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Abstract

We propose a first-order model as a possible formal ba-
sis for normative agent systems (NAS). The model allows
us to describe the execution of actions in time and the use
of dynamic norms. We also present its operational aspect
which is based on the reduction of the deontic constraints
to temporal ones. In order to show the applicability of the
model we briefly describe a logic programming implemen-
tation and we present two types of applications: the detec-
tion of the violation cases and the prototype of a scheduler
with deontic and temporal constraints.

1 Introduction

In the area of MAS the problem of coordinating activ-
ities among agents is a very important one. A solution to
this problem, that has been proposed in the last years con-
cerns the use of norms or social laws ([21], [4], [3], [7]).
A norm is mainly a syntactical description of an ideal be-
havior saying what an agent should do or not. The main
users of the norms are the ordinary agents which try to
have a norm-compliant behavior, and the control elements
of the system which check if the agents obey the norms.
Therefore a norm is just a piece of information sent to each
agent involved in coordinated interaction and which is in-
terpreted (accepted or ignored) at the agent level based on
some decision-making internal mechanism.
When constructing norms the architecture of a norma-

tive system requires the use of many concepts such as so-
cial structure, authority, roles, obligations, action, time, etc.
In this paper we study only a subset of them, and in partic-
ular the relationship between the deontic1 characterization
and the temporal execution of actions. We show that the use
of norms could be reduced to the use of temporal informa-
tion. This method only applies to a certain class of norma-
tive problems, notably those that describe ideal behaviors

1by deontic we mean what is obligatory, permitted or forbidden

in time and where actions have a duration of execution. As
shown before, the normative description is mainly used in
two situations: to constrain a behavior and to verify if the
actual behavior is conform to its ideal description. For the
former case, by translating deontic constraints into tempo-
ral ones we gain when scheduling future courses of actions
from the use of the constraint solvers that already exist for
temporal models. For the latter case, we simply need some
methods to verify if the interval of the act execution is con-
sistent to the interval prescribed by the norm.
In order to clearly show how to manipulate the temporal

information in such systems, we propose in the next sec-
tion a logical model that helps to describe the execution of
actions in time. We give ontological definitions for the vari-
ous concepts used in the model such as acts, events, actions,
event types, obligations and violations, and we present their
properties. The main applications of the model, the deontic
scheduling and the detection of violations are described in
section 3. We present some related works in section 4 and
give the conclusions in section 5.

2 Formal Model

The model behind a normative agent system requires for
an explicit representation of the world and the way this
world changes. We need a model that allows us to represent
the execution of actions in time and which is able to treat at
the same level the different notions of agency, time, events
and obligations. Therefore, following the classical trend of
AI ([15, 1, 20]) we propose a model, where the main ingre-
dients are fluent predicates that characterize the state of
the world at a certain point in time, and event occurrences

which capture the changes that take place. We
use a linear model of time.
We start by briefly presenting the syntactical ele-

ments of a many-sorted first-order language, provided
a typed-signature and the main sorts , ,

, (instants represented by integers or ra-
tionals), (for time intervals) and . In this
model we separate the use of events from that of acts (and



similarly for actions and types of events as their classes)
and introduce two subsorts and

. Variables are denoted by strings starting with
lower case letters, and constants by strings starting with up-
per case letters. Free variables are assumed to be universally
quantified. We use typed predicates, each with fixed arity.
We consider the usual definitions for terms and well-

formed formulas. The semantics of the language is based
on a -signature with classical definitions for variable as-
signment, satisfaction and validity of a formula. In the fol-
lowing we introduce the main predicates and functions used
in this framework.

2.1 Time points and intervals

time point predicates and functions: .

interval predicates, of type
. Their use and definition are those developed

by Allen in [1], [2]:

mixed point-interval predicates and functions:
the interval function, it generates an interval given two
instants; is true if is inside , which formally
is defined as ; the empty inter-
val; the interval intersection function; and

, functions that compute the minimum and the
maximum value of an interval.

the open-ended intervals ,
, and .

