
Mining Features from the Object-Oriented Source Code of a Collection of
Software Variants Using Formal Concept Analysis and Latent Semantic Indexing

R. AL-msie’deen1, A.-D. Seriai1, M. Huchard1, C. Urtado2, S. Vauttier2, and H. Eyal Salman1

1LIRMM / CNRS & Montpellier 2 University, France, {al-msiedee, seriai, huchard, eyalsalman}@lirmm.fr
2LGI2P / Ecole des Mines d’Alès, Nı̂mes, France, {Christelle.Urtado, Sylvain.Vauttier}@mines-ales.fr

Abstract

Companies often develop a set of software variants that
share some features and differ in other ones to meet spe-
cific requirements. To exploit existing software variants and
build a software product line (SPL), a feature model of this
SPL must be built as a first step. To do so, it is necessary to
mine optional and mandatory features from the source code
of the software variants. Thus, we propose, in this paper,
a new approach to mine features from the object-oriented
source code of a set of software variants based on Formal
Concept Analysis and Latent Semantic Indexing. To vali-
date our approach, we applied it on ArgoUML and Mobile
Media case studies. The results of this evaluation validate
the relevance and the performance of our proposal as most
of the features were correctly identified.

Keywords: Software product line engineering, software
variants, feature mining, FCA, LSI.

1 Introduction

A software product line (SPL) is ”a set of software in-
tensive systems sharing a common, managed set of features
that satisfy the specific needs of a particular market segment
or mission and are developed from a common set of core
assets in a prescribed way” [1]. A SPL is usually character-
ized by two sets of features: the features that are shared by
all products in the family, which represent the SPL’s com-
monalities, and the features that are shared by some, but not
all, products in the family, which represent the SPL’s vari-
ability. SPLs are usually described with a de-facto standard
formalism called feature model [1]. A feature model defines
all the valid feature configurations. In common software de-
velopment processes software product variants often evolve

from an initial product developed for and successfully used
by the first customer. Mobile Media Systems [2] is an ex-
ample of such a product evolution. These product variants
usually share some common features but they are also dif-
ferent from one another due to subsequent customization to
meet the specific requirements of different customers [3].
When variants become numerous, switching to a rigorous
software product line engineering (SPLE) process is a so-
lution to tame the increasing complexity of all the engi-
neering tasks. To switch to SPLE starting from a collec-
tion of existing variants, the first step is to mine a feature
model that describes the SPL. This implies to identify the
software family’s common and variable features. Manual
reverse engineering of a feature model for software vari-
ants is time-consuming, error-prone, and requires substan-
tial efforts [4]. Assisting this process would be of great
help. This paper proposes an approach to mine features
from a collection of software product variants in order to
define the feature model of the software family1. Our ap-
proach is based on the identification of the implementation
of these features among object-oriented (OO) elements of
the source code. These OO elements constitute the initial
search space. We use Formal Concept Analysis (FCA) to
reduce this search space by first separating common and
variable elements and, secondly, dividing the set of variable
elements in subgroups. We further use Latent Semantic In-
dexing (LSI) to define a similarity measure that enables to
identify subgroups of elements that characterize the imple-
mentation of each possible feature. Our approach is detailed
in the remainder of this paper as follows. Section 2 sketches
out a background of the used classification techniques. Sec-
tion 3 presents the principles and main concepts of our ap-
proach. Section 4 details the feature mining process step
by step. Section 5 describes the experiments that were con-

1This work has been funded by grant ANR 2010 BLAN 021902



ducted to validate our proposal. Section 6 discusses related
work. Section 7 concludes and provides perspectives for
this work.

2 Background: Techniques Used for Classifi-
cation

This section presents a quick overview of the two tech-
niques – Formal Concept Analysis (FCA) and Latent Se-
mantic Indexing (LSI) – we plan to combine to classify in-
formation on software variants in order to extract features
from their source code.

