
A symbolic layer for autonomous component-based
software agents

Razvan Dinu1 and Tiberiu Stratulat2 and Jacques Ferber3

Abstract. In order to handle complex situations, an autonomous
agent needs multiple components ranging from simple input/output
modules to sophisticated AI techniques. Integrating a high number
of heterogeneous components is a non-trivial task and this paper dis-
cusses the use of a symbolic layer to address this issue. After an
overview of existing techniques and their limitations this paper pro-
poses a new approach through a generalized hyper-graph model in
which the interaction of different components is modeled through
a triggering mechanism based on patterns. Finally, the paper shows
how a flexible symbolic middleware can be built and a few examples
are presented.

1 Introduction
In order to keep up with the increasingly complex real-world prob-
lems, autonomous software agents need to integrate more and more
components that range from simple input/output modules to sophis-
ticated AI techniques. As the number of components increases the
integration itself becomes an issue which unfortunately has been ne-
glected until recent years. More and more researchers agree that “the
question about the inner workings of the pieces themselves holds
equal importance to the question about the nature of the various dy-
namic glues that hold the pieces together” [15].

When integrating multiple components, two levels of integration
can be distinguished: generic and specific. The generic level is con-
cerned with general mechanisms such as how components communi-
cate with each other and how they exchange data. The specific level
is concerned with the details of integrating components X1, X2, ...,
Xn, of specific types, such as when component Xi calls a function of
component Xj , what data should Xi provide, when should Xi send
the data to Xj , etc.

Usually, in a running software agent, the generic level takes the
form of a middleware and provides primitives for data and control
flow to different specific levels. Such a middleware has to provide
solutions to three main challenges: communication, data sharing and
global control. The communication challenge is concerned with how
different components can reach each other and how can they use each
other’s functionalities. The data sharing is concerned with how com-
ponents can provide data (content) to other components. Global con-
trol is concerned with how all the interactions between components
are handled and how a coherent global behaviour of the agent can be
achieved.

One traditional technique for generic integration of multiple com-
ponents is the blackboard system in which a set of experts, also

1 University of Montpellier 2, LIRMM
2 University of Montpellier 2, LIRMM
3 University of Montpellier 2, LIRMM

called knowledge sources (KS), are constantly monitoring a black-
board searching for an opportunity to apply their expertize. When-
ever they find sufficient information on the blackboard they apply
their contribution and the process continues [6]. Unlike other tech-
niques that implement formal models, the blackboard approach was
designed to deal with ill-defined complex interactions. One of the
first applications of the blackboard system was the speech under-
standing HEARSAY-II system [7] in which multiple components
used a shared blackboard to create the required data structures.

Another generic integration technique is based on message passing
and usually uses a publish-subscribe mechanism in which compo-
nents subscribe to different types of messages and whenever a mes-
sage arrives it is forwarded to corresponding modules. A message-
based communication protocol for AI that has been gaining in pop-
ularity in recent years is the OpenAIR protocol managed by mind-
makers.org [2].

CORBA is a well known standard by OMG [5], according to
which components written in multiple computer languages and run-
ning on multiple computers are exposed as objects and their inter-
action is performed by method invocation. CORBA is very used as
system integration in humanoid robotics, see for instance the simula-
tor OpenHRP [10].

All of the above techniques provide more or less solutions to
the three challenges mentioned earlier. Blackboards clearly provide
means for data sharing, enables communication between components
indirectly, but the control component is usually a simple scheduler
and it does not help much in assuring a coherent global behaviour
of the agent. On the other hand, message-passing focuses on com-
munication and object-oriented techniques on communication and
somewhat data sharing. Both leave global control entirely up to the
interacting components.

Both improvements and hybrid solutions have been proposed for
the above techniques. For example, whiteboards [16] consist of a
blackboard with (i) a general-purpose message type, (ii) ontologi-
cally defined message and data stream types and (iii) specification
for routing between system components. They also add an explicit
temporal model thus providing more specialized solutions for com-
munication and data sharing challenges. Also, the GECA Framework
(Generic Embodied Conversational Agent) uses a hybrid solution in
which multiple blackboards are used to perform message-passing
based on message types [11].

Our opinion is that components integration would be much easier
if we had an integration technique based on a more expressive data
model and which provided better support for different patterns of
global control.

By pattern of global control we understand the most abstract
model that can be used to explain the behaviour of the software agent.

