
How To Generate Distributed Software
Components From Centralized Ones?

Abdelhak Seriai*, Gautier Bastide* and Mourad Oussalah**
* Ecole des Mines de Douai, 941 rue Charles Bourseul, 59508 Douai, France

Email: {seriai, bastide}@ensm-douai.fr
** LINA, université de Nantes, 2 rue de la Houssinière, 44322 Nantes, France

Email: oussalah@lina.univ-nantes.fr

Abstract— Adapting software components to be used in a
particular application is a crucial issue in software compo-
nent based technology. In fact, software components can be
used in contexts with characteristics different from those
envisaged when designing the component. Centralized or
distributed deployment infrastructure can be one of these
assumptions. Thus, a component can be designed as a mono-
lithic unit to be deployed on a centralized infrastructure,
nevertheless the used infrastructure needs the component
to be distributed. In this paper, we propose an approach
allowing us to transform a centralized software component
into a distributed one. Our technique is based on refactoring
and fragmentation of component source-code.

Index Terms— Software component, adaptation, restructura-
tion, distribution, refactoring.

I. INTRODUCTION

Component-based software engineering (CBSE) [1],
[2] focuses on reducing application development costs
by assembling reusable components like COTS [3]
(Commercial-Off-The-Shelf). However, in many cases,
existing components can not be used in an ad-hoc way.
In fact, using a software component in a different manner
than for which it was designed is a challenge because the
new use-context may be inconsistent with assumptions
made by the component. Deployment infrastructure may
be one of these assumptions. For example, a software
component may be designed as a monolithic unit to be
deployed on a centralized infrastructure and, due to load
balancing performance, security policy or other motiva-
tions, this component has to be distributed. The solution
consists in adapting this component to its distributed use
context.

Therefore, in this paper, we propose an approach aim-
ing at transforming an object-oriented monolithic and cen-
tralized software component by integrating distribution fa-
cilities [4]. Our approach is based on two transformations.
The first one consists in refactoring component structure
in order to create a composite-component (i.e. fragmented
structure), while preserving component’s behavior [5].

This paper is based on “Transformation of centralized software
components into distributed ones by code refactoring,” by A. Seriai,
G. Bastide and M. Oussalah, which appeared in the Proceedings of the
International Conference on Distributed Applications and Interoperable
Systems (DAIS 2006), Bologna, Italy, June 2006. c© 2006 LNCS.

This transformation is achieved through a process com-
posed of four stages. First, following the available infras-
tructure, the needed distribution configuration is expressed
in a declarative style. Next, the monolithic component is
fragmented to fulfill the distribution specification given
during the first stage. After, components generated as
fragmentation result are assembled. Finally, the compo-
nent assembly is wrapped into a composite-component
which is integrated into the application.

The second transformation makes the generated
composite-component distributed. In fact, the refactoring
process applied to a monolithic centralized component
generates a composite one but still with centralized con-
stituents. So, in order to create a distributed composite-
component, we need to transform local composition
links between its constituents into remote ones. Remote
links reflect the distributed configuration specified for the
adapted component services.

We discuss the proposed approach in the rest of this
paper as follows. Section II presents an example of ex-
perimentation that illustrates our approach. Section III and
IV detail respectively, the refactoring process allowing
us to fragment a component and next, the integration of
the distribution mechanisms. Section V gives details on
source-code instrumentation. In section VI, we present
Scorpio, a prototype which implements our approach.
Section VII reviews related work. Conclusion and future
works are provided in section VIII.

II. EXAMPLE OF ILLUSTRATION: A SHARED-DIARY

COMPONENT

In order to illustrate our purpose, we use throughout
this paper an example of a software component providing
services of a shared-diary system which can be accessible
to multiple users. It allows users to store and consult
the personal diaries of each member of a group and
coordinates dependent events, stored or generated by
these diaries. The shared-diary component provides the
following services:

1) Managing personal diary. This includes authen-
tication, consulting events (e.g. meeting, activity,
project), querying the diary, etc. These services are
provided through the Diary interface.

2) Organizing a meeting. This includes services per-
mitting users to confirm the possibility to organize a

40 JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006

© 2006 ACADEMY PUBLISHER

Figure 1. Transformation of the shared-diary component into a distributed one

meeting where the date and the list of the concerned
persons are given as parameters, services returning
possible dates to organize a meeting of some peo-
ple, etc. These services are provided through the
Meeting interface.

3) Managing absence. This includes services permit-
ting users to verify the possibility to add an absence
event, to consult all the absence dates of one or
some persons, etc. These services are provided
through the Absence interface.

4) Right management. This includes services concern-
ing absence right attribution, service related to di-
aries initialization, etc. These services are provided
through the Right interface.

5) Updating diary, meeting dates, absence dates
and absence rights of a person. These services
are provided, respectively, through DiaryUpdate,
MeetingUpdate, AbsenceUpdate and RightUpdate
interfaces.

We consider that this component is a monolithic and
centralized one. Also, we assume that, due to the con-
sidered load balancing policy, defined for the available
deployment infrastructure, this component cannot be de-
ployed on only one host. So, our goal is to transform this
component for deploying it on a distributed infrastructure
(Fig. 1). This result may be obtained by the fragmentation
of the shared-diary component into four new components:

1) Diary-Manager component which provides Diary
and DiaryUpdate interfaces,

2) DataBase-Manager component which provides
Right and RightUpdate interfaces,

3) Absence-Manager component which provides Ab-
sence and AbsenceUpdate interfaces,

4) Meeting-Manager component which provides Meet-
ing and MeetingUpdate interfaces.

In order to take into account deployment context, the
Diary-Manager component will be deployed on the local
host whereas the DataBase-Manager, Absence-Manager
and Meeting-Manager components will be deployed re-
spectively on site1, site2 and site3 (remote hosts).