2.1 Formal Concept Analysis

Galois lattices and concept lattices [5] are core structures
of the Formal Concept Analysis framework (FCA), which
enables to extract an ordered set of concepts from a dataset,
called a formal context, composed of objects described by
attributes. A formal context is a triple K = (O,A,R)
where O and A are sets (objects and attributes respectively)
and R is a binary relation, i.e., R ⊆ O × A. Several ex-
amples of formal contexts are provided in the remaining of
this paper. A formal concept is a pair (E, I) composed of
an object set E ⊆ O and their shared attribute set I ⊆ A.
E = {o ∈ O|∀a ∈ I, (o, a) ∈ R} is the extent of the con-
cept, while I = {a ∈ A|∀o ∈ E, (o, a) ∈ R} is the intent
of the concept. Given a formal context K = (O,A,R) and
two formal concepts C1 = (E1, I1) and C2 = (E2, I2) of
K, the concept specialization order ≤s is defined by C1 ≤s

C2 if and only if E1 ⊆ E2 (and equivalently I2 ⊆ I1). C1

is called a sub-concept of C2. C2 is called a super-concept
of C1. Let CK be the set of all concepts of a formal context
K. This set of concepts provided with the specialization or-
der (CK ,≤s) has a lattice structure, and is called the concept
lattice associated with K. In our approach, we will consider
the AOC-poset (for Attribute-Object-Concept poset), which
is the sub-order of (CK , ≤s) restricted to object-concepts
and attribute-concepts (AOC-poset ignore concepts empty
of declared objects and attributes). AOC-posets scale much
better than lattices. Several figures in the remaining of this
paper show AOC-posets. For readability’s sake, in these
diagrams, extents and intents are presented in a simplified
form, removing top-down inherited attributes and bottom-
up included objects.

2.2 Latent Semantic Indexing

Several IR methods exist such as Vector Space Method
(VSM) and Latent Semantic Indexing (LSI) [6]. Both meth-
ods assume that software artifacts can be regarded as textual
documents. Occurrences of terms are extracted from the
documents in order to calculate similarities between them

and then to classify together a set of similar documents
as related to a common concept. LSI is an advanced IR
method. The heart of LSI is singular value decomposition
technique (SVD). This technique is used to mitigate noise
introduced by stop words like (the, an, above) and to over-
come two classic problems arising in natural languages pro-
cessing: synonymy and polysemy [6]. The effectiveness
of IR methods is measured by their recall, precision and
F-Measure. For a given query, recall is the percentage of
correctly retrieved results to the total number of relevant re-
sults, while precision is the percentage of correctly retrieved
results to the total number of retrieved results. F-Measure
defines a tradeoff between precision and recall with a high
value only in cases where both recall and precision are high.
All measures have values between [0, 1]. If recall equals 1,
all relevant results are retrieved. However, some retrieved
results might not be relevant. If precision equals 1, all re-
trieved results are relevant. However, relevant results might
not be retrieved [6]. If F-Measure equals 1, all relevant re-
sults are retrieved and only relevant results are retrieved.

3 Approach Basics

This section presents the main concepts and hypotheses
used in our approach for mining features from source code.
It also shortly describes the example that illustrates the re-
maining of the paper.

3.1 Goal and Core Assumptions

The general objective of our work is to mine the feature
model of a collection of software product variants based
on the static analysis of their source code. Mining com-
mon and variable features is a first necessary step towards
this objective. We consider that ”a feature is a prominent
or distinctive and user visible aspect, quality, or character-
istic of a software system or systems” [7]. Our work fo-
cuses on the mining of functional features. Functional fea-
tures express the behaviour or the way users may interact
with a product. As there are several ways to implement
features [8], we consider software systems in which func-
tional features are implemented at the programming lan-
guage level (i.e., source code). We also restrict to OO soft-
ware. Thus, features are implemented using object-oriented
building elements (OBEs) such as packages, classes, at-
tributes, methods or method body elements (local variable,
attribute access, method invocation). We consider that a fea-
ture corresponds to one and only one set of OBEs. This
means that a feature always has the same implementation
in all products where it is present. We also consider that
feature implementations may overlap: a given OBE can be
shared between several features’ implementation.



3.2 Features versus Object-oriented Building El-
ements: the Mapping Model

Mining a feature from the source code of variants
amounts to identify group of OBEs that constitutes its im-
plementation. This group of OBEs must either be present in
all variants (case of a common feature) or in some but not
all variants (case of an optional feature). Thus, the initial
search space for the feature mining process is composed of
all the OBEs in the existing product variants. For a source
code containing n OBEs, the initial search space is the pow-
erset of n deprived of the empty set. As the number of OBEs
is high, mining features entails to reduce this search space.
Several strategies can be combined to do so:

• separate the OBE set in two subsets, the common fea-
tures set – also called common block (CB) – and the
optional features set, on which the same search pro-
cess will have to be performed. Indeed, as optional
(resp. common) features appear in some but not all
(resp. all) variants, they are implemented by OBEs that
appear in some but not in all (resp. all) variants.

