
Norms and Time in Agent-Based Systems

Tiberiu Stratulat, Françoise Clérin-Debart, Patrice Enjalbert
GREYC, CNRS UPRESA 6072

Université de Caen, 14032 Caen, France

tistratu, debart, patrice@info.unicaen.fr

ABSTRACT
We propose a �rst-order model as a possible formal basis
for normative agent systems (NAS). The model allows us
to describe the execution of actions in time and the use of
dynamic norms. We present its application to the detection
of the violation cases and to optimal scheduling.

1. INTRODUCTION
In agent-based systems (MAS), the agents need to coordi-
nate their activities in order to satisfy their goals. A possible
solution to the coordination problem, that was proposed in
the last years concerns the use of norms or social laws. A
norm speci�es what an agent should do or not, under cer-
tain conditions. Because of the many concepts used in the
construction of the norms (obligations, social structure, au-
thority, time, action, etc.) the problems related to their
application in MAS are various and have partial solutions.
For instance Castelfranchi [4] shows the importance and the
psycho-cognitive aspect of the obligations in the organiza-
tions and social structures. In [22] the authors study the
general utility of the social laws and in [21] Shoham pro-
poses AOP, an agent oriented language where the obligations
are treated locally at the agent level, ignoring their social
aspect. Barbuceanu et al. [3] use the dynamic approach of
the obligations introduced by Meyer [15] and propose a com-
munication language for the coordination with obligations,
showing that their use is rather a constraint programming
problem. An informal description of NAS and of the el-
ements necessary to their implementation is given in [24].
Recently Dignum et al. [7] proposed an extension of the
BDI model [17] with normative elements.

In this article we present a �rst-order model as the formal
basis for NAS. The model allows us to describe the execution
of actions in time and the use of dynamic norms (norms with
lifetime). The norms are constructed with deontic predicates
(such as obligations, permissions or interdictions) that char-
acterize the execution of an action by an agent in an interval
of time.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICAIL-2001St. Louis, Missouri USA
Copyright 2001 ACM 1-58113-368-5/01/0005$5.00.

In MAS, the norms are used as means (i) to in
uence and
(ii) to monitor the behavior of the agents. For the former it
means that in order to assure a behavior which is compliant
to the norms, we will inject the normative information in
the planning and scheduling modules of each agent. While
for the latter, based on the normative descriptions and the
actual (past and present) behaviors of the agents, the sys-
tem should detect the deviating behavior. Both cases ask
for operational elements in the formal model. Therefore we
propose an extension with model checking mechanisms that
will be used in computing the violation cases and in optimal
scheduling.

The rest of the article is organized as follows: in section 2
we present NAS and the motivations behind their use. In
section 3 we describe the general model and in section 4 we
give its syntax and semantics followed by the de�nitions of
the main components. The operational aspect is presented
in section 5, where we show its applications and give some
examples. We conclude in section 6.

2. MOTIVATION
Autonomy is the most attractive feature of MAS. It allows
an agent to freely perceive and act in an environment, with-
out the explicit intervention of an external designer. This
is a very important requirement, because in practice agents
are used to designate heterogenous components, built by dif-
ferent persons, using di�erent methods, and therefore very
diÆcult to modify to be adapted to new situations. On the
other hand, we need robust systems, where the key concept
is that of control. For instance we control the program exe-
cution, the memory allocation, the access to resources, etc.
Applied to an agent it means that we control what the agent
perceives, and the way it acts. If for the former we can �nd
some mechanisms to �lter the information received by an
agent, for the later we should propose a trade-o� solution
that combines autonomy and control.

A possible candidate to solve this problem is the model of
Normative Agent Systems (NAS). In such a system, instead
of modifying the internal construction of the agents to con-
trol their behaviors, we \in
uence" them. We simply tell to
an agent what it should do or not. The information received
by an agent has a double aspect: descriptive and normative.
It is descriptive because it provides details about the content
of a rule of behavior, a plan or a protocol. It is normative
because it describes what is considered to be a normal (or
standard) behavior, from the point of view (or w.r.t. the

178

Some text in this electronic article is rendered in Type 3 or bitmapped fonts, and may display poorly on screen in Adobe Acrobat v. 4.0 and later. However, printouts of this file are unaffected by this problem. We recommend that you print the file for best legibility.

goal) of an authority. The authority could be the system's
designer, the system itself or a part of it (a group of agents
or just an agent). The general term used to name this piece
of information is that of norm. So, a norm is just a syntac-
tic description of a speci�c normal behavior, which is sent
to each agent involved in coordinated interaction. The way
a norm is then interpreted (accepted or ignored) depends on
the agent. From an utilitarian point of view, there are at
least two reasons for which an agent follows a norm:

1. when the bene�t obtained by adhering to norms, as
a whole, is higher than that obtained when ignoring
them

2. when the violation of a norm has a price to be paid.