A classical example of such a pattern, especially used in robotics, is
the Brooks subsumption architecture [4]. In this approach compo-
nents are structured into layers and those situated at higher levels are
capable of altering the input and inhibiting the output of components
at lower levels.

Another very widely used pattern of global control, especially in
multi-agent systems, is BDI (Beliefs Desires Intentions) [14]. The
software agent maintains a set of beliefs based on which desires are
created. A desire which the agent has decided to pursue becomes an
intention and a plan is chosen to achieve the desired goal.

More sophisticated patterns of global control come from the agent
architectures domain. For example the INTERRAP agent architec-
ture [13] uses three control layers: Behaviour-based layer, Local
Planning layer and Cooperative Planning layer. Each layer has its
own world model and includes subcomponents for situation recogni-
tion, planning and scheduling.

When we say that the generic integration middleware should sup-
port patterns of global control such as the ones mentioned above we
are not saying that the patterns should be entirely implemented in-
side the middleware. But rather, the middleware should contain only
part of the pattern and should smoothly integrate with components
implementing key aspects of the control pattern (for instance a plan-
ning engine).

This paper focuses on the generic level of integration and proposes
a middleware model that enables easier and more straightforward in-
tegration of different AI and non-AI components of an autonomous
software agent. The next section introduces our approach and sec-
tions 3, 4 and 5 introduce our new symbolic model for generic inte-
gration and also perform a preliminary evaluation of its performance.
Section 6 presents an implementation for smart phones based on the
Android platform and finally, section 6 and 7 present our comments
and conclusions.

2 Approach
As it has been outlined in the previous section, the main shortcom-
ings for current approaches concern the data sharing and global
control challenges. Our approach is an extension of the blackboard
model which addresses exactly these two challenges.

2.1 Data sharing challenge
Firstly, we propose that the blackboard uses a more expressive sym-
bolic data model rather than just isolated bits of typed data. The cho-
sen symbolic structure is inspired by the generalized hyper-graph
model proposed by [3]. Hyper-graphs generalize normal graphs by
allowing an edge to contain more than two nodes and a directed
hyper-graph considers edges as ordered sets (tuples). We are inter-
ested in a generalization of directed hyper-graphs in which an edge
can contain both nodes and other edges. This represents the general-
ized hyper-graph model we’re using and it will be described in more
details in the next section. However, we will be using a different ter-
minology that makes more sense in the context of symbolic represen-
tations: symbols instead of nodes and links instead of hyper-edges.

Secondly, we extend the generalized hyper-graph structure with a
map which associates each symbol of the hyper-graph with another
symbol. Finally, we allow each symbol to have some attached infor-
mation, which can be typed or not.

A generalized hyper-graph, the information associated with the
symbols and the map of symbols form a SLiM structure (Symbol
Link Map). From now on, we will use the capital version (SLiM) to

refer to the model and the lower letter version (slim) as a shorthand
for “SLiM structure” which refers to a concrete structure.

One related work which uses a hyper-graph model close to ours is
[12]. They use a directed hyper-graph and integrate a typing system
in which a node has a handle, a type, a value and a target set. The
main differences in our model are the lack of the typing system and
the addition of the symbolic map which, as it will be shown in future
sections, can be used to create a typing system. However, they show
how such a hyper-graph structure can be efficiently implemented and
used as central database especially in AI applications. The OpenCog
project [9] is also an illustrative example of hyper-graphs usage in
AI projects. These works show the increasing interest of using the
flexible hyper-graphs structures in AI.

2.2 Global control challenge
In order to address the issue of global control we inspired ourselves
from the patternist philosophy of mind whose main premise is “the
mind is made of patterns”. In this perspective a mind is a collection
of patterns associated with persistent dynamical processes capable of
achieving different goals in an environment. For a quick overview of
the patternist philosophy of mind and also a different way of applying
it in the context of AI we recommend [8].

We define a pattern as a particular type of slim and we show how a
set of patterns can be efficiently matched using an automaton. Next,
we propose an interaction mechanism between components based on
patterns that uses a central SLiM structure which can by accessed
and modified by any component. Each component can register two
types of patterns: data patterns and capability patterns. Whenever a
component modifies the central slim and a data pattern is found then
the corresponding component is notified. Also, whenever a compo-
nent requests the execution of something that matches a capability
pattern then the corresponding component is notified.