• separate the optional feature set into small subsets that
each contains OBEs shared by groups of two or more
variants or OBEs that are hold uniquely by a given
variant. Each of these subsets is called a block of vari-
ation (BV). BVs can then be considered as smaller
search spaces that each corresponds to the implemen-
tation of one or more features.

• identify common atomic blocks (CAB) amongst com-
mon block based on the expected lexical similarity be-
tween the OBEs that implement a given feature. A CB
is thus composed of several CABs.

• identify atomic blocks of variation (ABV) inside of
each BV based on the expected lexical similarity be-
tween the OBEs that implement a given feature. A BV
is thus composed of several ABVs.

All the concepts we defined for mining features are illus-
trated in the OBE to feature mapping model of Figure 1.

3.3 An Illustrative Example

As an illustrative example, we consider three text editor
software variants. Editor 1 supports core text editing fea-
tures: open, close and print a file. Editor 2 has the core text
editing features and a new select all feature. Editor 3 sup-
ports copy and paste features, together with the core ones.
In this example, the eventually mined features are presented
to better explain some parts of our work. However, we only
use the source code of software variants as input of the min-
ing process and thus do not know features in advance.

Figure 1: OBE to Feature Mapping Model.

4 The Feature Mining Process

The mapping model between OBEs and features defines
associations between these features and the corresponding
OBEs. To determine instances of this model, we describe
our feature mining process. This process takes the variants’
source code as its input. The first step of this process aims at
identifying BVs and the CB based on FCA (cf. Section 4.1).
The second step explores the AOC-poset of BVs to define
an order to search for atomic blocks of variation (cf. Sec-
tion 4.2.1). In the third step, we rely on LSI to determine
the similarity between OBEs (cf. Section 4.2.2). This sim-
ilarity measure is used to identify atomic blocks based on
OBE clusters (cf. Section 4.2.3). Figure 2 shows our feature
mining process.

Figure 2: The Feature Mining Process.



4.1 Identifying the Common Block and Blocks of
Variation

The first step of our feature mining process is the iden-
tification of the common OBE block and of OBE blocks of
variation. The role of these blocks is to be sub-search spaces
for mining sets of OBEs that implement features.

The technique used to identify the CB and BVs relies
on FCA. First, a formal context, where objects are product
variants and attributes are OBEs (cf. Table 1), is defined.
The corresponding AOC-poset is then calculated. The in-
tent of each concept represents OBEs common to two or
more products. As concepts of AOC-posets are ordered, the
intent of the most general (i.e., top) concept gathers OBEs
that are common to all products. They constitute the CB.
The intents of all remaining concepts are BVs. They gather
sets of OBEs common to a subset of products and corre-
spond to the implementation of one or more features. The
extent of each of these concepts is the set of products having
these OBEs in common (cf. Figure 3).

Figure 3: The AOC-poset for the formal context of Table 1.

4.2 Identifying Atomic Blocks

The CB and BVs might each implement several features.
Identifying the OBEs that characterize a feature’s imple-
mentation thus consists in separating OBEs from the CB or
from each of the BVs in smaller sets called atomic blocks.
Atomic blocks are identified based on the calculation of the

Table 1: The formal context for the Text Editor Variants.

Pa
ck

ag
e(

E
di

to
r.M

an
ag

m
en

t)

C
la

ss
(C

lo
se

E
di

to
r.M

an
ag

m
en

t)

C
la

ss
(O

pe
n

E
di

to
r.M

an
ag

m
en

t)

C
la

ss
(P

ri
nt

E
di

to
r.M

an
ag

m
en

t)

Pa
ck

ag
e(

E
di

to
r.C

op
y)

C
la

ss
(C

op
yT

ex
t

E
di

to
r.C

op
y)

M
et

ho
d

(C
op

yS
et

tin
gs

C
op

yT
ex

t)

Pa
ck

ag
e(

E
di

to
r.S

el
ec

tA
ll)