Since the autonomy is expressed in terms of freedom of
choice, we let the agents to ignore and violate the norms.
Both scenarios require monitoring and reasoning capabili-
ties inside the system that should be able to detect the non-
correspondence between the behavior of the agents and the
behavior prescribed by a norm. We call control element, the
entity in the system which is responsible for the detection of
the deviating behaviors and the computation of their e�ects.
Note that the agents themselves could play such a role.

NAS architectures (see [24]) impose the use of a certain set
of elements when constructing norms. In the following we
give the main components of a norm:

- type: obligations or rights
- object: an action or a state (property)
- condition on object: an interval of time
- subject: a non-empty set of roles or agents
- authority
- author
- interval of validity
- context of application: a logical condition
- cost of violation
- exceptions to context of application
- exceptions to subject

The norms could be conceived either in a centralized manner
by a single \person", or decentralized, directly by the agents
themselves. For the former case the authority and the au-
thor could be the same entity, while for the latter case, when
the norms are created by special utterances (speech acts), it
is essential to di�erentiate between the author of the norm
and the authority in the name of whom the norm has been
issued.

Finally, it is important to note that there are at least two
�nal users of the norms: ordinary agents that will inject
the norms in their planning and scheduling modules, and
control components. In this paper we will concentrate only
on a subset of elements that compose a norm. We claim that
the way we introduce them is motivated by their main use
and impact to planning, scheduling, and monitoring. It is
the same motivation that led us to propose a model where we
used a quantitative representation of time in the de�nitions
of the predicates.

3. INFORMAL DESCRIPTION
The model behind a normative agent system requires for an
explicit representation of the world and the way this world
changes. Following the classical trend of AI ([14], [1], [20])
we propose a model, where the main ingredients are
uent
predicates that characterize the state of the world at a cer-
tain point in time, and event occurrences which capture the
changes that take place. In this framework we use a linear
model of time.

In general a
uent predicate of the form p(t) represents the
fact that p is true at t. In our model we will use an equivalent
notation holds(t; p). Besides the
uent predicates we can
have other predicates that have time as argument, but with
di�erent temporal meanings and properties. We will refer
to them as non-
uent predicates and we will see later what
properties they have.

3.1 Events, event types, acts and actions
We introduce the notion of event as a means to classify how
the world may change. Each event has a duration. It starts
and ends at certain moments of time (that could be dif-
ferent or equal). In order to represent the occurrence of
an event we use two non-
uent predicates starts(e; t) and
finishes(e; t), showing that the event e started/�nished at
the moment of time t. Their use could be replaced by an
equivalent de�nition occurs(e; i) with i an interval of time.
For instance, the fact that it rained in Normandy between
8:00 and 10:00 is written as:

occurs(Rain in Normandy; [8 : 00; 10 : 00])

Depending on the moment of observation (now), they have
di�erent uses in the de�nitions of other
uent predicates
such as those used to describe the execution of an action or
the violation of a norm (see section 4).

In general the events describe changes that have no explicit
actors. When an event has an actor, we call it act. For
instance if Mr. X opens the window at 10:00, the event is
occurs(Open door; [10 : 00; 10 : 00]) and that Mr. X is its
actor, agent of(X;Open door). Or much shorter, in the
same logical language:

does(X;Open door; [10 : 00; 10 : 00])

We also introduce the notion of class of events, or event type,
as an abstraction of a certain collection of events. This is
useful when the same occurrence of an event is interpreted
as meaning di�erent things (it is the same instance of more
classes). For instance when someone signs a check, it could
be interpreted as writing on a piece of paper, as an iden-
ti�cation or as making a payment. Similarly to events, we
introduce for acts the notion of action as being a class of
acts or events with actors. We resume: an event is seen as
the instance of an event type, and an act as the instance of
an action.

