this work, we adhere to the classification
given by [14] which distinguishes three categories of features.
Firstly, functional features express the behavior or the way
users may interact with a product. Secondly, interface features
express the product’s conformance to a standard or a
subsystem. Finally, parameter features express enumerable,
listable environmental or non-functional properties. In our
work, we focus on functional features.

As there are several ways to implement features (e.g.,
programming language level, meta language level) [6], we
assume that functional features are implemented at the
programming language level. Thus in an object-oriented source
code, a functional feature can be implemented by packages,
classes, methods, attributes, etc. As a class represents a main
building unit in all object oriented languages, we assume that a
functional feature is implemented at source code level by a set
of classes.

Due to the abstraction gap between features and source
code, recovering traceability links is a challenging problem. In
order to overcome this problem, we propose an intermediate
level, called “code topics”. A code topic is a cluster of classes
which are lexically similar and cover the same topic. A single
code topic can represent a complete feature or some aspect of a
feature. In addition, code topic can be shared between two or
more features. The underlying intuition behind code topics is
that a cluster of classes that implement a concept or a feature
has a high probability to be linked lexically because domain
knowledge represented by features is recorded in vocabularies
used in identifiers and comments. By the time the traceability
links between features and code topics were identified, we had
also identified traceability links between features and source
code where each code topic is a cluster of classes.

All concepts defined in our traceability recovery process are
illustrated in feature-to-code mapping model of Fig.1.

IV. THE PROPOSED APPROACH

Fig.2 shows our traceability recovery process. This
process takes as input source code and features of a set of given
product variants. Each feature is identified by its name and
description which consists of short paragraph. Such feature
information is available in product variants due to the need for
product customization. As an example of a feature description,
Edit feature in our illustrative example can be described as
follows: “To allow user to do copy, paste and cut operations on
a selected text in text area …etc.” .

In Fig. 2, FCA and Lexical similarity computing are used
separately to divide product variants at feature and source code
levels into a common partition and a set of disjoint clusters
(See parts A and B in Fig. 2). At feature level, common
features form common partition while optional features are
organized as a set of disjoint clusters so that each cluster
consists of one or more features. At source code level, a
common partition is composed of classes associated to
common features while each disjoint cluster is composed of
classes associated to corresponding disjoint cluster of optional
features. Also, FCA is used another time combined with VSM
to derive code topics from source code. Common code topics in
Fig.2 refer to topics derived from the common partition at
source code level while variable code topics refer to topics
derived from each disjoint cluster at source code level (see part
C in Fig. 2). Traceability links between each cluster of features
and its corresponding code topics are identified by LSI. After
determining the topics that correspond to each feature, we
easily determine classes that implement a feature by
decomposing each topic to its classes. The following
subsection explains each step on our recovery process in more
details.

A. Determining Common Partition at Feature and Source

Code Levels

As product variants share features and classes, our approach
exploits this to identify common partition at feature and source
code levels. At feature level, we rely on lexical similarity of
features names and their descriptions for determining common
partition at feature level of a collection of product variants. For
a given set of features of product variants, we firstly define a
subset of same name features. Secondly, as a feature may be
renamed to respond to changes in software environment or to
the adoption of different technology, we rely on the longest
common subsequence (LCS) algorithm [16] to find features
that have the same description but do not have the same name.
We consider that two features identical if they have the same

Fig.2. An overview of our approach.

Fig.1. Feature-to-source code mapping model.

subsequence terms of their description. In our illustrative
example, all core features (e.g., Open, Save, Edit and Create)
represent common partition at feature level.

At source code level, we analyze source code of a set of
product variants itself in order to determine common partition
at the source code level. The source code for each product
variant is abstracted into a set of elementary construction units
(ECUs). Each ECU has the following format:

 ECU = PackageName_ClassName

This representation is inspired by the model construction
operations proposed by [18]. Each product variant Pi is
abstracted as a set of ECUs, i.e. Pi={ECU1,ECU2,…,ECUn}.
An ECU reveals any changes at package and class levels (e.g.,
add or remove packages or classes). These changes can reflect
any variation at feature level (e.g. add or remove features).