C
la

ss
(S

el
ec

tA
llS

et
tin

gs
Se

le
ct

A
ll)

Pa
ck

ag
e(

E
di

to
r.P

as
te

)

C
la

ss
(P

as
te

Te
xt

E
di

to
r.P

as
te

)

M
et

ho
d

(P
as

te
Se

tt
in

gs
Pa

st
eT

ex
t)

Editor 1 × × × ×
Editor 2 × × × × × ×
Editor 3 × × × × × × × × × ×

similarity between OBEs from the CB or a BV. These simi-
larities result from applying LSI. Atomic blocks are clusters
of the most similar OBEs built with FCA as detailed in the
following.

4.2.1 Exploring the BV’s AOC-poset to Identify
Atomic Blocks of Variation

As concepts of the AOC-poset are ordered, the search for
atomic blocks of variation (ABVs) can be optimized if ex-
ploring the AOC-poset from the smallest (bottom) to the
highest (top) block. Results (ABVs) obtained for a concept
are used in the exploration of next (i.e., upper) concepts:
if a group of OBEs is identified as an ABV, this group is
considered as such when exploring the following BV. For
Common Atomic Blocks (CAB), there is no such need to
explore the AOC-poset as there is a unique CB.

4.2.2 Measuring OBEs’ Similarity Based on LSI

OBEs of BVs or of the CB respectively characterize the im-
plementation of optional and mandatory features. We base
the identification of subsets of OBEs, which each consti-
tutes a feature, on the measurement of lexical similarity be-
tween these OBEs. This similarity measure is calculated
using LSI. We rely on the fact that OBEs involved in im-
plementing a functional feature are lexically closer to one
another than to the rest of OBEs. To compute similarity be-
tween each pair of OBEs in the CB and BVs, we proceed
in three steps: building the LSI corpus, building the term-
document matrix and the term-query matrix for each BV
and for the CB and, at last, building the cosine similarity
matrix.

Building the LSI corpus. In order to apply LSI, we
build a corpus that represents a collection of documents and
queries. In our case, each OBE in the block represents both
a document and a query. To be processed, the document
and query must be normalized (e.g., all capitals turned into
lower case letters, articles, punctuation marks or numbers
removed). The normalized document generated by analyz-
ing the source code of an OBE is splitted into terms and, at
last, word stemming is performed.

Building the term-document and the term-query ma-
trices for each block. All blocks (the CB and all BVs)
are considered and applied the same process. The term-
document matrix is of size m × n where m is the num-
ber of terms used in a normalized document corresponding
to an OBE and n the number of OBEs in a block. In the
same way, a term-query matrix is of size m× j where m is
the number of terms and j the number of OBEs. Each col-
umn in the term-query matrix represents a vector of OBEs.
Terms for both matrices are the same because they are ex-
tracted from the same block.



Building the similarity matrix. Similarity between
OBEs in each BV or in the CB is described by a cosine sim-
ilarity matrix whose columns and rows both represent vec-
tors of OBEs: documents as columns and queries as rows.
Similarity is computed as a cosine similarity given by Equa-
tion 1, where Qi is a query vector, Dj is a document vector
and Wi and Wj range over weights of query and document
vectors, respectively.

CosineSimilarity(Qi, Dj) =

n∑
i=1

Wi ∗Wj√
n∑

i=1

W 2
i

n∑
j=1

W 2
j

(1)

4.2.3 Identifying Atomic Blocks Using FCA

We then use FCA to identify, from each block of OBEs,
which elements are similar. To transform the (numerical)
similarity matrices of previous step into (binary) formal
contexts, we use a threshold. 0.70 is the chosen threshold
value (a widely used threshold for cosine similarity [6])
meaning that only pairs of OBEs having a calculated
similarity greater than or equal to 0.70 are considered
similar. Table 2 shows the formal context obtained by
transforming the similarity matrix corresponding to the
BV of Concept 2 from Figure 3. As an example, in the
formal context of this table, the OBE ”Method PasteSetting
PasteText” is linked to the OBE ”Class PasteText Paste”
because their similarity equals 0.99, which is greater than
the threshold. However, the OBE ”Method CopySettings
CopyText” and the OBE ”Class PasteText Paste” are not
linked because their similarity equals 0.18, which is less
than the threshold. The resulting AOC-poset is composed
of concepts the extent and intent2 of which group similar
OBEs.