As it will be detailed in the following section all these mechanisms
provide a very flexible way of performing interaction between differ-
ent components of a software agent and they can be packed into a
symbolic middleware which can be used in conjunction with other
agent frameworks.

3 The SLiM Model
This section formally introduces the SLiM model and also proposes
a representation language to represent a slim.

3.1 Formal definition
Definition 1. Let S be a finite set of elements. TS is the set of all
tuples over S and it is inductively defined as:

• T0 = {(0, ∅)}.
• Tk = {X ∪ {(k, s)}|X ∈ Tk−1, s ∈ S} for k ≥ 1
• TS = ∪∞k=0Tk

The sole element of T0 is called the empty tuple and will be de-
noted simply by ∅. An element t ∈ Tk is called a tuple of length
k. Instead of t = {(0, ∅), (1, s1), ..., (k, sk)} we use the equivalent
notation t = (s1, s2, ..., sk). We also use the notation s ∈ t to mean
∃j ≥ 1 such that (j, s) ∈ t.

Definition 2. Let the following:

i. S be a finite set of elements called symbols.

ii. l : S → TS be a function called a linking function on S.
iii. i : S → I be a function called an information function on S,

where I is a set of elements.
iv. m : S′ → S, where S′ ⊂ S, be a partial function on S called a

map on S.

Then the quadruple < S, l, i,m > is called a SLiM structure or
simply a slim. The elements of s ∈ S for which l(s) 6= ∅ are also
called links and if x, y ∈ S and m(x) = y we say that x is mapped
to y.

Below are a few terminological definitions associated with the
SLiM model.

Definition 3. A symbol d ∈ S is reachable from a symbol s ∈ S if
and only if there exist s1, s2, ..., sn ∈ S such that s1 ∈ l(s), s2 ∈
l(s1), ..., sn ∈ l(sn−1) and d ∈ l(sn).

Definition 4. A symbol d ∈ S is mappable from a symbol s ∈ S if
and only if d is equal to s or there exist s1, s2, ..., sn ∈ S such that
m(s) = s1,m(s1) = s2, ...,m(sn−1) = sn and m(sn) = d.

Definition 5. A tuple (s1, s2, ..., sn) ∈ TS is called an implied
link if and only if there exist x1, x2, ..., xn, y ∈ S such that x1

is mappable from s1, ..., xn is mappable from sn and l(y) =
(x1, x2, ..., xn). If xi = si for i = 1, n then the link is called ex-
plicit.

Definition 6. A slim < S, l, i,m > is called acyclic if and only if
no symbol can be reached from itself.

3.2 Representation language

Before going any further we will introduce an abstract syntax for a
representation language, called the SLiM language, that can be used
to describe a slim. Given S and I the sets of symbols and information
elements, the language is given by the following EBNF:

slim → symbol+ (1)
symbol → [id|link][:[info|symbol]]? (2)

link → [id=]?{symbol+} (3)
id → s ∈ S (4)

info → x ∈ I (5)
(the curly brackets are part of the terminal alphabet of the SLiM

language)

Before giving a few examples we will provide the semantics of the
production rules. In order to do that we consider that the non-terminal
nodes of the grammar symbol, link and id have a synthesized
attribute “s” which holds the corresponding symbol s ∈ S:

Production rule Attribute rule
symbol → id[...]? symbol.s = id.s
symbol → link[...]? symbol.s = link.s
link → id={symbol+} link.s = id.s
link → {symbol+} link.s = use/new
id → s ∈ S id.s = s

The use/new keyword means that if there is already a link cor-
responding to the sequence of symbols on the right side then the
attribute link.s uses the same id, otherwise it gets a random id
from S not used by any other production rule. Below we will give
the semantics of each of the right sides of production rules 2 and 3.

Right side Semantics
{s1 ... sn} l(use/new) = (s1.s, ...,sn.s)
id={s1 ... sn} l(id.s) = (s1.s, ...,sn.s)
[id|link]:symbol m([id|link].s) =symbol.s
[id|link]:info i([id|link].s) =info

Here’s an example of a slim described using the SLiM language:
here={my location} (1)
here:{city Lyon} (2)
{user said msg:"Hello"} (3)

Let < S, l, i,m > be the slim described in the above example.
The symbols set is S = { my, location, here, city, Lyon,
user, said, msg, rand1, rand2 } and the information set is
I = { null, "Hello" }. The first line creates a link between the
symbols my and location and assigns the id here, which means
l(here) = (my,location). The second line creates a link be-
tween city and Lyon whose id is not important (and we can con-
sider it to be rand1 ∈ S) and maps the symbol here to it. This
means l(rand1) = (city,Lyon) and that m(here) =rand1.
The third line creates a link between other three symbols and assigns
some information to the last one, i(msg) ="Hello". All other
symbols s ∈ S have i(s) =null.