In order to identify common ECUs shared by all product
variants, we compare ECUs for all product variants together.
This comparison process is done by conducting a lexical
matching among ECUs for all variants such that ECUs for each
product variant are lexically matched with ECUs for other
variants. The shared ECUs across product variants represent
common classes that represent the common partition at source
code level.

B. Grouping Optional Features and their Classes into

Disjoint Clusters by FCA

After determining common features and their associated
classes, the reaming features and classes in each product
variant represent optional features and their associated classes.
The following steps reduce the search space related to these
optional features and their classes using FCA.

1. Identifing optional feature clusters Using FCA
In order to reduce the search space related to optional

features, we use FCA to group optional features via concept
lattice into disjoint clusters. To achieve that, we define the
formal context as follows: product scenarios (defined below)
and optional features of a collection of product variants
represent objects (extent) and attributes (intent) in the formal
context respectively. A relation between a product scenario and
an optional feature describes that the product scenario possess
the optional feature. Table 1 shows a formal context of our
illustrative example. In this context rows and columns are
product scenarios and optional features respectively. Any
entry in this context refers to that a scenario possesses certain
optional features.

For any two product variants P1 and P2, we build two product
scenarios P1-P2 (features exist only in P1 but not in P2) and
P2-P1 (features exist only in P2 but not in P1). Consider
Editor_V1.1 (V1.1) and Editor_V1.2 (V1.2) as an example.
Two product scenarios can be created as follows: V1.1-V1.2 =
{Search, Replace} and V1.2-V1.1 = {Print, Help, Redo}. The
product scenarios aim at identifying differences between each
pair of products at feature level taking into account all
combinations between product variants. Thus the formal
context is constructed based on these differences and the
concept lattice associates these differences with their
product scenarios to form the lattice concepts.

TABLE 1. FORMAL CONTEXT FOR DESCRIBING TEXT
EDITORS SCENARIOS.

 S
ea

rc
h

R
e
p

la
ce

U
n

d
o

R
e
d

o

H
el

p

P
ri

n
t

V1.1-V1.2 x x

 V1.2-V1.1 x x x

 V1.1-V2.0

V2.0-V1.1 x x x

……….

Fig. 3 shows the concept lattice of formal context defined in
Table 1. Each concept in the lattice consists of three fields. The
upper field refers to concept name (generated automatically).
The middle field represents disjoint cluster of optional features
(intent). The bottom field shows scenarios (extent). Product
scenarios help to determine which product variants must be
compared to identify classes that implement a relevant cluster
of optional features. Our approach compares two product
variants by conducting a lexical matching between ECUs
(classes) that abstracts these variants (see subsection IV.A).

We are interested in concepts associated with a set of
features (such as the Concept_5 in Fig.3). They allow us to
know how to obtain disjoint clusters of features and determine
corresponding classes implementing these features.

2. Identifying clusters of classes
For a given cluster of optional features (i.e., a concept

computed by FCA), we analyze the relevant scenarios to
determine variants that have to compare. This allows us to
isolate a cluster of classes that implements this given cluster of
features by considering two cases. First, if a concept is directly
associated with a set of scenarios (see Concept_5 in Fig. 3); we
randomly select only one scenario from this set. For instance,
given a Concept_5 (where the second scenario is chosen), our
approach compares Editor_V1.2 with Editor_V1.1 to determine
a cluster of classes that are present in Editor_V1.2 but absent in
Editor_V1.1. The resulting cluster of classes implements a
cluster of features in the Concept_5 (Print, Help, Redo
features). The second case is if a concept does not associate
directly with a set of scenarios (see Concept_6 in Fig. 3), we
randomly select only one scenario from each concept located
immediately below and directly related to this concept. For

Fig.3. The concept lattice of formal context defined in Table 1.

example, given a Concept_6, our approach selects a scenario
from Concept_1 and a scenario from Concept_2. For the undo
feature in Concept_6, its corresponding classes are in both
Editor_V1.1 and Editor_V1.2 but are not in Editor_V1.0. Our
approach compares two product variants at source code level
by conducting a lexical matching between ECUs that abstracts
these variants.