2.2 Temporal predicates

In this model we use the so-called temporal predicates,
which are predicates with one or more temporal arguments
(i.e. fluent predicates and occurrences of events). Their
properties over an interval, however could be different. In
order to show this difference we use the notion of homo-
geneity. A predicate is if and only if when it
holds over an interval , it also holds over any of its subin-
tervals. For instance, a fluent predicate is homogeneous and
an event is non-homogeneous. In order to avoid the ex-
plicit introduction of the homogeneity axiom for each flu-
ent predicate we use the following equivalent form:

. As an example, let’s consider that the li-
brary was open between 9:00 and 12:00. 2 Since in any
subinterval of the library was open, we
write:

The definition of in a time-point is given by:

In contrast to homogeneous predicates, non-
homogeneous temporal predicates describe a relation
only w.r.t. a specific interval. For instance, the displayed
time-schedule of a library, which opens from 9:00 to
12:00 has such property. Therefore, in the case of a fluent
predicate it is possible to have many temporal arguments.
The fact that last year the schedule of the library was from
9:00 to 12:00 is written as:

where the predicate is fluent and homogeneous
over the first interval, but non-homogeneous over the sec-
ond.

2.3 Events

We introduce the notion of event as a means to clas-
sify how the world may change. Each event has a duration
and it starts and ends at unique moments of time (differ-
ent or equal). In order to represent the occurrence of an
event we use either the non-fluent predicates
and of type Event and
which have the properties:

or , an equivalent predicate. Example: there
is a meeting between 8am and 10am: ( ,

.
The predicate , is the main predicate with

which we build the most part of the predicates used in this
framework. Its definition depends on the type of event, if
it is basic or complex. In order to make this distinction
among events we provide the model with an algebra of
events with operations for sequential “;”, parallel “ ” and
non-deterministic choice “?” compositions. They are over-
loaded to work on both and objects.

1. for basic events we have that:
2Note that in order to have more expressive examples we introduce

user-defined intervals such as hours and dates.



2. for composite events we have:

We continue with , a variant of with-
out mentioning the time interval:

In this model we consider a linear time, which permits the
use of the past relatively to an instant. In order to describe
the past occurrence of an event, we introduce new predi-
cates, which are fluent versions of :

is true at if occurred in the past of .

is the version that indicates if oc-
curred in the interval , where is either its interval
of occurrence or a larger interval that includes it. The
two versions are:

In the definitions that follow, we will consider only the
second version.

is a property which is true only when an
event is occurring.

Some might argue that the meaning of this predicate is
different from Allen’s one proposed in [1] and used in
formalizing processes. Since we have not introduced
an explicit separation between events and processes,
our approach is much closer to the formalization and
to the motivations behind the use of the “process-like”
predicates (i.e. ) proposed in Allen and
Ferguson’s work [2].

2.4 Event types

We also introduce the notion of class of events, or
event type, as an abstraction of a certain collection of
events. The classes could have a hierarchical structure, for
which we introduce a non-fluent predicate
of type EventType EventType Boolean. We also define

that links event tokens to their classes.
It is useful when the same occurrence of an event is in-
terpreted as meaning different things (the same instance
of more classes). For instance when someone signs on
the check 4526, it could be interpreted as writing on a
piece of paper, as an identification or as making a payment:

, .
Because we work with complex events and event types,

we need axioms for this predicate that allows the composi-
tion. If “ ” denotes one of the composition operators “ ”,
“ ” or “ ”, then the axioms are:

Similarly to events, we introduce for acts the notion of
as being a class of acts.

2.5 Acts

When an event has an actor, we call it act. Since we con-
sider an act as an event produced by an actor, we give sim-
ilar definitions for predicates on acts as we did for events.
We start with , which shows that
does over interval . It is the corresponding predicate to

for events:

The predicate describes who is re-
sponsible for doing . In the case of a composite act we
have:

Example The event of signing the check 4526, produced by
Mr. X at 10 o’clock is written as:

In a similar manner we consider the definitions for the
rest of the corresponding fluent act predicates, respectively:
done(agent, act), done(agent, act, i) and doing(agent, act).
We introduce another fluent predicate failed( agent, act, i)
to represent the fact that the agent to do in :



The introduction of predicate is motivated by the
fact that we don’t permit the use of the action negation,
which in general is problematic. The solution is to adopt
the “closed world assumption” and consider as the nega-
tion by failure [5] used in logic programming. The failure
of doing an act in an interval is given by the failure to derive
if the act has been done in that interval.