Events and acts could be basic or complex. To describe
complex actions we use the traditional action operators for

179

sequential \;" and parallel \jj" execution and the non-deter-
ministic choice \?".

3.2 Deontic status of an action
In this framework we use deontic concepts and notions such
as agency, action and time. By deontic we mean what is
obligatory, permitted or forbidden. It helps to describe ideal
states or properties (to-be type) and ideal behaviors or ac-
tions (to-do type). Since an agent is by de�nition someone
who acts, we are more interested in working with the to-do
type.

The deontic status of an action describes what is consid-
ered as being an ideal behavior. This notion is represented
in our model by the following predicates: O(agent; �; i),
P (agent; �; i) and F (agent;�; i). They put in relation an
agent, an action and an interval of time, meaning that the
agent is obliged/permitted/forbidden to execute some acts of
type � in the interval i. The presence of a time interval as
argument of deontic predicates is motivated by the way the
agents and the control elements interpret the norms. For in-
stance, let's suppose that a norm obliges an agent to execute
� without making explicit the moment of its execution. We
also suppose that doing an action takes time. In this case,
the agent has three alternatives: to immediately execute the
action, to postpone the execution until it will be available
(according to planning and scheduling processes) or to never
execute it. By leaving unspeci�ed the interval of execution it
will introduce a temporal non-determinism. Therefore, the
problem is with the control element which does not have
enough elements to determine when the agent violated the
norm.

Given the deontic status of an action we can construct a
norm. In order to keep the presentation as much as simple,
we will consider only some elements from the general set
that composes a norm. Therefore, in this model the form of
a norm is of the following conditional type:

OPI Condition

where OPI is one of the deontic predicates introduced above,
and Condition represents the context of norm's application,
being any logical formula of the language the we will present
below.

As we already said before, the use of norms implies the use
of violations. We compute the violations starting from the
description of an ideal behavior and the observations on the
past and current execution of the system. We employ model
checking techniques, considering a violation as being the
non-execution of an obligatory action or the execution of
a forbidden action.

Besides the interval a norm refers to, there is another tem-
poral dimension that characterizes its life in time. Note that
the deontic predicates are
uent, that is, their truth values
change in time. By considering them homogeneous over an
interval of time it allows us to introduce the concepts of
life time for norms, and persistence for obligations. This is
quite natural, because in the real world we have laws that
are voted at a certain moment and then abrogated. The life

time could be di�erent from the time interval the law refers
to. For instance, the obligation for Mr. X to pay the taxes
in January, is written as:

O(X; Pay taxes; [01=01; 31=01])

However this is not enough. We should make it explicit for
which period of time the obligation is valid. Let's suppose
that there is a more general tax law from which we derive
this obligation and which was voted last year and is still in
force. Therefore the complete form to express this obligation
is:

holds([01=01=2000;![); O(X;Pay taxes; [01=01; 31=01]))

If the law is abrogated or modi�ed in 2001, the updated
form is:

holds([01=01=2000; 01=01=2001];
O(X;Pay taxes; [01=01; 01=31]))

Another example that shows the importance of both man-
ners to treat the time within norms is related to retroactive
laws. In this case, the period of time a norm refers to could
contain subintervals that are in the past of the moment of its
creation. As a consequence, while looking to some current
behavior, it is possible to have completely legal acts at the
moment of their execution, and which generate violations
when the new retroactive law is approved.

In the next section we present a �rst order language, followed
by the de�nitions of the main concepts introduced above,
showing that the time is a major component.

4. SYNTAX AND SEMANTICS
We start by brie
y presenting the syntactical elements of
a multi-sorted �rst-order language. We consider a typed-
signature � (see [23], [28]) and the main sorts Agent, Event,
EventType, T ime (instants represented by integers or ra-
tionals), Interval (for time intervals) and Boolean. In our
model we separate the use of events from that of acts (and
similarly for actions and types of events as their classes)
and introduce two subsorts Act � Event and Action �
EventType. Variables are denoted by strings starting with
lower case letters, and constants by strings starting with up-
per case letters. Free variables are assumed to be universally
quanti�ed. We use typed predicates, each with �xed arity.