Table 2: Formal context of Concept 2.

C
la

ss
C

op
yT

ex
tC

op
y

C
la

ss
Pa

st
eT

ex
tP

as
te

M
et

ho
d

C
op

yS
et

tin
gs

C
op

yT
ex

t

M
et

ho
d

Pa
st

eS
et

tin
g

Pa
st

eT
ex

t

Pa
ck

ag
e

C
op

y

Pa
ck

ag
e

Pa
st

e

Class CopyText Copy × × ×
Class PasteText Paste × × ×
Method CopySettings CopyText × × ×
Method PasteSetting PasteText × × ×
Package Copy × × ×
Package Paste × × ×

For the text editor example, the AOC-poset of Figure 4
shows two atomic blocks of variation (that correspond to

2Here, intents and extents are the same. This is because the similarity
matrix (and, consequently, the formal context) is symmetric.

Figure 4: Atomic Blocks Mined from Concept 2.

two distinct features) mined from a single block of varia-
tion (Concept 2 from Figure 3). The same feature mining
process is used for the CB and for each of the BV.

5 Experimentation

To validate our approach, we ran experiments on
two Java open-source softwares: Mobile Media3 and
ArgoUML4. We used 4 variants for Mobile Media, 10 for
ArgoUML. The advantage of having two case studies is that
they implement variability at different levels. In addition,
Mobile Media and ArgoUML variants are well documented
and their feature model is available for comparison to our
results and validation of our proposal. Table 3 summarizes
the obtained results for each software product variant. For
readability’s sake, we manually associated feature names
to atomic blocks, based on the study of the content of each
block and on our knowledge on software. Of course, this
does not impact the quality of our results.

Table 3: Features Mined from Mobile Media and ArgoUML
Softwares

Case Study Feature Evaluation Metrics
Mobile Media Features Common Optional K Precision Recall F-Measure

Album Management
Splash Screen
Create Album
Delete Album
Create Photo
Delete Photo
View Photo
Exception handling
Edit Photo Label
Favourites
Sorting

×
×
×
×
×
×
× ×

×
×
×

0.05
0.05
0.05
0.05
0.05
0.05
0.05
0.03
0.02
0.04
0.06

83%
71%
81%
80%
81%
78%
87%
100%
100%
100%
100%

62%
57%
58%
62%
52%
63%
68%
70%
77%
80%
78%

70%
63%
67%
69%
63%
69%
76%
82%
87%
88%
87%

ArgoUML Features Common Optional K Precision Recall F-Measure
Class Diagram
Diagram
Deployment Diagram
Collaboration Diagram
Use Case Diagram
State Diagram
Sequence Diagram
Activity Diagram
Cognitive Support
Logging

× ×
×
×
×
×
×
×
×
×

0.03
0.06
0.05
0.06
0.03
0.03
0.02
0.06
0.01
0.02

72%
100%
100%
100%
100%
100%
100%
100%
100%
100%

56%
80%
74%
67%
64%
69%
67%
63%
70%
60%

63%
88%
85%
80%
78%
81%
80%
77%
82%
75%

Results show that precision appears to be high for all op-
tional features. This means that all mined OBEs grouped
as features are relevant. This result is due to search space
reduction. In most cases, each BV corresponds to one and
only one feature. For mandatory features, precision is also
quite high thanks to our clustering technique that identi-
fies ABVs based on FCA and LSI. However, precision is

3http://homepages.dcc.ufmg.br/~figueiredo/spl/
4http://argouml-spl.tigris.org/



smaller than the one obtained for optional features. This
deterioration can be explained by the fact that we do not
perform search space reduction for the CB. Considering
the recall metric, its average value is 66% for Mobile Me-
dia and 67% for ArgoUML. This means most OBEs that
compose features are mined. We have manually identified
OBEs which should have been mined and were not. We
found that these non-mined OBEs used different vocabu-
laries from mined OBEs’. This is a known limitation of
LSI which is based on lexical similarity. Considering the
F-Measure metric, our approach has values that range from
63% to 88%. This means that most OBEs that compose fea-
tures are mined and shows the efficiency of our approach.
The most important parameter to LSI is the number of cho-
sen term-topics (i.e., Number of topics (K)). A term-topic is
a collection of terms that co-occur frequently in the docu-
ments of the corpus. We need enough term-topics to capture
real term relations. In our work we cannot use a fixed num-
ber of topics for LSI because we have blocks of variation
(i.e., partitions) with different sizes. The column (K) in Ta-
ble 3 shows the K value for each feature.