2.6 Deontic properties

In order to keep the presentation as much as simple, we
will consider only some elements from the general set that
composes a norm. Therefore, in this model a norm is of the
following conditional type:

where is one of the deontic predicates:
, or . These

predicates show that an agent is obliged/permitted/-
forbidden to execute some acts of type in the interval .
In general the deontic notions help to describe ideal states
(to-be type) or ideal behaviors (to-do type). Since an agent
is by definition someone who acts, we are more interested
in working with the to-do type. This is different from the
main trend in the area of deontic logic, where the deontic
operators are modal logical operators of type with a
logical formula (see [17] for an introductory presentation).
Note that the deontic predicates are fluent, that is, their

truth values change in time. By considering them fluent, and
therefore homogeneous, it allows us to introduce the con-
cepts of lifetime for norms, and persistence for obligations.
This is quite natural, because in the real world we have laws
that are voted at a certain moment and then abrogated. Their
lifetime could be different from the time interval they refer
to. For instance, the obligation for Mr. X to pay the taxes in
January, is written as . If
this obligation is derived from a more general tax law voted
last year and still in force, the complete representation is:

If the law is abrogated or modified in 2001, the updated
form becomes:

Another example that shows the importance of both
manners to treat the time within norms is related to retroac-
tive laws. In this case, the period of time a norm refers to
could contain subintervals that are in the past of the moment

(a) in the past of

(b) inside

Figure 1. Violation cases for
at

of its creation. As a consequence, while looking to some
current behavior, it is possible to have completely legal acts
at the moment of their execution, and which generate viola-
tions when the new retroactive law is approved.
It is important to note that the deontic predicates apply

only to actions, and not to acts. An action is an abstract
concept that is used in our model as a class. The acts repre-
sent real and concrete occurrences and hence are viewed as
instances of actions. For example, when someone signs the
check 4526, what is obligatory is not the act of effectively
signing that check, but the class to which it belongs, in our
case, the action .

2.7 Violations

A possible definition for the violation case is captured by
the fluent predicate . It means that the agent
violated at (the moment of observation) a norm w.r.t. the
execution of an act of type over the interval . When we
compute the violations we take into account the normative
descriptions and the current and past execution of the sys-
tem. Therefore, we have identified the following cases of
violation:

1. the norm is an obligation with in the
past of and there is no act of type executed in .

2. the norm is an interdiction with in the
past of and there is an act of type executed into an
interval that intersects (see figure 1a).

3. the norm is an interdiction with con-
tained in and there is an act of type in execution or
executed into an interval started by and finished by
(see figure 1b).

Formally, this is captured by the next axiom:



If we isolate the temporal relations in the above defini-
tion, the violation case could be defined only in terms of the
intersection between the interval of the act and the interval
given in the norm. There is a violation if this intersection
is empty for obligations and non-empty for interdictions.
We will use this equivalent definition when scheduling with
norms (see next section).

3 Applications

The model proposed in this framework has been imple-
mented in Prolog Eclipse [8] and has been used to build
two applications: the prototype of a control element and the
schedulingmodule of an agent. Each predicate of the model
has a direct corresponding Prolog predicate. We used for
the definitions of the temporal predicates (fluents, execu-
tion of acts, violations, etc.) the library for finite domains of
Eclipse, that provides a very powerful mechanism for con-
straint propagation.
The introduction of the predicate is essential to

the implementation of our model as a logic program. We
use the techniques of meta-programming to answer to ques-
tions of the type , where the temporal argument
is a variable. The constraint propagation module collects
the temporal constraints and tries to find a solution which
makes true by instantiating to a domain (if possible).
Violation checking For the detection of the vi-

olations we are interested to have questions of the kind
agent, , interval . Let’s reconsider the exam-

ple withMr. X and his obligation to pay the taxes in January.
In addition we have the fact that he paid the taxes on Jan-
uary 14th, by signing the check with the number 4526. This
scenario is described by the following propositions:

From the above description and by using the operational
aspect of the implementation of , we infer the fol-
lowing propositions:

Note that there is no violation detected. If we add the
interdiction to make payments on weekends:

we get the violation:

Scheduling A second application of the model con-
cerns the specification of a scheduling problem with tem-
poral and deontic constraints. Let’s suppose that an agent
is under the influence of a set of norms, each norm having
a cost to pay if violated. The agent should schedule into a
frame of time its future acts so that it should pay the min-
imum cost. It is the role of the agent’s scheduling module to
propose the list of the future acts and their times of execu-
tion given the estimated duration
for each action and the deontic
constraints that hold at the moment of scheduling:

Temporal reasoning is a very good field of application
for constraint reasoning (TCSP). In this type of applica-
tion we separate the temporal information from the rest
of the problem and treat it separately as a constraint do-
main for which we can use existing specialized reason-
ing tools. Therefore we reconsider the deontic constraints
as temporal constraints and solve the scheduling problem
as a TCSP problem. Figure 2 presents an algorithm for
scheduling with deontic constraints. The algorithm gener-
ates a (possible null) planned instance for each obligatory
action , and then collects all the temporal constraints



procedure
input: , ,
output: , ,

;
for

;

;
end

procedure
input:
output:

;
if

;
;

;
;

;
for
if
/* interdiction violated */

;
else
/* obligation violated */

;
;

end

Figure 2. Algorithm for deontic scheduling

that are hence created. The generation of each act and
the propagation of constraints are made by using the back-
tracking method. We indexed the operations on time inter-
vals with to show that they are added to the set of con-
straints only if they preserve the overall consistency, oth-
erwise they generate a backtracking step. The algorithm
computes the list of the scheduled actions and the global
cost for that solution. Since it collects only temporal con-
straints, the algorithm could be extended with other types
of temporal restrictions (i.e. the execution order between
actions). Starting from the Prolog implementation of the
model, it was easy to implement this algorithm notably be-
cause Prolog already provides backtracking for solving the
predicates. We used the same library for finite domains to
implement the constraint propagation mechanism for . To
obtain the solutionwith the minimum cost we used the pred-
icate minimize(+predicate, cost). This predicate
is implemented using the branch and boundmethod. It tries
to instantiate the variables of predicate and offers the
solution that optimizes cost.

4 Related Work

The formalization of normative concepts such as obliga-
tion, right, permission, duty, power, etc., has a long tradition
that has been developed in the area of Deontic Logic. One
may say that Deontic Logic came into existence in 1951
with the publication of von Wright’s paper Deontic Logic
[24] that inspired, directly or indirectly, most of the works
that followed it. Presented initially as a first-order formal-
ism, Deontic Logic has been developed after as a branch of
modal logic.
As examples of works that have been proposed to repre-

sent normative concepts in first-order formalisms, we men-
tion Sergot who described in [19] an application of logic
programming for representing legal rules. We also note
in his work the presence of predicates with temporal ar-
guments. In a more recent paper [14] Lokhorst gives a
complex account of reasoning about actions and obligations
which generalizes the logic programming implementation
of Ronald M. Lee’s deontic expert system DX. See [18] for
a presentation of defeasible deontic reasoning used in DX.
Finally, a temporal treatment of legal norms in a first-order
formalism is proposed by HernándezMarı́n and Sartor [10].
They present a model based on event-calculus [12] and treat
various temporal aspects of legal rules, showing that there
is a legitimate separation between the validity of a norm and
its internal time.
Although we didn’t follow the modal tradition to de-

scribe normative concepts, we acknowledge that there are
other interesting approaches that belong to this stream of re-
search. Many of them propose semantics that interpret the
deontic concepts in terms of temporal ones. For instance in
[9] the notion of obligation is considered as a sort of liveness
condition: something will happen in the future. This view is
arguable, since an obligation refers to something that should
happen. Horty and Belnap [11] define the obligations in a
branching time framework. In order to represent the obliga-
tions on actions, they use the stit operator and the possibility
to choose among future courses of actions. Van Eck’s ap-
proach [23] is based on the definition of temporal necessity
and in [6] Dignum and Kuiper propose a treatment of the
obligations with deadlines, based on Meyer’s reduction of
deontic logic to dynamic logic [16].

5 Conclusions

In this paper we proposed a first-order model for nor-
mative agent systems, starting from the idea that norms are
means for influencing and controlling the agent’s behavior.
The norms are dynamic in the sense that they have a life-
time (appear and disappear in time) and prescribe the exe-
cution of an action over a time-interval. We showed how
to describe the execution of an act and how to compute the



violation cases. Another essential point in our framework is
the distinction between acts (as concrete occurrences) and
actions (as classes of acts). Since a norm describes an ideal
behavior, we use this distinction to show that a norm char-
acterizes a class of acts and not an act.
In order to show the applicability of this model we briefly

described a logic programming implementation in Eclipse
Prolog and we presented two types of applications: the de-
tection of the violation cases and the prototype of a sched-
uler with deontic and temporal constraints.
A possible future extension could be the use of obliga-

tions on relative intervals and repetitive actions. We study
the possibility of integrating a language for describing user-
defined periods as presented in [13] and used in [22].
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