We consider the usual de�nitions for terms and well-formed
formulas. The semantics of the language is based on a �-
signature with classical de�nitions for variable assignment,
satisfaction and validity of a formula.

In the following we introduce the main predicates and func-
tions used in this framework:

4.1 Time points and intervals
� time point predicates and functions: =; <;�;+.

180

� interval predicates, of type Interval � Interval !
Boolean. Their use and de�nition are those developed
by Allen in [1], [2]:

starts(i; j)
finishes(i; j)
meets(i; j) i : j
before(i; j) i � j
during(i; j) i < j
before(i; j) _meets(i; j) i �: j
during(i; j) _ i = j i v j
disjoint(i; j) i ./ j � i �: j _ j �: i

� mixed point-interval predicates and functions: [t1; t2]
the interval function, it generates an interval given two
instants; in(t; i) is true if t is inside i, which formally is
in(t; i) � during([t; t]; i); ? the empty interval; \ - in-
terval intersection function; min(i) and max(i), func-
tions that compute the minimum and the maximum
value of an interval.

� the open-ended intervals] ; t] = fxjx � tg,
[t;![= fxjx � tg, and] ;![=] ; t] [[t;![.

As shown above, in this model we use the so-called temporal
predicates, which are predicates with one or more temporal
arguments. Two examples of temporal predicates are the
occurrences of events and the
uent predicates. However
their behavior over an interval is di�erent. In order to cap-
ture this di�erence we will use the notion of homogeneity. A
predicate is homogeneous if when it holds over an interval i,
it also holds over any subinterval. For instance a
uent pred-
icate is homogeneous, and an event is non-homogeneous. In
order to avoid the explicit introduction of the homogeneity
axiom for each homogeneous predicate p(i; :::) we will use
the following equivalent form: holds(i; p(:::)). As an exam-
ple, let's consider that the library was open between 9:00
and 12:00. Since in any subinterval of [9 : 00; 12 : 00] the
library was open, we will write:

holds([9 : 00; 12 : 00]; open(Library))

The de�nition of holds in a time-point is given by:

holds(t; p) � holds([t; t]; p)

In comparison to homogeneous predicates, when we want to
say that a predicate de�nes a relation that is true only w.r.t.
a speci�c interval of time we will consider just simple tem-
poral predicates. For instance, the fact that the (displayed)
time-schedule of the library is from 9:00 to 12:00 has this
property. This is written as:

schedule(Library; [9 : 00; 12 : 00])

Both ways of representing di�erent properties over intervals
of time could coexist for temporal predicates with many tem-
poral arguments. For instance, the fact that last summer the
schedule of the library was from 9:00 to 12:00 is written as:

holds([06=01=2000; 08=31=2000];
schedule(Library; [9 : 00; 12 : 00]))

where the predicate schedule is homogeneous over the �rst
interval and non-homogeneous over the second.

Another syntactic sugar is the use of relative intervals. In
general an interval of time is constructed by applying the
function [;] to two absolute time points. Time is considered
to be absolute w.r.t. a time origin t0. Therefore, given a
third time point t we can construct a relative interval of
time by using the construction [t+ t1; t+ t2]. If we want to
use relative time, we should introduce for each predicate of
the form p(:::; t) or p(::; i), relative predicates de�ned as:

8t; t0; ::: PR(t; :::; t
0) � P (:::; t+ t0) and

8t; t1; t2; ::: PR(t; :::; [t1; t2]) � P (:::; [t+ t1; t+ t2])

All predicates will use absolute time in what follows except
when explicitly noted.

4.2 Events
In this model the events could be basic or complex. In or-
der to make this distinction among events we will provide
the model with an algebra of events with operations for se-
quential \;", parallel \jj" and non-deterministic choice \?"
compositions. They are overloaded to work on both Event
and EventType objects.

� starts(e, t) and �nishes(e,t), predicates of type Event
� T ime! Boolean. Each event has unique moments
of time to start and to �nish. This is described by:

8e; t; t0 6= t starts(e; t)) :starts(e; t0)
8e; t; t0 6= t finishes(e; t)) :finishes(e; t0)

� occurs(e; i), a predicate of type Event � Interval !
Boolean meaning that an event e occurs at the interval
i. This is the main predicate with which we build the
most part of the predicates used in this framework. Its
de�nition depends on the type of event, if it is basic
or complex.