III. FROM A MONOLITHIC COMPONENT TO A

COMPOSITE-COMPONENT

The first transformation to obtain a distributed com-
ponent from a monolithic centralized one consists in

refactoring component source-code through the fragmen-
tation of its structure. As we mentioned it previously, the
component refactoring process (Fig. 2) is based on four
stages which are detailed below.

A. Specification of the transformation result

The first stage of the transformation process is the
specification of the needed results. This specification
consists in the generation of a script which we call
"adaptation script". In fact, every generated-component is
specified by indicating its provided interfaces and its de-
ployment host. The script syntax is given below. Symbols
"+", "∗" indicate respectively one or more and zero or
more elements. "{}" symbolizes a set of elements. When
an interface is defined in several generated-components,
symbol "||" associated with the interface name indicates
that this interface must be that which is used by the rest
of the application. To guaranty the correctness of this
specification, we define some control operations in order
to check that each new sub-component provides a set of
interfaces which must be included in the interface set of
the component to be adapted. Moreover, the union of these
subsets must be equal to the set of interfaces provided by
the initial component.

S t r u c t uAdap t (CompToAdapt ,
{CompDef = <{ Po r tDe f = { [| |] I n t e r f a c e D e f }+ }+? > ,

< h o s t ? > }∗)

To illustrate this stage, let us reconsider our example
of the shared-diary application. The goal of this com-
ponent transformation is to reorganize services provided
by this one in four new generated-components (e.g.
Diary-Manager, DataBase-Manager, Absence-Manager,
Meeting-Manager) which are deployed on distinguished
hosts. The script allowing the application administrator to
specify the needed structure is given below.

S t r u c t uAdap t (Shared−Diary ,
{ Diary−Manager=<{P−Diary =Diary , Dia ryUpda te }>}
{ DataBase−Manager=<{P−DB=Right , R igh tUpda te } > ,

< s i t e 1 >}
{Absence−Manager=<{P−Abs=Absence , AbsenceUpdate } > ,

< s i t e 2 >}
{ Meet ing−Manager=<{P−Meet=Meet ing , Mee t ingUpda te} > ,

< s i t e 3 >}
)

JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006 41

© 2006 ACADEMY PUBLISHER

Figure 2. Software component refactoring process

B. Component fragmentation

Specification done during the previous stage is used
to refactor component structure. Component refactoring
consists in fragmenting this component into a set of new
generated-components, while guaranteeing the component
integrity and coherence. This stage is based on component
source-code analysis.

1) Fragmentation control: Component source-code
refactoring must be realized without any change on
this component’s behavior. Thus, two criteria must be
checked: integrity of generated-components and coher-
ence of their respective states.

• Generated-component integrity. The implementation
of each generated-component must be guaranteed
to be sound. The soundness of this code1 implies
that it must be syntactically and semantically correct
(i.e. code must be conformed to the corresponding
object-oriented grammatical and semantic language
rules), complete (i.e. dependent code elements must
be accessible one to the others) and coherent (i.e. the
behavior corresponding to a generated-component
must be conformed to the matching local behavior
in the monolithic component).

• Generated-component coherence. The outside behav-
ior made by the generated-components must be the
same as the monolithic component’s behavior. That
implies that local behaviors of generated-components
must be coherent, the ones compared to the oth-
ers. This requires that local behaviors corresponding
respectively to the generated-components which are
semantically related to other behaviors in other com-
ponents must be identified to ensure their correlation.

2) Code analysis and fragmentation: The fragmen-
tation which aims at generating new software compo-
nents is realized by analyzing the monolithic component
source-code, determining for each new component to
be generated its corresponding code, separating these
codes, one from the others, and determining existing
dependencies between them. These steps are mainly based
on building, for each component to generate, its SBDG
(i.e. Structural and Behavioral Dependency Graph). A
SBDG is a graph where nodes are structural elements

1Proof of the satisfaction of this soundness criteria by the proposed
refactoring approach is out of this paper scope.

and arcs are the different forms of dependencies ex-
isting between these elements. Structural elements may
be external (e.g. ports, interfaces, implementation class
and methods matched with services provided by these
interfaces) or internal (e.g. internal methods and inner
classes) ones. Dependencies between structural elements
are of two types: structural and behavioral dependencies.
Structural dependencies correspond to composition rela-
tionships between structural elements. Thus, a software
component is structurally dependent of its ports; a port
is structurally dependent of its interfaces, etc. Behavioral
dependencies represent method calls defined in a method
code. It should be noted that the polymorphism property
related to an object-oriented code does not allow us to
identify, by a static analysis and in a deterministic way,
all existing behavioral links between methods. Thus, we
insert in a SBDG all possible behavioral links existing
between these structural elements (i.e. methods).

Once, the SBDG corresponding to a component to be
generated is built, the code of each one of its struc-
tural elements is generated. These codes are connected
between them in order to reflect the existing structural
links between their corresponding structural elements.
All the generated code represents the first version of
a new component source-code. The next version of the
generated-component source-code transforms behavioral
links existing between methods defined respectively by
two different SBDG on composition links between the
corresponding components (see Sect. III-C).

For example, considering our Shared-diary component,
figure 3 shows a part of the SBDG corresponding to the
Meeting-Manager and Absence-Manager components. As
the checking_meeting method is linked to the is_absent
method (i.e. the checking_meeting method of the Meet-
ing interface calls the is_absent method of the Absence
interface) which is contained in another interface, it is
needed to create a behavioral link between the Meeting
and Absence interfaces.