C. Derivation of Code Topics by VSM and FCA

In the two previous steps, we considered just one factor to
enhance LSI results (reducing LSI search space at feature and
source code levels). This step considers a complement part of
reducing LSI search space by reducing the abstraction gap
between feature and source code levels using code topics.

Our approach groups classes of common partition and any
disjoint cluster at source code level into a set of code topics.
Our approach depends on a two-step process to derive code
topics from source code: computing lexical similarity among
classes using VSM and applying FCA. In the following
subsections, we will explain each step in more details.

1. Lexical Similarity Computing Using VSM
As each code topic is a set of similar classes, a similarity

measure is needed. In this paper, we consider lexical similarity
as similarity measure.

Lexical similarity refers to textual matching between terms
derived from identifiers and comments related to classes. In
order to compute lexical similarity among classes, we create a
document for each class. Each document contains lines of all
identifiers and comments of corresponding class. These
identifiers and comments should be manipulated such as
tokenization, stop word removal and stemming performing.

We use VSM to measure lexical similarity between classes.
VSM starts with a term-document matrix as mentioned earlier
in section II. Each entry ai,j is the weight of term ti in document
dj. In this paper, we used Term-Frequency/Inverse-Document-
Frequency (TF/IDF) weight. The TF/IDF weight is often used
in IR-based feature location approaches [13]. A geometric
interpretation for term-document matrix is a set of document
vectors as for each document there is a vector.

VSM computes lexical similarity between two documents
(classes) one of them is a query using cosine similarity between
their corresponding vectors. Two documents are considered
similar, if the cosine of angle of their corresponding vectors
greater is than or equal to 0.70. This value represents the most
widely used threshold for cosine similarity [1]. After
computing cosine similarity among all classes, we can build
cosine similarity matrix which its columns and rows are
identical and represent the documents. An entry in this matrix
refers to cosine similarity value. This matrix is used an input to
the next step.

2. Determining Code Topics Using FCA
The second use of FCA in our approach is to group similar

classes into code topics. The formal context here is the cosine
similarity matrix defined in the previous step: documents
(classes) represent objects and attributes at the same time. A
relation between a document (as object) and another document
(as attribute) represent cosine similarity value. As FCA is a

 TABLE 2. A PART OF THE FORMAL CONCEPT OF CONCEPT_5.

te
x

tE
d

it
o

r.
p
ri

n
t_

p
ri

n
t

te
x

tE
d

it
o

r.
p
ri

n
t_

p
ri

n
tS

e

tt
in

g

te
x

tE
d

it
o

r.
p
ri

n
t_

B
u

ff
er

P
ri

n
te

r
R

em
o

v
e

te
x

tE
d

it
o

r.
p
ri

n
t_

p
ri

n
te

r

te
x

tE
d

it
o

r.
h
el

p
_

V
ie

w

…
…

.

textEditor.print_print x x x x

textEditor.print_printSetting x x x x

textEditor.print_BufferPrintRemove x x x x

textEditor.print_printer x x x x

textEditor.help_View x

…………

binary relationship, we use again the threshold (0.70) to
transform the numerical values of the similarity matrix into
binary formal contexts. This means that only pairs of
documents having a similarity greater than or equal to 0.70 are
considered similar. Table 2 shows a part of the formal context
obtained by transforming the similarity matrix corresponding to
Concept_5 from Fig. 3. The cross sign refers to similarity
relation while null refers to there is no relation according to the
threshold value.