1. for basic events we have that:

occurs(e; [t1; t2]) �
t1 � t2 ^ starts(e; t1) ^ finishes(e; t2)

2. for composite events we have:

occurs(e1? e2; i) �
occurs(e1; i) _ occurs(e2; i)

occurs(e1jj e2; i) � 9i
0 i0 v i ^

(occurs(e1; i) ^ occurs(e2; i
0) _

occurs(e1; i
0) ^ occurs(e2; i))

occurs(e1; e2; i) � 9i1; i2 i1 �: i2 ^
starts(i1; i) ^ finishes(i2; i) ^
occurs(e1; i1) ^ occurs(e2; i2)

� occurs(e) is a version of occurs(e; i) without giving the
interval:

occurs(e) � 9i occurs(e; i)

181

� in this model we consider a linear time, which allows
the use of the past relatively to an instant. In order to
describe the past occurrence of an event, we introduce
new predicates, which are
uent versions of occurs.
We start with occurred(e) which is true at t if e oc-
curred in the past of t.

holds(t; occurred(e)) � 9i occurs(e; i) ^ i �: [t;1)

� occurred(e; i) is the version that indicates if e occurred
in the interval i, where i is either its interval of occur-
rence or a larger interval that includes it. The two
versions are:

1. holds(t; occurred�(e; i)) � occurs(e; i)^i �: [t;1)

2. holds(t; occurred(e; i)) � 9i0 i0 v i^occurs(e; i0)^
i0 �: [t;1)

In the de�nitions that follow, we will consider only the
second version.

� occurring(e) is true at t if e is currently occurring
relative to t.

holds(t; occurring(e)) � 9i in(t; i) ^ occurs(e; i)

� subclass("; "0) a non-
uent predicate of type Event-
Type � EventType ! Boolean. Example: subclass(
Sign, Write).

� instance of(e; ") a non-
uent predicate that links event
tokens to their classes. For instance the fact that the
signature of the check 4526 is a payment is written
as: instance of(sign check(4526),Pay). Because we
work with complex events and event types, we need
axioms for this predicate that allows for composition.
If \Æ" denotes one of the symbols for composition func-
tions \?", \;" or \jj", then the axioms are:

instance of(e1 Æ e2; "1 Æ "2) �
instance of(e1; "1) ^ instance of(e2; "2)

instance of(e; "1) ^ subclass("1; "2))
instance of(e; "2)

4.3 Acts
Since we consider an act as an event produced by an actor,
we give similar de�nitions for predicates on acts as we did
for events:

� does(agent; act; i), a predicate of type Agent�Act �
Interval ! Boolean. It shows that agent does act
over interval i. It is the corresponding predicate to
occurs(e; i) for events. Its de�nition is given by:

does(agent; act; i) �
occurs(act; i) ^ agent of(agent; act)

� where agent of(agent; act) is a predicate of type Agent
� Act ! Boolean, showing who is responsible for doing
act. In the case of a composite act we have:

agent of(agent; act1 Æ act2) �
agent of(agent; act1) ^ agent of(agent; act2)

� in a similar manner we consider the de�nitions for the
rest of the corresponding
uent act predicates, respec-
tively: done(agent, act), done(agent, act, i) and do-
ing(agent, act).
We introduce another
uent predicate failed(agent, act,
i) to represent the fact that the agent failed to do act
in i:

holds(t; failed(agent; act; i)) �
holds(t;:done(agent; act; i))

The introduction of failed predicate is motivated by
the fact that we don't permit the use of the action
negation, which is in general problematic. The solu-
tion is to adopt the \closed world assumption" and
consider : as the negation by failure [5] in logic pro-
gramming. The failure of doing an act in an interval is
given by the failure to derive if the act has been done
in that interval.

4.4 Deontic properties
In this framework we treat at the same level the deontic
concepts and the notions of agency, action and time. The
deontic status of an action is captured by
uent deontic
predicates, such as O(agent; �; i) where i is a relative or
absolute interval of time. This is di�erent from the classical
trend of deontic logic, where the deontic operators are modal
logical operators of the type Op with p a logical formula (see
[16] for an introductory presentation).