C. Assembly of the new generated-components

The fragmentation stage generates unconnected com-
ponents providing each one a sub-set from the initial
component services. However, these services are not
independents one from the others. In fact, they are

42 JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006

© 2006 ACADEMY PUBLISHER

Figure 3. A part of the Shared-diary component SBDG

linked through behavioral or resource sharing dependen-
cies which are materialized through connections between
generated-components.

1) Connecting components via behavioral-dependency
interfaces: Components generated by fragmentation are
connected using behavioral-dependency interfaces. These
interfaces are used to materialize behavioral-dependencies
between generated-components according to the SBDG
graph. Behavioral-dependency interfaces defined by a
generated-component are:

• Interfaces defining required behavioral-dependency
services. These interfaces allow a component service
to access all needed elements (i.e. methods) which
are contained in other generated-component imple-
mentations.

• Interfaces defining provided behavioral-dependency
services. These services are those provided by this
component and which are required by other compo-
nents to assuring some of their services.

2) Connecting components via resource-sharing de-
pendency interfaces: Components are also connected via
interfaces used to manage resource sharing. We consider
as resource every structural entity defined in the compo-
nent code with an associate state. For example, instance
and class attributes are considered as resources. Shared
resources are those defined and used in two or more
component implementations. So, we need to preserve
a coherent state of these resources in all components
sharing them (i.e. to ensure that the same resource has
the same state on all components). Coherence is ensured
through two types of interfaces: communication interfaces
and synchronization-access interfaces.

Communications interfaces aim at permitting them to
communicate, between components, updates occurred on
shared resources. These are:

1) An interface defining required services permitting
the component to notify shared-resource state up-
dates. These services are defined as synchronous
(i.e. every time when a shared resource is updated
by a component, its execution can continue only
after its state is updated by the other components

sharing this resource). Component implementation
is instrumented by adding notification code every
time the shared resources updated.

2) An interface defining provided services allowing
the component to update shared resource states
every time when this resource is updated by an-
other component. Thus, component implementation
is instrumented by adding code permitting it to read
new resource values and update the local resource
copy.

When considering the Shared-diary component, figure
4 shows an example of communication interfaces which
are used in order to manage the Absence_list resource.
This resource is an instance attribute whose value repre-
sents day of absence for a given person. It is shared by
the Absence-Manager and Meeting-Manager generated-
components. When the Absence_list resource is updated
by the Absence-Manager component (1), a notification is
send to the Meeting-Manager component (2). Next, the
Meeting-Manager component memorizes the new value
(3).

Figure 4. Example of communication interfaces

The second type of interfaces (i.e. synchronization-
access interfaces) allows the component to synchronize
access to a shared resource. These are:

1) An interface defining required services permitting
the component to acquire, from components sharing
a resource, an authorization to update this one.

2) An interface defining provided services allowing the
component to release rights to update a shared re-
source. These services are requested by components
sharing a resource with the component providing
this interface.

Figure 5 shows an example of synchronization-access
interface which is used to manage the nb_day_free re-
source, related to the Shared-Diary component. This
resource is an instance attribute whose value represents
the number of free days for a given person. It is shared
by the Absence-Manager, Database-Manager and Diary-
Manager components. First, Absence-Manager compo-
nent which needs to update the nb_day_free resource
(1) asks a right-access to the other component which
shared this resource (e.g. DataBase-Manager and Diary-
Manager) (2). When Absence-Manager component re-
ceives a notification from these components, it can update
the resource nb_day_free (3).

JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006 43

© 2006 ACADEMY PUBLISHER

Figure 5. Example of synchronized access interfaces

The implementation of the communication and
synchronization-access interfaces is realized through
the instrumentation of the generated-component object-
oriented source-code (See Sect. V).

D. Integration of the transformation result

The last step of our process is the integration, in
the subjacent application, of the component restructuring
result obtained during the previous stages. It consists in
connecting the new generated-components with the other
application components while ensuring that the com-
ponent transformation is achieved in a transparent way
compared to the application components. So, integration
requires to satisfy the following properties:

• Security feature: the application components should
not be able to access, after the component trans-
formation, to other services than those provided by
the component before its transformation. In fact, all
new interfaces (i.e. created by our process) must not
be accessed by application components, except those
created by transformation. For example, all compo-
nents must not access to services allowing to modify
a shared resource state (i.e. only components which
share this resource can access to related services).

• Distribution feature: the new generated-components
can be accessed and handled as separate entities.
For example, it would be possible to specify a
deployment configuration by a direct designation of
the generated-components.

Our solution to guarantee these properties consists in
wrapping components generated by fragmentation into a
new composite-component (see Fig. 6). This new compo-
nent allows us to mask services created by the process.
Moreover, it provides additional interfaces allowing it
to manipulate its sub-components. For example, these
interfaces aim at realizing independent deployment of
each sub-component.

Furthermore, we define a composite-component as pro-
viding facilities for possible functional adaptations. This
is done via a second non-functional interface integrated
to the composite-component interface set. This interface
allows the administrator to set a collection of configurable
properties. For example, the two following properties al-
low the administrator to customize sub-component access:

• Sub-component encapsulation: This property refers
to the visibility and the accessibility of sub-
components considering other application compo-
nents. A generated composite-component can be
specified as (1) "white-box", which means that com-
posite structure is visible and sub-components are
directly accessible, (2) "black-box", which imposes
sub-components to be neither visibles nor accessibles
by other application components or (3) "mix-box",
which means that some sub-components, not all,
can be accessibles directly by the other application
components.

• Internal access: This property permits us to specify
how a sub-component can be accessed by other sub-
components. This can be configured either via the
composite-component or via a direct reference to a
sub-component.
Access through the composite allows us to pre-
pare a future functional adaptation. In fact, as all
service-invokes exchanged between sub-components
are analysed by the composite, post or pre-conditions
may be set up easily.