Concept_17 in Fig. 4 shows an example of a code topic.
This concept is taken from the lattice corresponding to the
formal context of Concept_5 in Fig. 3. The extent of this
concept represent a cluster of similar documents (classes) that
are grouped together to form a code topic. Each line in this
cluster represents an ECU (class). It is noticed that classes’
names in Concept_17 are similar and they also belong to the
same package (textEditor.print). By manually analyzing these
classes, we found that they represent the print feature in our
illustrative example. The intent and extent of Concept_17 are
the same because objects and attributes in the formal context
are identical (see Table 2).

D. Mapping features to code topics based on LSI

For a given set of features represented by common partition
or any disjoint cluster at feature level, our approach used LSI to
identify traceability links between these features and their
associated code topics. Our applying of LSI is similar to [1]. It
involves building LSI corpus and queries.

1. Building LSI Corpus
LSI corpus consists of documents which each one

corresponds to a code topic. Each document consists of terms
extracted from identifiers and comments of classes that
represent the code topic. After building LSI corpus, LSI creates
term-document matrix, where columns represent code topic
documents and rows represent terms extracted from these

Fig4. An example of a code topic.

documents. Each term is weighted according to TD/IDF
weight.

2. Building Queries
In our approach, LSI uses feature name and description as a

query to retrieve code topics relevant to each feature. Our
approach creates a document for each feature. Each document
contains the feature name and description that must be
normalized by splitting them into tokens, removing stop words
and token stemming.

3. Establishing Traceability Links
LSI takes as input documents and queries generated in the

two previous steps. It builds a vector of weights for each
document (code topic) and query (feature). Each term is
weighted by TF/IDF. Then, LSI measures the similarity
between queries and documents using cosine similarity. It
returns a list of documents ordered based on their cosine
similarity against each query. We consider again the same
threshold value used in VSM for cosine similarity, i.e., the
retrieved documents have a cosine similarity with a query
greater than or equal to 0.70.

After establishing traceability links between each feature
and all corresponding code topics, we can easily relate each
feature with their corresponding classes by decomposing each
code topic to its classes. For example, if feature f1 is linked to
two code topics: topic1= {c1, c2, c3} and topic2= {c1, c5, c6}.
By decomposing these topics into its classes; we can say that f1
is implemented by five classes {c1, c2, c3, c5, c6}.

V. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we show the case study used for the
evaluation of our approach, present the evaluation metrics and
then discuss the experimental results.

A. Case Study and Experimental setting

To validate our approach, we applied it on a collection of
seven variants of a large-scale system by using the ArgoUML-
SPL modeling tool [8]. ArgoUML-SPL

2
is Java open-source

which supports all standard UML 1.4 diagrams. It is well-
documented and real implementation for each feature can be
determined by preprocessor directives to delimit the code
associated to each feature. The main advantage of ArgoUML-
SPL is that it implements features at class level. The seven
selected variants support all ArgoUML-SPL features. They
consist of two common features (class diagram and cognitive

TABLE 3. PRODUCT VARIANTS SIZE.

Products NOP NOC LOC

Product#1 63 1455 99243

Product#2 67 1488 103969

Product#3 70 1554 107334

Product#4 74 1587 112060

Product#5 69 1541 110168

Product#6 72 1607 113533

Product#7 81 1666 118189

Product#8 65 1508 105442

support features) and six optional features (state, collaboration,
use-case, activity, deployment and sequence diagram). Table 3

2 Available at http://argouml-spl.tigris.org/

presents the size of selected product variants in terms of
number of packages (NOP), number of classes (NOC) and
number of lines of code (LOC).

B. Evaluation Measures

The effectiveness of IR methods is commonly measured by
their precision, recall and F-measure. For a given query,
precision is the percentage of correctly retrieved links to the
total number of retrieved links. Recall is the percentage of
correctly retrieved links to the total number of relevant links. F-
measure makes a tradeoff between precision and recall so that
it gives a high value only in the case that both recall and
precision values are high. All measures have values between
[0, 1]. If recall 1, it means that all correct links are retrieved,
though they could be retrieved links that are not correct. If
precision 1, it means that all retrieved links are correct, though
they could be correct links that are not retrieved. Higher
precision, recall and F-measure mean better results [13].