In addition, we consider for the sake of simplicity only the
case of unanalyzed deontic predicates, leaving for future
work the provision with additional semantics or axioms that
describe and allow the reasoning about the relationships be-
tween them (i.e. what relationship exists between obliga-
tion and interdiction, or how to check the consistency of
the norms). They are important tools for the creator of the
norm. However, at the agent level, we suppose that the only
thing we need is an event-based mechanism that trigers the
generation of a deontic state from normative descriptions.

It is important to note that the deontic predicates apply only
to actions, and not to acts. An action is an abstract concept
that is used in our model as a class. The acts represent
real and concrete occurrences and hence they are viewed as
instances of actions. For example, when someone signs the
check 4526, what it is obligatory is not the act of e�ectively
signing that check, but the class to which it belongs: in the
example, the Pay action.

4.5 Violations
When we compute the violations we take into account the
normative descriptions and the current and past execution
of the system. A possible de�nition for the violation case
is captured by the
uent predicate V (agent; �; i). It means
that the agent violated at the moment t a norm w.r.t. the
execution of an act of action type � over the interval i. Its
de�nition is given by the next axiom:

holds(t; V (agent; �; [t1; t2])) �

holds(t;O(agent; �; [t1; t2])) ^ [t1; t2] � [t;1) ^
8act (instance of(act; �))

holds(t; failed(agent; act; [t1; t2])))_

182

holds(t; I(agent;�; [t1; t2])) ^ [t1; t2] � [t;1)^
9act; instance of(act; �)^
(holds(t; done(agent; act; [t1; t2]))_
holds(t1; doing(agent; act))_
holds(t2; doing(agent; act)))_

holds(t; I(agent;�; [t1; t2])) ^ in(t; [t1; t2])^
9act; instance of(act; �)^
(holds(t; done(agent; act; [t1; t]))_
holds(t1; doing(agent; act))_
holds(t; doing(agent; act)))

5. APPLICATIONS
The model proposed in this framework was implemented in
Prolog Eclipse [8] and has been used to build two applica-
tions: the prototype for a control element and the scheduling
module of an agent. Each predicate of the model has a direct
corresponding Prolog predicate. We used for the de�nitions
of the temporal predicates (
uents, execution of acts, vio-
lations, etc.) the library for �nite domains of Eclipse, that
provides a very powerful mechanism for constraint propaga-
tion.

The introduction of the holds=2 predicate was essential to
the implementation of our model as a logic program. For
questions of the type holds(i; p), where the temporal argu-
ment is a variable, the constraint propagation module col-
lects all the temporal constraints and tries to �nd a solution
by instantiating i to a domain.

Example For the detection of the violations we are
interested to have questions of the kind holds(i; V (agent,�,
interval)). Let's reconsider the example with Mr. X and his
obligation to pay the taxes in January. In addition we have
the fact that he paid the taxes on January 14th, by signing
the check with the number 4526. All the information is
described in our model by the following propositions:

holds([01=01=2000;![;
O(X; Pay taxes; [01=01=01; 31=01=01]))

occurs(sign check(4526); [01=14=01; 01=14=01])
agent of(X; sign check(4526))
instance of(sign check(4526); Pay taxes)

From these de�nitions and by using the operational aspect
of the implementation of the holds=2 predicate we infer the
following propositions:

holds([14=01=01;![; occurred(sign check(4526)))
holds([14=01=01;![;

occurred(sign check(4526); [14=01=01; 14=01=01]))
holds([14=01=01;![; done(X; sign check(4526)))
holds([14=01=01;![;

done(X; sign check(4526); [14=01=01; 14=01=01]))

Note that there is no violation detected. If we add the in-
terdiction to make payments on weekends:

holds(] ;![; I(X;Pay; [13=01=01; 14=01=01]))
subclass(Pay taxes; Pay)

we get the violation:

holds([14=01=01;![; V (X;Pay; [13=01=01; 14=01=01]))

Scheduling A second application of the model concerns
the speci�cation of a scheduling problem with temporal and
deontic constraints. Let's suppose that an agent is under
the in
uence of a set of norms, each norm having a cost to
pay if violated. The agent should schedule its future acts so
that it should pay the minimum cost. It is the role of the
agent's scheduling module to propose the list of the future
acts and their times of execution that satisfy the following
constraints:

1. temporal constraints:

(a) each act has a period of execution.