6 Related work

In our previous work [8] we present an approach for
feature location in a collection of software product vari-
ants based on FCA by distinguishing between the common
block (i.e., CB) and blocks of variation (i.e., BVs). In this
paper we extended our previous work by distinguishing be-
tween the common features that appear in the common block
and the optional features that appear in the same block of
variation based on the lexical similarity between OBEs.
An inclusive survey about approaches linking features and
sources code in a single software is proposed in [9]. The
approach proposed by Ziadi et al. [4] is the closest to ours.
They identify all common features as a single mandatory
feature. Moreover, they do not distinguish between optional
features that appear together in a set of variants. Their ap-
proach doesn’t consider the method body. Rubin et al. [10]
present an approach to locate optional features from two
product variants’ source code. They do not consider com-
mon features. They also are limited to only two variants.
Xue et al. [3] propose an automatic approach to identify the
traceability link between a given collection of features and a
given collection of source code variants. They thus consider
feature descriptions as an input.

7 Conclusion

In this paper, we proposed an approach based on FCA
and LSI to mine features from the object-oriented source
code of software product variants. We have implemented
our approach and evaluated its produced results on two case

studies. Results showed that most of the features were iden-
tified. The threat to the validity of our approach is that
developers might not use the same vocabularies to name
OBEs across software product variants. This means that
lexical similarity may be not reliable in all cases to identify
common and variable features. In future work, we plan to
combine both textual and semantic similarity measures to
be more precise in determining feature implementation.

References

[1] P. C. Clements and L. M. Northrop, Software product
lines: practices and patterns. Addison-Wesley, 2001.

[2] L. P. Tizzei, M. Dias, C. M. F. Rubira, A. Garcia, and
J. Lee, “Components meet aspects: Assessing design
stability of a software product line,” Inf. Softw. Tech-
nol., vol. 53, no. 2, pp. 121–136, Feb. 2011.

[3] Y. Xue, Z. Xing, and S. Jarzabek, “Feature location in
a collection of product variants,” in 19th WCRE Con-
ference. IEEE, 2012, pp. 145–154.

[4] T. Ziadi, L. Frias, M. A. A. da Silva, and M. Ziane,
“Feature identification from the source code of prod-
uct variants,” in 15th CSMR Conference. IEEE, 2012,
pp. 417–422.

[5] B. Ganter and R. Wille, Formal Concept Analysis,
Mathematical Foundations. Springer-Verlag, 1999.

[6] A. Marcus and J. Maletic, “Recovering
documentation-to-source-code traceability links
using latent semantic indexing,” in 25th ICSE
Conference. IEEE Computer Society, 2003, pp.
125–135.

[7] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson, “Feature-oriented domain analysis
(foda) feasibility study,” November 1990.

[8] R. AL-Msie’deen, A. D. Seriai, M. Huchard, C. Ur-
tado, S. Vauttier, and H. E. Salman, “Feature loca-
tion in a collection of software product variants us-
ing formal concept analysis,” in ICSR ’13 Conference.
Springer, 2013, pp. 302–307.

[9] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk,
“Feature location in source code: a taxonomy and sur-
vey,” Journal of Software: Evolution and Process, pp.
1–54, 2012.

[10] J. Rubin and M. Chechik, “Locating distinguishing
features using diff sets,” in 27th ASE Conference, ser.
ASE 2012. ACM, 2012, pp. 242–245.


	Introduction
	Background: Techniques Used for Classification
	Formal Concept Analysis
	Latent Semantic Indexing

	Approach Basics
	Goal and Core Assumptions
	Features versus Object-oriented Building Elements: the Mapping Model
	An Illustrative Example

	The Feature Mining Process
	Identifying the Common Block and Blocks of Variation
	Identifying Atomic Blocks
	Exploring the BV's AOC-poset to Identify Atomic Blocks of Variation
	Measuring OBEs' Similarity Based on LSI
	Identifying Atomic Blocks Using FCA


	Experimentation
	Related work
	Conclusion