C. Performance of Our Approach

The most important parameter to LSI is the number of
chosen topics. A topic is a collection of terms that co-occur
frequently in the documents of the corpus. We need enough
topics to capture real term relations. Too many topics lead to
associate irrelevant terms and too few number of topics leads to
lost relevant terms. According to Dumais et al. [19], the
number of topics is between 235 and 250 for natural language.
For a corpus of source code files, Poshyvanyk et al. [20]
recommended topic’s number of 750.

In this work we cannot use a fixed number of topics for LSI
because we have different sizes of clusters. Thus, we use a
factor k between zero and one to determine the number of
topics. The number of topics (#topics) = k × Docd, where Docd
is document dimensionality of term-document matrix that is
generated by LSI. We evaluate the performance of our
approach for #topics where k= 0.1, 0.2, 0.3 and 0.4.

A Fig.5 compares our approach against applying LSI in
conventional way in term of the precision and recall metrics.
The conventional way means applying LSI by considering each
variant separately and also without taking into account the
abstraction gap between features and source code levels. The
graphs A to G given in Fig.5 correspond to Product 1 to
Product 7 respectively. The X-axis in these graphs represents
different values of k while Y-axis refers to precision and recall.

The graphs in Fig.5 indicate that our approach gives higher
precision and recall than the conventional way. This is
attributed to two reasons. Firstly, our approach maps less
number of features to less implementation by reducing the LSI
search space at feature and source code level. As a result, the
accuracy of LSI results increases because of reducing the
number of false positive links. Secondly, our approach bridges
the abstraction gap between features and source code levels
using code topics that can be a feature or some aspect of a
feature. This means that our approach maps two similar
software artifacts (features and code topics) which leads to
increase the number of correctly retrieved links. By increasing
the number of correctly retrieved links, the precision and recall
also increase at the same time. Tables 4 and 5 show F-measure
results for our approach and the conventional way respectively.

It is noticed that these results confirm that our approach gives
higher precision and recall compared with the conventional
way because when F-measure is high, this means that also
precision and recall are high, too.

Fig.6 compares our approach with the most relevant work
on the subject, called FL-PV [9], in term of F-measure metric.
FL-PV considers reducing the LSI search at feature and source
code levels as a parameter to improve LSI performance in a
collection of product variants. Fig.6 shows that our approach
outperforms FL-PL in term of F-measure. Since our approach
gives higher F-measure values than FL-PV, this means that our
approach also gives higher precision and recall than FL-PV
according to the definition of F-measure. This is attributed to
the fact that our approach not only considers reducing LSI
search space like FL-PV but also reduces the abstraction gap
between feature and source code level as a complementary part
of reducing LSI search space. It can be seen that in Fig.8 when
the number of topics (k) increases, results of our approach and
FL-PV decreases. This is because of increasing the number of
code topics results in capturing irrelevant terms.

Thanks to the integration of reducing LSI search space and
bridging the gap between features and source code levels, our
approach gives better results although ArgoUML-SPL features
are similar and share code. For instance, there is a shared codes

between Activity and State diagrams, between Collaboration
and Deployment diagrams and Cognitive Support feature has
crosscutting behavior across all other features.

VI. THREATS TO VALIDITY

The threat to the validity of our approach is that developers
may not use the same vocabularies to name source code
identifiers across product variants. This would mean that
lexical matching at source code level would be affected.
Nonetheless, when a company has to develop a new product
that is similar, but not identical, to existing ones, an existing
product is cloned and later modified according to new
demands.

VII. RELATED WORKS

We classify feature location techniques into two
categories. The first category is related to feature location in
single software product. The second one includes techniques
which support feature location in a collection of software

TABLE 4 F-MEASURE RESULTS OF OUR APPROACH.