IV. FROM A CENTRALIZED COMPOSITE-COMPONENT

TO A DISTRIBUTED COMPOSITE-COMPONENT

The fragmentation process realized during the first
phase of our approach allows us to generate a new
composite-component. However, this result cannot be dis-
tributed on several hosts because all sub-components use
local binding. As many resources or services cannot be
accessed using direct references because they are provided
by remote components (i.e. sub-components are intercon-
nected through bindings which can be local or remote
references between provided and required interfaces), we
need to ensure communications between local and remote
components. In order to create distributed components,
first, we need to specify the new component distribution
(i.e. to specify sites for each component). This speci-
fication is realized through ADL generation (see Sect.
III-A). Then, the component structure is automatically
updated (i.e. creation of new interfaces and components
dedicated to the distribution management) and component
code is instrumented in order to ensure coherence (i.e. a
component may access to all resources or services needed
during its execution).

In order to introduce distribution mechanisms into the
composite-component which has been generated during
the first transformation process, we propose a distribution
model for composite-components (Fig. 7). This model is
composed of two parts. The first part is dedicated to
the distribution management at the component content
scale (i.e. new created interfaces and new added sub-
components) and the other one defines all components
needed at the controller scale (i.e. low-level services,
network services, etc.).

44 JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006

© 2006 ACADEMY PUBLISHER

Figure 7. Component distribution model

A. Distributed composite-component

A distributed component is a component whose sub-
components may be deployed on different hosts. We dis-
tinguish three solutions which can be used to create a dis-
tributed component. The first one (see Fig. 8 Case B) con-
sists in deploying sub-components on different hosts and
the composite on only one. In this case, the composite-
component instance contains only connectors which are
used to transfer messages from provided composite ports
(or interfaces) to sub-component ports (or interfaces)
which may be provided by a local or a remote host (i.e.
export binding). Moreover, sub-components are connected
together through direct binding which may be local or
remote ones. This strategy implies that sub-components
may be accessible by a direct way. Moreover, the visibility
of the internal composite structure is blurred. The second
solution (see Fig. 8 Case C) consists in the use of virtual
components within the composite. Virtual components are
used in order to access a remote component (see below).
This strategy allows us to improve composite structure
visibility. The last solution (see Fig. 8 Case A) consists in
the creation of a composite-component into every host on
which a part of the component is deployed. This solution
allows us to preserve a strong encapsulation of the created
components. A composite-component instance is loaded
on each host which contains a part of this component
(i.e. at least one sub-component). Nevertheless, the entire
composite-component is not instancied on each host. In
fact, different copies of the composite-component are
instancied. Each instance is composed of a set of local
components and a set of virtual components.

1) Local components: Local component means real
component (i.e. sub-component) of the composite-
component. They are generated during the fragmentation
step of the first transformation. Each component is instan-
cied in only one host (i.e. those which are specified by
the administrator during the specification step).

2) Virtual components:
a) Virtual component structure: A virtual compo-

nent provides the same interfaces than those of the remote
component, however implementation (i.e. service code) is
different. In fact, functional code is replaced by controller
code which allows it to invoke remote services. Two

interfaces are added to this virtual component (Fig. 9): one
is required and allows the component to send messages
to the remote component and the other one is provided
and allows the component to receive messages from the
remote component. These two interfaces ensure remote
communications. Bindings between virtual components
are created using architecture description analysis (i.e.
ADL analysis). For example, when a local component
C1 deployed on site 1 is bound to a remote compo-
nent C2 deployed on site 2 (i.e. a required interface
of the component C1 is linked to a provided interface
of the component C2), we create two links: one from
the provided interface of the component C’2 (i.e. virtual
component of C2 on site 1) to the required interface
of the component C’1 (i.e. virtual component of C1 on
site 2) and the other one from the provided interface
of the component C’1 to the required interface of the
component C’2. Communications between C’1 and C’2
components are realized through these two new interfaces
whose services use the distribution components (see Sect.
IV-B).

Figure 9. Example of component distribution

b) Virtual component behavior: A virtual compo-
nent is a representation of a local component which is
deployed on a remote host. In fact, it is used as connectors
between local and remote components. Indeed, a local
component service may invoke a remote service as if this
one is provided by a local component (i.e. functional code
of local components is not modified). Virtual components
are used in order to transfer messages between local and
remote components (i.e. delegation services). So, remote
connections are realized only from a virtual component
to another one because only these components are able
to send and receive messages through network (Fig. 10).
Thus, when a service of a component C1 calls a service
provided by a remote component C2, the component C1
sends a message to the virtual component of C2. Then,
this call is transformed into a call from the virtual com-
ponent of C1 to the component C2. This transformation is
realized through a remote connection between the virtual
component of C2 and the virtual component of C1 (i.e.
on the remote host).

JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006 45

© 2006 ACADEMY PUBLISHER

Figure 10. UML2 Sequence Diagram of the distribution process
between two components

B. Distribution components

A new controller component called distribution com-
ponent which allows generated-components to ensure
remote communications is added to our model. It is
composed of two sub-components:

• A transport component: it allows virtual components
to realize remote communications (i.e. services pro-
vided by the transport component allow the com-
ponent to pack and unpack messages which are
exchanged between local and remote components,
and set up connections through network protocols).

• A naming component: it allows the transport compo-
nent to find the host address on which local compo-
nent services are instancied (i.e. services provided by
the naming component allow a component to search
and locate remote components).