The meaning of the first production rule is the union of all the sym-
bols, information and mappings defined by the symbol production
rules. We say that a SLiM representation (a string in the SLiM lan-
guage) is valid if and only if there are no contradictions (i.e. a symbol
being assigned two different information, a symbol being mapped to
different symbols, multiple definitions of a link, etc.). From now on,
we will use the SLiM language rather than the formal definition to
describe SLiM structures.

One last observation concerns the use of curly brackets to create
links. The language does not use parentheses or square brackets in
order to avoid confusion with languages such as LISP or REBOL.

3.3 Modeling with SLiM
The SLiM model does not impose any particular semantics on the
data being represented in a slim. It is a semi-structured, general pur-
pose model based on a generalized hyper-graph structure. The actual
schema that will be used in a slim will evolve dynamically and data
integrity constraints can be enforced by different components using
the slim. This type of flexible models is especially suitable for online
environments.

4 Patterns
As it was discussed in section 2, the pattern concept is central to our
approach. Below we will explain what a pattern is, how can multiple
patterns be matched, and we perform a simple performance evalua-
tion of the proposed matching mechanism.

4.1 Definition
Definition 7. ? and @ are two special symbols called the any and the
root symbols.

Definition 8. A pattern is an acyclic slim < S, l, i,m > with the
following properties:

i. ? ∈ S and @ ∈ S;
ii. @ is mapped to a symbol, which is called the root of the pattern,

and all other mappings, if any, are to ?;

iii. the symbols mapped to ? are called generic symbols and they are
all reachable from the root of the pattern;

iv. it contains no information (I = {∅}).

Before discussing the different properties from the above defini-
tion we will provide two examples, described using the SLiM lan-
guage, so that the reader can have a better grasp of what patterns
look like. Each pattern has been enclosed inside an additional set of
curly brackets:

{
{sound enabled}
@: { notify user Message:? }

}
{

online
@: {User:? wants {listen album Album:?} }
{User allowed music}

}

Figure 1. “Examples of patterns”

First of all, we are only interested in patterns at the symbolic level,
disregarding the information attached to symbols, hence property
iv). Secondly, the SLiM model is intended to represent data mainly
through symbols and links and that is why patterns will be used to
describe only parts of the symbolic hyper-graph. As a consequence,
a pattern contains only mappings that have special meaning to the
matching mechanism.

In a few words, a pattern is a generic way of describing a set of
symbols and links. A pattern can contain regular symbols or generic
symbols (those mapped to ?) which act as place holders for regular
symbols. For convenience, we can omit the “@:” for simple patterns.
Also, we can write directly {listen album ? } if the name of
the generic symbol is not relevant when presenting a pattern.

Intuitively the first example in figure 1 can be matched for example
by the following slim:

some-message: "Hello User!"
{sound enabled}
{notify user some-message}

The generic symbol Message is a place holder for the
some-message symbol. The link {sound enabled} exists as
it is.

In order to explain the role of the @: mapping we have to define
exactly what is a match for a pattern.

4.2 Matching a pattern
Definition 9. A slim M is a match for a pattern P if and only if it
can be obtained from P by:

1. replacing all mappings to ? with mappings to other non-generic,
possibly new, symbols;

2. replacing the occurrences of all generic symbols in links with the
symbol they’re mapped to;

3. removing the mapping from @ and the symbols ? and @.

Definition 10. Let X be a slim, P be a pattern and M be a match of
P . We say that M is a match of P in X if and only:

i. every symbol in M which is not generic in P also exists in X;
ii. every link in M is implied in X .