K/Product P1 P2 P3 P4 P5 P6 P7

0.01 0.64 0.64 0.65 0.67 0.67 0.67 0.67

0.02 0.64 0.65 0.65 0.67 0.67 0.67 0.67

0.03 0.63 0.63 0.64 0.66 0.66 0.66 0.66

0.04 0.64 0.64 0.64 0.66 0.66 0.66 0.66

TABLE 5.F-MEASURE RESULTS OF APPLYING LSI IN

CONVENTIONAL WAY.

K/Product P1 P2 P3 P4 P5 P6 P7

0.01 0.40 0.39 0.32 0.30 0.31 0.24 0.41

0.02 0.42 0.42 0.30 0.31 0.29 0.24 0.42

0.03 0.48 0.46 0.32 0.33 0.33 0.27 0.47

0.04 0.39 0.50 0.35 0.34 0.37 0.25 0.44

Fig.5. Comparing our approach with applying LSI in conventional way in term of the Precision and Recall metrics.

 (A) Product 1. (B) Product 2. (C) Product 3. (D) Product 4.

 (E) Product 5. (F) Product 6. (G) Product 7.

Fig.6. Comparing our approach with FL-PV in term of F-measure metric.

products. A comprehensive study about techniques in the first
category can be found in [7] while the works of Ghanam et al.
[3], Rubin et al. [11] and Xue et al. [9] belong to the second
category.

Ghanam et al. have put forward a method to keep
traceability links between features of a family of software
products and their source codes up-to-date. They start from pre-
existing links to make them up to date executable acceptance
tests. Rubin et al focused on only locating distinguished
features of two product variants implemented via code cloning
and do not consider common features between them. In our
recent work [17], we have proposed to consider not only two
software variants but also consider all variants together. This
allowed us to isolate both: the common and the optional
features with their associated source code elements in each
variant. LSI is used to map a group of features to its
corresponding group of source code elements. As a result, the
recall and precision of results given by LSI will be enhanced
because of mapping less number of features to less
implementation.

The most recent and relevant work on the subject is called
FL-PV [9] (Xue et al work). FL-PV analyzes commonalities
and differences at feature and source code levels across product
variants to reduce search space related to features and
respectively their source code elements into minimal disjoint
partitions. Then LSI is used to retrieve code elements that
implement a specific feature. The limit of FL-PV is if any
partition consists of a large number of features, FL-PV remains
inefficient because LSI search space also becomes large at
feature and source code level.

Our approach differs from FL-PV by reducing the
abstraction gap between features and source code levels as a
complementary part of reducing the IR search spaces.
Compared to Ghanam et al. work, the proposed approach starts
from scratch and assumes no pre-existing links. With respect to
Rubin et al.’s work, our approach not only locates
distinguishing feature between two software variants but also
locates all features across variants. Comparing with our recent
work [17], the current work groups optional features and their
associated source code elements across product variants into
disjoint clusters at feature and source code levels.

VIII. CONCLUSION AND FUTURE WORK

We presented in this paper a new approach which combines
FCA with IR, namely LSI and VSM, to establish traceability
links between object oriented source code of a collection of
product variants and given features of these variants. The
contribution of this paper is twofold. Firstly, it improves the
accuracy of results given by LSI via reducing the LSI search
space at feature and source code levels. Secondly, it increases
the number of correctly retrieved links by reducing the
abstraction gap between feature and source code levels using
code topics. The evaluation of our approach with seven variants
of ArgoUML-SPL shows that our approach outperforms the
approaches that apply IR methods in conventional way as well
as the most relevant work on the subject (FL-PV).

In our future work, we plan to combine lexical
similarity with structural similarity (e.g. method call and shared

field access relationships) to enhance derived code topics. This
requires a definition for structural similarity measure between
source code elements.

REFERENCES
[1]. A. Marcus and J.I. Maletic. Recovering documentation-to-source

code traceability links using Latent Semantic Indexing. ICSE 2003,
pp.125-137.

[2]. P.Clements and L.Northrop. Software product lines: practices patterns.
Addison-Wesley Longman Publishing Co., Boston, MA, USA, 2001.