As we explained previously, different component in-
stances are loaded on deployment hosts. As a copy of
the composite-component is created on each site, non-
functional services (i.e. service allowing the composite
to manage its content, service allowing the composite
to manage bindings between sub-components, service
allowing the composite to manage component life cycle,
etc.) are duplicated. So, we need to ensure communication
and coherence between component instances at the control
scale in order to preserve software component integrity.
For example, when the composite-component starts, the
other instances loaded on the remote hosts have to start
their own component version.

V. SOURCE-CODE INSTRUMENTATION

In order to preserve coherence of the generated-
components, we defined specific interfaces which aim at
ensuring a coherent state among generated-components.
The state of a component consists of the set of its
resource values. As a resource can be duplicated in several
component implementations, we need to preserve a co-
herent state of these resources in all components sharing
them. Thus, the coherence-interface role is to preserve the
coherence of the shared-resource state. This is realized
through source-code instrumentation permitting to imple-
ment notification and synchronization mechanisms.

A. Source-code instrumentation for resource-update no-
tification

After updating a resource in one generated-component,
the new state of this resource must be communicated
to the other generated-components. Thus, it is necessary
to determine how and where this resource is updated
within the component source-code and next, we need to
instrument this code by adding notification instructions
from one component to the others.

The first issue for the source-code notification in-
strumentation is how a resource can be updated. This
operation can be realized by using a direct or an indirect
reference to this one and by using an update-instruction.
For example, in the case of Java, where a resource can
be an attribute, this last can be updated directly or using
a reference to this one. The last case appears when an
instance is used as a method argument2.
The second issue is how to distinguish update instructions
from those which are not. In fact, primitive-resource
updates are realized using affectation instructions whereas
resources which are object instances, are updated using
method calls. So, in order to detect resource-updates,
we need to instrument source-code by saving the state-
value of a resource before its manipulation. Then, this
resource-state value is compared with that obtained after
the instruction execution. If these two state-values (re-
spectively before and after a resource-update instruction)
are different, a notification to the other components which
shared this resource, is needed.

The last issue consists in determining when we have
to send a resource-update notification. In fact, the no-
tification sending time depends on the moment when
components which receive the message take into account
this notification. As all resources update instructions are
gathered in the same critical-section blocking for the other
components (see V-B), it is useless to notify all resources
updates because only the last one is taken into account by
the other components. So, the resource update notification
must be sent just before the critical-section end.

To illustrate these issues, reconsider the shared-diary
example. The class implementing this component defines
two attributes named absence_Dates_list and right_max

2In Java, primitive attributes (e.g. integer, real numbers, char, boolean
and string) cannot be called using a reference.

46 JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006

© 2006 ACADEMY PUBLISHER

which represent respectively the absence dates for peo-
ple considered by the shared-diary and the number of
absence days which a person still has right. These
attributes are considered as shared-resources. In fact,
the add_new_absence_day and consult_remaining_days
methods use both these attributes. In fact, after the
structure transformation of the Shared-Diary compo-
nent, these methods are defined respectively in two
separate generated-components: Absence-Manager and
Right-Manager. So, when a service provided by one
of these two components starts a critical-section, the
absence_Dates_list and right_max state-values are saved.
Next, just before the critical-section stop, the new values
are compared with the saved ones. When a modification
is detected, an update-notification related to the resource
whose state-value has changed, must be sent to the other
components which shared this resource.

B. Source-code instrumentation for resource-access syn-
chronization

Resource-access synchronization is the second condi-
tion to ensure the generated-component coherence and
thus, to guaranty the correctness of the results which are
returned by concurrent service executions. In fact, the
resource-access synchronization consists in the ban of all
simultaneous accesses to a same resource. The solution
lies on the placement of resource-access instructions
inside critical-sections implemented using semaphores.

1) Critical-section setting: Critical-sections which al-
low components to ban concurrent access are setting up
through locks within an entire service. So, we define a
service critical-section as the code-fraction which includes
all write or read resource-instructions. In fact, locks are
setting up between the first and the last resource-access
instructions with regard to the entire service.
In order to determine the possible critical-section starts
and ends, we use static code-analysis. However, in order
to favor parallelism, the critical-section size has to be the
shortest as possible. So, the effective set-up of a critical-
section is realized dynamically (i.e. during the service
runtime). Indeed, the critical-section set-up requires two
steps (see Fig. 11):

• Critical-section entry-point
In order to set up critical-section, first, we search
all the possible entry-points. For that purpose, it is
necessary to parse the method source-code in order
to detect resource-access points (i.e. instructions).
Then, code is instrumented before each resource-
access to allow service to put a lock dynamically. In
fact, critical-sections have to be started just before
the first resource-access inside a service. So, when a
critical-section entry-point is dynamically detected,
the service checks the lock state-value. If the lock is
not activated, then the service has to start a critical-
section. In this case, the service has to request an
authorization to start a critical-section. When it ob-
tain this authorization, it can start its critical-section
by locking resource-access for the other services.

In the case of the lock is yet activated, the service
is inside a critical-section. So, it can continue its
execution because all resources are locked for the
other services.

• Critical-section exit-point
The second operation which we have to realize in
order to set up critical-section, consists in detecting
all the possible critical-section exit-points. For that
purpose, it is necessary to determine all resource-
update instructions. Then, we build the execution
stream-graph of the entire service. We extract a sub-
graph whose nodes represent the resource-update in-
structions or the first instructions which are executed
just after a fork within the stream-graph. Finally, we
analyze it in order to determine the critical-section
exit-points. Our algorithm is presented below.

For each path
For every node N

P = {path p / p starts from this node,
its end is an exit-point and
it contains a resource-access point}

If P=� Then
add(N,List of possible critical-section exit
points);

EndIf
EndFor

EndFor
add(N,L): add the node N inside the list L.