For example, the following slim (M):

User: current-user
Album: s32
online
{current-user wants {listen album s32} }
{current-user allowed music}

is a match for the second example pattern in the following slim
(X):

current-user: John
{s32 author Michael-Jackson}
{s32 title s41:"Bad"}
online
{current-user wants {listen album s32} }
{John allowed music}

We can easily see that the symbols such as online, wants,
music, etc. exist directly in X and so do links such as {listen
album s32} . On the other hand the link {current-user
allowed music} is only implied in X (by definition 5) because
current-user is mapped to John and we have the link {John
allowed music}.

One important aspect of matching a pattern is the fact that the links
described by the pattern must be implied in the slim we’re searching,
and not necessarily exist. This gives a lot of flexibility when mod-
eling data we slim. We can choose to leave some links implicit and
still be able to match them in patterns. A more in-depth discussion of
implied links would be suitable but due to space limitation we will
leave it to the reader to imagine how implied links can be used.

Searching a set of symbols and links that match a pattern in a slim
can be a very time consuming task especially when generic symbols
are used in more than one link. It is the equivalent of a join operation
on a relational database which requires special indexing in order to be
processed efficiently. That is why we divide a pattern in two, the root
of the pattern and the rest, and we impose that the generic symbols
are reachable from the root.

If the root is a link and some of the symbols inside the link are also
links and so on, we have an ordered tree4 of symbols determined by
the root of the pattern. We will refer to this tree as the tree of the
pattern (figure 2 shows the tree for the second example pattern).

Figure 2. Example of ”tree of a pattern”

Since all the generic symbols are reachable from the root, in order
to find a match for a pattern we first have to find a match for the tree
of the pattern. If one is found, all the other symbols and links can
be easily checked since there are no other generic symbols. But even

4 a tree in which the order of the sons is important.

finding a match for a tree in a slim can take a very long time so we
will limit our approach to a particular case which will be used in our
symbolic middleware presented in the next section.

The pattern matching problem we are addressing is the following:
given a symbol in a slim and a pattern tree, can it be matched starting
at the given symbol (the root of the instance tree will correspond to
the given symbol)?

We will represent a pattern tree using the simplified notation (no
@ and no generic symbols names). For example, for the second ex-
ample pattern we get {? wants {listen album ?} } . This
will be called the normal string representation of a pattern tree. So,
the question is, given such a representation and a symbol (which can
be a link) in a slim, can the tree be matched with the given symbol
as root? This can actually be done in liner time by reading the tree
pattern representation from left to right and by performing a depth-
first navigation of the symbol in parallel. The algorithm is left as an
exercice to the reader.

4.3 Summary
In order to conclude this section we will summarize the main idea: we
have a set of patterns and a symbol in a slim and we are interested to
see if there’s a pattern whose tree can be matched with its root at the
given symbol; if so, then the rest of the pattern can be easily checked
once we have the values of all the generic symbols in the pattern; if
all other symbols and links exist then we have found a match for a
pattern.

5 SLiM based integration middleware
Now we will show how the symbolic SLiM module introduced in
the previous section can be used in what we call symbolic integration
middleware.

5.1 Symbolic middleware
We consider a software agent as having two parts: a crown which
contains many different components and a trunk which contains
one or more middlewares. The only way components can interact is
through a middleware situated in the trunk. The SLiM middleware,
which is the proposed solution for components integration, is com-
posed of:

• A slim which acts as shared blackboard. Every component is able
to create new symbols, modify links, attach information to sym-
bols, change mappings, etc.

• A capabilities index and a triggers index. They are two sets of
patterns together with two automata capable of matching them.

• A behaviour rules set. A rule is an association between a trigger
pattern and an entry-slim (a slim with a designated symbol called
entry point).

Every component can register one or more capability or trig-
ger patterns with the SLiM middleware. For example a text-to-
speech component can register the capability pattern {speak ?
english}. A natural language processing component can register
the trigger pattern {user said ?}.

In order to illustrate the role of each type of pattern or rule we will
explain the different modes in which the SLiM middleware can be
used.

tell mode. In this mode a component can access the shared
slim and perform whatever changes it needs. For example in this

mode the speech recognition module would add {user said
msg:’Hello world!’} .

do mode. In this mode a component asks the SLiM middleware
to do something by providing an entry-slim. The middleware will try
to match the given slim, starting from the entry point, by a capabil-
ity pattern. If one is found then the component that registered the
pattern will be notified and it will be provided the match. If no pat-
tern is found and the entry point is a link then all the symbols in the
link will be successively used as entry points, creating a sequence of
do-s. For example a component can request {{wait 5 seconds}
{speak msg:’Hello you too!’ english}} to be done.

trigger mode. Whenever a symbol is created or a link made, the
triggers automaton will try to match it to an existing trigger pattern.
If one is found and it is associated with a component then the compo-
nent will be notified. However if it is associated with an entry-slim,
through a behaviour rule, a do will be requested on the entry-slim.
For example the rule {user said ?} → {log to history
?} logs what the user said to a history.

ask mode. This mode is not discussed in this paper but it allows a
module to query a slim structure in the same manner as [12].