[3]. Y. Ghanam and F.Maurer. Linking feature models to code artifacts using
executable acceptance tests. In Proceedings of the 14th international
conference on Software product lines: going beyond (SPLC'10), Jan
Bosch and Jaejoon Lee (Eds.). Springer-Verlag, Berlin,
Heidelberg,2010, 211-225.

[4]. P.Ye, X.Peng, Y.Xue and S. Jarzabek.: A Case Study of Variation
Mechanism in an Industrial Product Line. ICSR. 2009,126-136.

[5]. D.Andrea, F.Fausto, O.Rocco and T.Genoveffa. Recovering traceability
links in software artifact management systems using information
retrieval methods. ACM Trans. Softw. Eng. Methodol. 16, 4,20007,
Article 13 .

[6]. D.Beuche, H.Papajewski, S.Wolfgang. Variability management with
feature models. Sci. Comput. Program. 53, 3 (December 2004), 333-
352. 352.

[7]. B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in
source code: A taxonomy and survey, JSME, 28 Nov, 2011.

[8]. M. V. Couto, M. T. Valente, and E. Figueiredo, “Extracting software
product lines: A case study using conditional compilation,” in CSMR, T.
Mens, Y. Kanellopoulos, and A. Winter, Eds. IEEE Computer Society,
2011, pp. 191–200.

[9]. X.Yinxing ,X. Zhenchang, J. Stan: Feature Location in a Collection of
Product Variants. WCRE 2012: 145-154

[10]. G.Bernhard, W.Rudolf. Formal Concept Analysis: Mathematical

Foundations (1st ed.). Springer-Verlag New York, Inc., Secaucus, NJ,
USA.1997.

[11]. J. Rubin and M. Chechik. Locating distinguishing features using diff
sets. InProceedings of the 27th IEEE/ACM International Conference on

Automated Software Engineering(ASE 2012). ACM, New York, NY,
USA, 242-245.

[12]. G. Orlena and F. Anthony. An analysis of the requirements traceability
problem. In Proceedings of 1st International Conference on
Requirements Engineering (Colorado Springs, CO). IEEE Computer
Society Press,1994, Los Alamitos, CA, 94–101.

[13]. S.Gerard and M.Michael. Introduction to Modern Information Retrieval.
McGraw-Hill, Inc.,1996, New York, NY, USA.

[14]. M. Riebisch, “Towards a more precise definition of feature models,” in
Modelling Variability for Object-Oriented Prod- uct Lines, M. Riebisch,
J. O. Coplien, and D. Streitferdt, Eds. Norderstedt: BookOnDemand
Publ. Co, 2003, pp. 64–76.

[15]. K. Kyo, C.Cohen,H.James,N.William and P.Spencer.Feature-Oriented
Domain Analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21, 1990,Carnegie Mellon University.

[16]. L. Bergroth and H. Hakonen and T. Raita. A Survey of Longest
Common Subsequence Algorithms. SPIRE 2000, pp. 39–48.

[17]. E.Hamzeh, S.Abdelhak-Djamal, D.Christophe and A.Ra'Fat. Identifying
Traceability Links between Product Variants and Their Features . CSMR
Workshop(17th European Conference on Software Maintenance and
Reengineering) March 5–8, 2013, Genova, Italy.

[18]. X. Blanc, I. Mounier, A. Mougenot, and T. Mens, “Detecting model
inconsistency through operation-based model construction,” in ICSE, W.
Schäfer, M. B. Dwyer, and V. Gruhn, Eds.ACM, 2008, pp. 511–520.

[19]. S.T. Dumais. LSI meets TREC: A status report, in Proceeding of Text
Retrieval Conference, pp. 137-152. 1992.

[20]. D. Poshyvanyk, A. Marcus, V. Rajlich, Y.-G. Guéhéneuc, and G.
Antoniol. Combining Probabilistic Ranking and Latent Semantic
Indexing for Feature Identification. ICPC, pp. 137-148, 2006.