2) Authorization-acquisition for critical-section start-
ing: As we explained previously, critical-section starting
is managed through the acquisition of an authorization by
the service. In fact, this authorization is materialized by
the acquisition of what we call "token". Our approach
requires the use of a stack for every component and
a sequencer 3. Each element of the stack contains an
identifier of the service which asks a token and the set
of resources concerned. The stack elements are ordered
according to their identifier.

The process for getting a token is described in figure
12: when a service wants to start a critical-section, it
asks the sequencer for an identifier which allows it to
order requests (1). Then, it puts this identifier and the
set of needed resources into its stack (2). So, it sends its
request to the other components by supplying these data
(e.g. identifier and set of needed resources) (3). When
a component receives its request (4/5/6), it puts that in
its stack according to the number which was supplied
by the sequencer (7/8/9). Then, it sends back a delivery
notification (10/11/12). A component gets the token only
when there is no element of the stack before it which
contains a resource included in its set and when it receives
a delivery notification from all other components sharing
the resource (13). When the service which has the token
aborts a critical-section, this last one is deleted from the
stack.

3) Critical-section authorization transfer: When a ser-
vice calls another one, the critical-section authorization
must be transfered to the called service. So, a service
needs to send the token from a method to the other one.

3Software entity used to deliver identifiers which aim at ordering
events or transactions.

JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006 47

© 2006 ACADEMY PUBLISHER

Figure 6. Integration of component transformation result

Figure 8. Transformation from a centralized component to a distributed one

Figure 11. Critical-section setting

48 JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006

© 2006 ACADEMY PUBLISHER

Figure 12. Right-access acquisition mechanisms

As two different methods can have the same signature,
every method (i.e. service) has to know in which context
they are called. Thus, methods have to send an identifier
of their entire service.

For example, if there are two components C1 and
C2 which provide respectively the services A and B,
service A of the component C1 calls the service B of the
component C2, it is necessary that the service B knows
that it is called within the context of service A. Indeed,
if service A locks the needed resources before calling the
service B, when the service B is running, it must know
that it has the token (i.e. in order to release the lock)
because the service B is included in service A.

In order to ensure the token transfer, we introduce a
new optional parameter for each method (i.e. service).
Thus, it allows services to determine in which context
they are called. When this parameter is indicated, the
service is called within the context of a specified service.
Otherwise, if this parameter is not indicated, the method
is the first which is called inside the entire service.
However, one of the adaptation constraints is that we
cannot modify component interfaces because they can
be used by other application components. Thus, new
interfaces which contain the internal method signatures
(i.e. signatures of services which are called by another)
should be created.

VI. SCORPIO: A SOFTWARE COMPONENT ADAPTATION

TOOL

We implemented our transformation process through a
tool called SCORPIO (Software COmponent stRuctural
adaPtatIOn). Scorpio is an tool which allows the appli-
cation administrator to transform a monolithic central-
ized component into a distributed composite-component,
taking into account execution context. The tool requires
source-code availability of the initial component and the
result is the component source-code of the transformation
result.

Scorpio has been implemented using the Fractal com-
ponent model [6] and its Java implementation called Julia
[7] developed by the INRIA4. Many deciding factors have
motivated the choice of Fractal. In fact, this model is

4The French National Institute for Research in Computer Science and
Control. http://www.inria.fr/

a hierarchical component model quite close to UML2
model [8] with the only difference that port concept is
not defined. In this model, provided and required services
are structured in interfaces which are used by components
when they communicate with each other. Each server in-
terface gives access to a set of operations. And, each client
interface defines a set of operations that the component
may invoke. To create a Fractal component, using the Java
implementation, it is necessary to specify a single class
which implements all services (i.e. methods) specified by
the corresponding component interfaces. Only primitive
components can be implemented.

SCORPIO provides the software component structural
adaptation service. In fact, this service allows the ap-
plication administrator to realize the transformation of
a monolithic centralized component into a distributed
composite-one. First, the administrator has to specify the
directory path where component source-code is available
and the architecture description file. Then, he has to
realize the specification stage of the component transfor-
mation (see Fig. 13). This operation is directed by the tool
which propose to create new sub-components according
to the available services (i.e. interfaces) and execution
context. In fact, the new component must be specified
through their name, their provided services and their
deployment hosts. Source-code corresponding to the new
created entities is automatically generated, then source-
code files are compiled using the compilation environment
and finally the new obtained component is deployed on
the available infrastructure according to the specification.
In fact, each binary code is moved to the corresponding
host mentioned in the specification script. The remote
deployment is realized by deployment machines installed
on every node of the distributed infrastructure. When a
deployment machine receives the binary code correspond-
ing to a component, it has to deploy it. So, when all
remote generated sub-components are deployed on their
corresponding host, the distributed composite-component
generated through our transformation process can be
started and its provided services can be invoked.

We note that we experimented our tool using the
shared-diary component described in this paper. In fact,
the shared-diary component, such as it was designed,
cannot be deployed entirety in a constrain-resource device
(e.g. PDA). This is due to its memory size which appears
insufficient. So, we have to adapt the component structure
in order to deploy it on this device. Using Scorpio, allow-
ing us to realize the structural adaptation, we created a
component-composite starting from the initial monolithic
component. This component-composite was automatically
deployed on several accessible sites through a wireless
network.

VII. RELATED WORK

We classify related work according to two criteria.
First, we present works related to the approach goal which
is software component adaptation. The other criterion

JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006 49

© 2006 ACADEMY PUBLISHER

Figure 13. SCORPIO: a software component adaptation tool (screenshot)

focuses on works which topic is restructuring program
codes and more particular object-oriented ones.