Other details such as how symbols from a trigger pattern match are
used in the entry-slim of a behavior rule, details of the do mode or
the role of mappings, which some readers might consider important,
are not discussed in this paper.

Let’s take now the two example patterns provided in previous
section (figure 1). The first one could be registered by a compo-
nent capable of producing some sounds, perhaps depending on the
type of the message. However, the pattern also contains the link
{sound enabled} . We can imagine a convention like {sound
enabled} when components can produce sounds and {sound
disabled} when they can’t (the volume is set to 0). So, if a com-
ponent wants to send a notification to the user it will request a do on
the following slim {notify user msg12:"New email!"}.
At that point the capability index will try to match the given slim,
starting from its entry point which is the whole link, and will find the
example pattern 1 as being a match, the corresponding component
will be notified and for example the user will hear a beep.

The second pattern is more complicated and it can correspond to
a component capable of playing albums from internet for example.
But this pattern will be registered as a trigger pattern and not a ca-
pability pattern. For example a speech recognition component com-
bined with a natural language processing module can recognize that
the user wants to listen to an album and it will create a link stating
that fact. When the link is created the trigger automaton will analyze
the link and if the user is online and is allowed to play music than
a match is found and the player component gets notified. If no com-
ponent would have registered the second example pattern than the
link created by the natural language processing module would have
no effect and maybe it will be removed by a component that deletes
links unused for a certain amount of time.

These examples should give the reader an idea of how the inter-
actions between components with different functions will happen by
using the proposed SLiM middleware.

6 Test implementation

The described SLiM middleware has been implemented and tested
on a mobile device using the Android platform [1] which uses a
message-based integration mechanism.

The implemented application asks the user the name of a city and
then searches a predefined list of hotels. By showing the user a few

options, and by integrating a simple clustering algorithm, the appli-
cation is able to learn progressively which part of the city the user is
interested in.

We had to integrate components already existing in the Android
platform such as the text-to-speech engine, speech recognition, in-
ternet browsing and map view. For each of them we have created a
wrapper that exposed the capabilities of each component through ap-
propriate patterns such as {show on map ?} which looked for
a link {? address} (where ? is the same in both patterns) and
then showed the address using the available map view.

The application behaved correctly and the components integration
was very smooth.

7 Comments and limitations

We believe that integration of many of components is the key to mak-
ing software agents smarter and make humans think of them as au-
tonomous agents with which they can interact. Different works in AI
and other connected domains are situated at different levels of ab-
straction and an integration middleware has to be able to deal with
it. Also, the data that can be shared between different components
is very diverse and an integration middleware would have to use a
data model capable of handling this diversity. We believe the SLiM
middleware, through the use of a very expressive data model and a
flexible pattern matching mechanism, is a first step towards that.

One important limitation of the SLiM middleware comes from the
fact that each created link or symbol has to be processed by the trig-
gers index. This basically creates a bottleneck which means that slim
updates cannot be performed at very high rates (on the android plat-
form the maximum rate, as tested, is at about 1200 updates per sec-
ond). This makes it not suitable for components that need interactions
between them at a high rate. In that case, additional middlewares
capable of handling such interactions should be used in the trunk
together with the SLiM middleware. Alternatively, pattern checking
can be performed in parallel on multiple cores which would also give
better performance.

One interesting aspect of SLiM which has not been mentioned ear-
lier is the fact that the SLiM language can be used as a scripting lan-
guage for the interaction of components. We can have a default mod-
ule which implements patterns for the usual control constructs we
find in a scripting language (i.e. {if Cond:? then Action:
?}, {for X:? in List:? do Action: ?}, etc.). Together
with the patterns registered by different components we will actually
end up with a kind of domain specific language whose primitives are
dictated by the capabilities of the agent.