(b) each act respects the execution order.

2. deontic constraints: the obligation and the interdic-
tion to execute an act in an interval. Each deontic
constraint speci�es the cost to be paid if violated.

Starting from the Prolog implementation of the model, it
was easy to implement an algorithm that generates for each
obligation and interdiction on an action, a planned instance
of that action, and which collects all the constraints that
are generated afterwards (see [25] for a version with more
details on scheduling). We used the the same library for
�nite domains and the predicate minimize/2. This predicate
is implemented using the branch and bound method and
o�ers an optimal solution.

6. CONCLUSIONS AND RELATED WORK
In this paper we proposed a �rst-order model for norma-
tive agent systems, starting from the idea that norms are
means for in
uencing and controlling the agent's behavior.
Inspired by the role they play in human societies and in legal
domains, the use of norms in agent-based systems remains
an open debate. However, we adopted the perspective of an
explicit use and representation of norms. In our case the
norms are dynamic in the sense that they have a lifetime
(appear and disappear in time) and prescribe the execution
of an action over a time-interval. We showed how to describe
the execution of an act and how to compute the violation
cases.

Another essential point in this framework is the distinc-
tion between acts (as concrete occurrences) and actions (as
classes of acts). Since a norm describes an ideal behavior,
we use this distinction to show that a norm characterizes a
class of acts and not an act.

In order to show the applicability of this model we brie
y
described a logic programming implementation in Eclipse
Prolog and we presented two types of applications: the de-
tection of the violation cases and the prototype of a sched-
uler with deontic and temporal constraints.

By proposing a model in a �rst-order logic has some ad-
vantages. First, we bene�t from the results of a long tra-
dition in representing and reasoning about actions, events
and time [2, 1, 14]. Second, there are some previous works
that attempted to formalize the normative concepts in terms

183

of �rst-order predicate calculus (see below), the �rst seem-
ing to be von Wright [27]. Third, the formal aspects of
such frameworks could be easily translated into Prolog im-
plementations. The existing tools for constraint satisfaction
proposed by di�erent Prolog systems [8] are nice and useful
results.

As examples of works that have been proposed to represent
normative concepts in �rst-order formalisms, we mention
Sergot who described in [19] an application of logic program-
ming for representing legal rules. We also note in his work
the presence of predicates with temporal arguments. In a
more recent paper [13] Lokhorst gives a complex account of
reasoning about actions and obligations which generalizes
the logic programming implementation of Ronald M. Lee's
deontic expert system DX. See [18] for a presentation of de-
feasible deontic reasoning used in DX. Finally, a temporal
treatment of legal norms in a �rst-order formalism is pro-
posed by Hern�andez Mar��n and Sartor [10]. They present a
model based on event-calculus [12] and treat various tempo-
ral aspects of legal rules, showing that there is a legitimate
separation between the validity of a norm and its internal
time.

Although we didn't follow the modal tradition to describe
normative concepts, we acknowledge that there are other in-
teresting approaches that belong to this stream of research.
Many of them propose semantics that interpret the deontic
concepts in terms of temporal ones. For instance in [9] the
notion of obligation is considered as a sort of liveness con-
dition: something will happen in the future. This view is
arguable, since an obligation refers to something that should
happen. Horty and Belnap [11] de�ne the obligations in a
branching time framework. In order to represent the obli-
gations on actions, they use the stit operator and the possi-
bility to choose among future courses of actions. Van Eck's
approach [26] is based on the de�nition of temporal neces-
sity and in [6] Dignum and Kuiper propose a treatment of
the obligations with deadlines, based on Meyer's reduction
of deontic logic to dynamic logic [15].

7. ACKNOWLEDGEMENTS
We would like to thank G�erard Becher for his interest in
this work and the anonymous referees who carefully read
and made helpful comments on the initial version of this
paper.

8. REFERENCES
[1] J. F. Allen. Towards a general theory of action and

time. Arti�cial Intelligence, 23:123{154, 1984.

[2] J. F. Allen and G. Ferguson. Actions and events in
interval temporal logic. Technical report, Computer
Science Department, University of Rochester, 1994.