A. Approach goal: software component adaptation

Many approaches have been proposed in the literature
in order to adapt software component-based applications.
These ones can be classified according to different criteria
as it is described bellow5:

Adaptation needs: Software component-based appli-
cation can be adapted in order to improve performances
(e.g. [9]), design or implementation (e.g. [10], [11]) (i.e.
perfective adaptation). Also, these applications can be
adapted to better taking into account of the deployment
environment (e.g. [12]) (i.e. adaptive adaptation). Another
adaptation need is the evolution of the application func-
tionalities [13] (i.e. adding new services).
Concerning our approach, it can be classified as adaptive
adaptation. In fact, it aims, for example, at taking into
account component deployment environment and conse-
quently to adapt this one by restructuring it.

Adaptation actors: An adaptation actor is a physical
or software entity which is able to start, to stop, to
modify, to cancel or to supervise an adaptation phase. We
distinguish four adaptation actors: the programmers (e.g.
[14]) (i.e. which defines rules and mechanisms allowing
the adaptation of the application), the administrator (e.g.
[13]) (i.e. he can start an adaptation phase), the adapter

5List of works cited in this section is not exhaustive. Works referenced
here are given as examples among existing ones.

(e.g. [13]) (i.e. tool which realizes all tasks contained
in an adaptation process), the software (e.g. [15]) (i.e.
it undergoes an adaptation process, however, it can start
and realize itself its adaptation).
Concerning our approach, adaptation actors is an admin-
istrator which specifies and starts the structural adaptation
process.

Adaptation target: Adaptation can concern components
(e.g. [16]), elements which compose them (e.g. [17]) (e.g.
interfaces, ports) or the application configuration (e.g.
[18], [16]) (e.g. connectors).
Our approach focuses on software component adaptation.

Adaptation moment: An adaptation process can be acti-
vated either before the considered application deployment
(e.g. [13]), during its deployment (e.g. [12]) or during its
execution (e.g. [9]).
According to the activation moments, adaptation can be
realized in a static way (e.g. [13]) or in dynamic one (e.g.
[9]).
Our approach may be realized before application deploy-
ment. Also, it can be used when a component is loaded.
Actually, our approach is realized in a static way.

Adaptation strategy: Adaptation techniques can be
categorized as either "white-box" or "black-box". "White-
box" techniques typically require understanding of the
internal implementation of the component to be adapted,
whereas "black-box" techniques (e.g. [19]) only require
knowledge about the component’s interfaces. A com-
monly discussed "black-box" technique is "wrapping",
also known as containment in the literature. Superimposi-

50 JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006

© 2006 ACADEMY PUBLISHER

tion (e.g. [20]) is an alternative technique where the idea
behind is that the entire functionality of a component
should be superimposed by certain behavior. For more
details about adaptation techniques see [21].
Our adaptation approach can be considered as "black-
box" considering adaptation administrator which does not
need to manipulate component source-code. But it can
be considered, also, as "white-box" when considering the
adaptation process which needs component source-code.

Adaptation facet: Adaptation approach can be clas-
sified as service-focus or structure-focus. To our knowl-
edge, all existing approaches are service focus, except
perfective adaptation approaches (e.g. [10], [11]). These
lasts propose to replace a component implementation
with another. Considering this criterion, our approach is
structure-focus.

B. Used technique: software component refactoring

Our approach is based on component decomposition
and refactoring. Refactoring is a technique used for re-
structuring an existing body of code, altering its internal
structure without changing its external behavior [22].
Generally, refactoring is used to make the code simpler
in order to include or understand it more easily [23]. It
is also used to find potential bugs or errors more quickly.
It makes it possible to eliminate duplicated code. The
goal of this technique is to reorganize classes, variables
and methods in a new hierarchy in order to facilitate its
future adaptation or extension [10]. Its use increases the
program quality (e.g. reusability). However, concerning
our approach, we do not aim at improving quality of
the component source-code but rather at modifying their
structure, without changing their behavior, in order to
adapt them to their execution context (e.g. adaptation
for flexible component deployment). Other approaches,
close to our, propose the concept of breakable objects
as building blocks for flexible application architectures
(e.g. [24]) or they introduce distribution mechanisms into
centralized applications (e.g. [25]). For more details about
adaptation techniques see [21].

VIII. CONCLUSION AND FUTURE WORKS

We presented in this article an approach allowing us to
create distributed components from monolithic ones. Our
proposal is based on a new adaptation technique which
aims at reorganizing the software component structure us-
ing code refactoring. In fact, as we explained, component
deployment and execution are linked to its structure. So,
we propose to use this approach in order to fragment
existent components and generate new components which
can be distributed on several hosts. This approach is
implemented and a prototype has been developed using
the Julia [7] software component framework which is the
Java implementation of the Fractal component model [6].
Our approach needs source code analysis and instrumen-
tation. It does not consider run-time adaptation problems.
However, it is generic enough to be applied to dynamic

adaptation. Nevertheless, concerning this possibility, it is
necessary to define, in addition to the presented process,
mechanisms for the dynamicity management (e.g. dis-
connection, connection, interception of the invocations of
services, service recovery, etc). Thus, this way constitutes
one direction of our future work.

As we noted it before, the main application of our
approach consist in realizing a flexible deployment of
software components. A future work may consist in the
deployment process automation according to the execu-
tion context.

REFERENCES

[1] G. T. Heineman and W. T. Councill, Eds., Component-
based software engineering: putting the pieces together.
Boston, MA, USA: Addison-Wesley Longman Publishing
Co., Inc., 2001.

[2] C. Szyperski, Component software: beyond object-oriented
programming. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1998.

[3] S. A. Hissam, R. C. Seacord, and G. A. Lewis, “Building
systems from commercial components,” in ICSE ’02: Pro-
ceedings of the 24th International Conference on Software
Engineering. New York, NY, USA: ACM Press, 2002,
pp. 679–680.