Having a symbolic middleware like SLiM implemented in multi-
ple agents, even developed by third parties, would create a more solid
base for an ACL (Agent Communication Language). We can have
the constructs of the language translated into symbolic representa-
tions which would then be executed by an agent using the registered
components at a given time.

As it can be seen, having an explicit symbolic middleware in a
software agent has many advantages and it opens very interesting
perspectives.

8 Conclusions and future works

This paper proposes the integration of multiple components in a soft-
ware agent through the use of a symbolic middleware based on the
new SLiM model. Due to the expressivity of hyper-graphs and the

flexibility of the proposed pattern matching mechanism this model is
well suited for the integration of AI with non-AI components.

We provided a clear formal description of the SLiM model, a rep-
resentation language that can be used to describe slims and a pat-
tern matching mechanism. Based on them we proposed a model of a
symbolic middleware which uses a slim at its core and two types of
patterns, capability and trigger patterns.

The efficiency of the pattern matching algorithm and its small
memory footprint show that the SLiM integration middleware is well
suited for mobile platforms such as Android on which a test imple-
mentation was done.

The proposed approach combines the advantages of multiple
generic integration techniques: a) the flexibility of a shared black-
board with an expressive hyper-graph based data model; b) a trigger-
ing mechanism based on patterns which generalizes the publisher-
subscribe paradigm; c) do mechanism based on patterns similar to
method invocation; d) straightforward integration through behaviour
rules based on patterns.

Also, the use of an explicit symbolic middleware such as the SLiM
middleware can lead to interesting application such as a component
integration scripting language, easier implementation of agent com-
munication languages and even the creation of lightweight or dis-
tributed agents.

REFERENCES
[1] Android. http://www.android.com., 2010.
[2] OpenAIR. www.mindmakers.org, 2011.
[3] H. Boley. Directed recursive labelnode hypergraphs: A new

representation-language. Artificial Intelligence, 9(1):49 – 85, 1977.
[4] R. A. Brooks. Intelligence without representation. Artificial Intelli-

gence, 47(1-3):139–159, 1991.
[5] h. CORBA, 2011.
[6] R. Engelmore and A. Morgan, editors. Blackboard Systems. Addison-

Wesley, 1988.
[7] L. D. Erman and V. R. Lesser. The HEARSAY-II speech understand-

ing system: Integrating knowledge to resolve uncertainty. Computing
Surveys, 12:213–253, 1980.

[8] B. Goertzel. Patterns, hypergraphs and embodied general intelligence.
International Joint Conference on Neural Networks, pages 451 – 458,
2006.

[9] B. Goertzel, H. de Garis, C. Pennachin, N. Geisweiller, S. Araujo,
J. Pitt, S. Chen, R. Lian, M. Jiang, Y. Yang, and D. Huang. OpenCog-
Bot: Achieving generally intelligent virtual agent control and humanoid
robotics via cognitive synergy. ICAI, 2010.

[10] H. Hirukawa, F. Kanehiro, and S. Kajita. OpenHRP: Open architec-
ture humanoid robotics platform. In R. Jarvis and A. Zelinsky, editors,
Robotics Research, volume 6 of Springer Tracts in Advanced Robotics,
pages 99–112. Springer Berlin / Heidelberg, 2003.

[11] H.-H. Huang, A. Cerekovic, I. Pandzic, Y. Nakano, and T. Nishida.
Scripting human-agent interactions in a generic ECA framework. In
Applications and Innovations in Intelligent Systems XV, pages 103–115.
Springer London, 2008.

[12] B. Iordanov. HyperGraphDB: A generalized graph database. First In-
ternational Workshop on Graph Database, 2010.

[13] J. Muller. The agent architecture INTERRRAP. In The Design of Intel-
ligent Agents, volume 1177 of LNCS, pages 45–123. Springer Berlin /
Heidelberg, 1996.

[14] A. S. Rao and M. P. Georgeff. BDI-agents: from theory to practice. In
Proceedings of the First Intl. Conference on Multiagent Systems, San
Francisco, 1995.

[15] K. Thrisson. Integrated A.I. systems. Minds and Machines, 17:11–25,
2007.

[16] K. R. Thrisson, T. List, C. Pennock, and J. Dipirro. Whiteboards:
Scheduling blackboards for semantic routing of messages & streams.
In AAAI-05 Workshop on Modular Construction of Human-Like Intel-
ligence, pages 8–15, 2005.