[3] M. Barbuceanu, T. Gray, and S. Mankovski.
Coordinating with obligations. In Proceedings of
Autonomous Agents'98, Minneapolis, MI, 1998.

[4] C. Castelfranchi. Commitements: From individual
intentions to groups and organization. In Proceedings
of ICMAS'95. AAAI Press, 1995.

[5] K. Clark. Negation as Failure. Logic and Databases.
Plenum Press, New York, 1978.

[6] F. Dignum and R. Kuiper. Specifying deadlines with
dense time using deontic and temporal logic.
International Journal of Electronic Commerce,
3(2):67{86, Winter 1998-99.

[7] F. Dignum, D. Morley, L. Sonenberg, and L. Cavedon.
Towards socially sophisticated BDI agents. In
Proceedings of ICMAS'2000, Boston, USA, 2000.

[8] http://www-icparc.doc.ic.ac.uk/eclipse/.

[9] J. L. Fiadeiro and T. S. E. Maibaum. Temporal
reasoning over deontic speci�cations. Journal of Logic
and Computation, 1(3):357{395, 1991.

[10] R. Hern�andez Mar��n and G. Sartor. Time and norms:
a formalisation in the event-calculus. In Proceedings of
ICAIL-99, 1999.

[11] J. Horty and N. Belnap. The deliberative stit: A
study of action, omission, ability, and obligation.
Journal of Philosophical Logic, 24:583{644, 1995.

[12] R. A. Kowalski and M. J. Sergot. A logic-based
calculus of events. New Generation Computing,
4:67{95, 1986.

[13] G.-J. C. Lokhorst. Reasoning about actions and
obligations in �rst-order logic. Studia Logica,
57:221{237, 1996.

[14] J. M. McCarthy and P. J. Hayes. Some philosophical
problems from the standpoint of arti�cial
intellingence. Machine Intelligence, 4:463{502, 1969.

[15] J. J. C. Meyer. A di�erent approach to deontic logic:
Deontic logic viewed as a variant of dynamic logic.
Notre Dame Journal of Formal Logic, 29:109{136,
1988.

[16] J. J. C. Meyer and R. J. Wieringa. Deontic logic: A
concise overview. In J. J. C. Meyer and R. J.
Wieringa, editors, Deontic Logic in Computer Science:
Normative System Speci�cation. John Wiley & Sons,
1993.

[17] A. S. Rao and M. P. George�. BDI agents: From
theory to practice. In Proceedings of the First
International Conference on Multi-Agent Systems,
ICMAS'95, San Francisco, 1995.

[18] Y. U. Ryu and R. M. Lee. Defeasible deontic
reasoning: A logic programming model. In J. J. C.
Meyer and R. J. Wieringa, editors, Deontic Logic in
Computer Science: Normative System Speci�cation.
John Wiley & Sons, 1993.

[19] M. Sergot. Prospects for representing the law as logic
programs. In K. L. Clark and S. A. T�arnlund, editors,
Logic Programming. Academic Press, 1982.

[20] Y. Shoham. Reasoning about change. MIT Press, 1988.

[21] Y. Shoham. Agent-oriented programming. Arti�cial
Intelligence, 60:51{92, 1993.

[22] Y. Shoham and M. Tennenholtz. On social laws for
arti�cial agent societies: o�-line design. Arti�cial
Intelligence, 73:231{252, 1995.

184

[23] G. Smolka and H. Ait-Kaci. Inheritance hierarchies:
Semantics and uni�cation. Journal of Symbolic
Computation, 7(3/4):343{370, 1989.

[24] T. Stratulat. Normative agent systems. In Proceedings
of POLICY'99, Bristol, UK, 1999.

[25] T. Stratulat, F. Cl�erin-Debart, and P. Enjalbert.
Temporal reasoning: An application to normative
systems. Submitted to publication.

[26] J. van Eck. A system of temporally relative modal and
deontic predicate logic and its philosophical
applications. Logique et Analyse, 99,100, 1982.

[27] G. H. von Wright. Deontic logic. Mind, 60:1{15, 1951.

[28] C. Walther. Many-sorted uni�cation. JACM,
35(1):1{17, 1988.

185