[4] A.-D. Seriai, G. Bastide, and M. Oussalah, “Transforma-
tion of centralized software components into distributed
ones by code refactoring,” in Proc. of the 6th International
Conference on Distributed Applications and Interoperable
Systems, Bologna, Italy, June 2006.

[5] G. Bastide, A.-D. Seriai, and M. Oussalah, “Adapting soft-
ware components by structure fragmentation,” in Proc. of
the 21st Annual ACM Symposium on Applied Computing,
Dijon, France, April 2006.

[6] E. Bruneton, T. Coupaye, M. Leclercq, V. Quéma, and J.-
B. Stefani, “An open component model and its support
in java,” in Proceedings of the International Symposium
on Component-based Software Engineering (CBSE’2003),
Edinburgh, Scotland, May 2004.

[7] E. Bruneton, “Julia tutorial:
http://fractal.objectweb.org/tutorials/julia/,” 2003. [Online].
Available: http://fractal.objectweb.org/tutorials/julia/

[8] H.-E. Eriksson, UML 2 Toolkit. Wiley edition, 2003.
[9] A. Ketfi, N. Belkhatir, and P. Cunin, “Automatic adaptation

of component-based software: Issues and experiences,” in
PDPTA’02, 2002.

[10] B. Foote and W. F. Opdyke, “Lifecycle and
Refactoring Patterns That Supports Evolution and
Reuse,” 1995, pp. 239–258. [Online]. Available:
citeseer.ist.psu.edu/foote95life.html

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley Professional, 1995.

[12] N. L. Sommer and F. Guidec, “A contract-based approach
of resource-constrained software deployment,” in CD ’02:
Proceedings of the IFIP/ACM Working Conference on
Component Deployment. London, UK: Springer-Verlag,
2002, pp. 15–30.

[13] R. Keller and U. Hölzle, “Binary component
adaptation,” Lecture Notes in Computer Science,
vol. 1445, pp. 307–329, 1998. [Online]. Available:
citeseer.ist.psu.edu/keller98binary.html

[14] T. Abdellatif, J. Kornas, and J.-B. Stefani, “J2ee packaging,
deployment and reconfiguration using a general component
model.” in Component Deployment, 2005, pp. 134–148.

JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006 51

© 2006 ACADEMY PUBLISHER

[15] S. A. Dobson, “Component-oriented approaches to
context-aware computing.” in ECOOP Workshops, 2004,
pp. 84–93.

[16] E. P. A. Brogi, C. Canal, “Behavioural types and com-
ponent adaptation,” in 10th International Conference on
Algebraic Methodology and Software Technology, 2004,
pp. 42–56.

[17] D. Balek, “Connectors in software architec-
tures,” Ph.D. dissertation, Charles University,
Czech Republic, 2002. [Online]. Available: cite-
seer.ist.psu.edu/balek02connectors.html

[18] T. Batista and N. Rodriguez, “Dynamic reconfiguration of
component-based applications,” in PDSE ’00: Proceedings
of the International Symposium on Software Engineering
for Parallel and Distributed Systems. Washington, DC,
USA: IEEE Computer Society, 2000, p. 32.

[19] B. Kucuk, M. Alpdemir, and R. Zobel, “Customizable
adapters for blackbox components,” 1998. [Online]. Avail-
able: citeseer.ist.psu.edu/article/kucuk98customizable.html

[20] J. Bosch, “Superimposition: A component adaptation
technique,” Information and Software Technology, vol. 41,
no. 5, pp. 257–273, 25 March 1999. [Online]. Available:
citeseer.ist.psu.edu/281749.html

[21] G. Heineman and H. Ohlenbusch, “An evaluation of
component adaptation techniques,” Department of Com-
puter Science, Worcester Polytechnic Institute, Tech. Rep.
WPI-CS-TR-98-20, February 1999. [Online]. Available:
citeseer.ist.psu.edu/article/heineman99evaluation.html

[22] T. Mens and T. Tourwe, “A survey of software refactoring,”
in IEEE Transactions on Software Engineering, ser. 2, vol.
V. 30, 2004, pp. 126–139.

[23] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts,
Refactoring: Improving the Design of Existing Code.
Addison-Wesley Object Technology Series, 1999.

[24] V. Jamwal and S. Iyer, “Bobs: breakable objects,” in OOP-
SLA ’05: Companion to the 20th annual ACM SIGPLAN
conference on Object-oriented programming, systems, lan-
guages, and applications. New York, NY, USA: ACM
Press, 2005, pp. 98–99.

[25] E. Tilevich and Y. Smaragdakis, “Nrmi: Natural
and efficient middleware,” 2003. [Online]. Available:
citeseer.ist.psu.edu/tilevich03nrmi.html

Abdelhak Seriai is currently an assistant professor in the
computer science department of the Ecole des Mines de Douai
(France). He obtained an engineering degree in computer sci-
ence in 1994 from Annaba university (Algeria) and a PhD
in computer science in 2001 from Nantes university (France).
His research interests concern object-oriented and software
component technologies.

Gautier Bastide is a PhD student at the department of Computer
Science of the Ecole des Mines de Douai. His research interests
are in component-based software engineering. The topic of his
PhD thesis is software component adaptation in ubiquitous and
mobile environments.

Mourad Oussalah is a professor at Nantes University (France)
and head of the OCM group in the LINA laboratory. His
research interests are in object-oriented software engineering,
software components and software architectures. He is the
co-author of three books on object oriented and software
component technologies.

52 JOURNAL OF COMPUTERS, VOL. 1, NO. 5, AUGUST 2006

© 2006 ACADEMY PUBLISHER

