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Abstract Selecting a particular kernel to filter a given

digital signal can be a difficult task. One solution to solve

this difficulty is to filter with multiple kernels. However,

this solution can be computationally costly. Using the fact

that most kernels used for low-pass signal filtering can be

assimilated to probability distributions (or linear combi-

nations of probability distributions), we propose to model

sets of kernels by convex sets of probabilities. In particular,

we use specific representations that allow us to perform a

robustness analysis without added computational costs.

The result of this analysis is an interval-valued filtered

signal. Among such representations are possibility distri-

butions, from which have been defined maxitive kernels.

However, one drawback of maxitive kernels is their limited

expressiveness. In this paper, we extend this approach

by considering another representation of convex sets of

probabilities, namely clouds, from which we define cloudy

kernels. We show that cloudy kernels are able to represent

sets of kernels whose bandwidth is upper and lower

bounded, and can therefore be used as a good trade-off

between the classical and the maxitive approach, avoiding

some of their respective shortcomings without making

computations prohibitive. Finally, the benefits of using

cloudy filters is demonstrated through some experiments.

Keywords Signal processing � Interval-valued fuzzy sets �
Generalised p-boxes

1 Introduction

Reconstructing a continuous signal from a set of sampled

and possibly corrupted observations is a common problem

in both digital analysis and signal processing (Jan 2000). In

this context, kernel-based methods can be used for different

purposes: reconstruction, impulse response modelling,

interpolation, linear and non-linear transformations, sto-

chastic or band-pass filtering, etc.

Most kernels used in signal processing are summative

kernels, or a linear combination of summative kernels. A

summative kernel is a positive function whose integral is

equal to one. A summative kernel is therefore formally

equivalent to a probability distribution, and can be identi-

fied with it. In practice, summative kernels used for signal

filtering are often bounded, continuous, monomodal and

symmetric, and we will therefore focus our study on such

kernels.

However, how to choose the right kernel together with

its parameters to filter a given signal is often a tricky

question. To overcome this difficulty, Loquin and Strauss

(2008) have proposed to use maxitive kernels instead of

summative kernels. Maxitive kernels are formally equiva-

lent to possibility distributions (Dubois and Prade 1988),

that can be used to model convex sets of summative kernels

(or sets of probability distributions; Dubois and Prade

1992) having an upper-bounded bandwidth. Maxitive ker-

nels can be used to perform a robustness or sensitivity
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analysis of the filtering process in a computationally effi-

cient way. This analysis have some interesting features: for

example, the maxitive kernel-based filtering approach

comes with quantification of the noise level altering the

considered signal (Loquin and Strauss 2009).

The output signal obtained using a maxitive kernel on an

input digital signal is interval-valued. The bounds of this

signal correspond to the envelope of output signals that

would have been obtained by filtering with the correspond-

ing set of summative kernels. In this sense, the maxitive

kernel approach and its generalisation presented in this paper

are different from fuzzy filtering approaches (Aja-Fernandez

et al. 2003; Toprak and Guler 2007) or usual robust filtering

approaches (Grigoryan and Dougherty 2001; Ma et al.

2010). Indeed, these approaches aim at obtaining an optimal

and flexible filter able to cope with situations deviating from

the model initial hypothesis, but still deliver a point-valued

signal as their output.

Two of the main interests of using maxitive kernels as

robust models are their simplicity of representation and the

low computational cost associated with the estimation of

the (interval-valued) filtered signal. The price to pay for

such features is a limited expressiveness, i.e., the fact that it

may be impossible to exclude some unwanted summative

kernels from the represented set of summative kernels. For

instance, as the bandwidth of summative kernels included

in maxitive kernels is not lower bounded, this set always

includes the Dirac measure.

To overcome this shortcoming of maxitive kernels while

keeping their interesting features, we propose to use another

uncertainty representation called clouds (Neumaier 2004),

calling the kernels defined from them cloudy kernels.

Cloudy kernels can act as a compromise between summa-

tive and maxitive kernels. As we shall see, the interest of

using cloudy kernels is twofold: first, they are more

expressive than maxitive kernels, the latter being a special

case of the former (Destercke et al. 2008), and can take

account of additional information or wanted features; sec-

ond, the computational complexity associated with their use

remains very low, an important feature in signal processing.

Nowadays signal processing is usually achieved using

computers: the signal to be processed is a digital signal, i.e.

a sampled and quantised version of the real continuous

signal. We thus consider, in this paper, an algorithmic

approach equivalent to the usual signal processing methods

that go from a continuous to a discrete setting (see Unser

et al. 1993, for example).

Using sets of kernels within a discrete setting can also

model an imperfectly known sampling process. Indeed,

perfect sampling is usually modelled by the multiplication

of the continuous signal with a bounded Dirac comb;

however, such an idealistic situation barely exists: the

measurement devices and the analog to digital converters

generally induce a smoothing effect. In theory, this

smoothing effect can be easily modelled by convoluting the

signal with the impulse response of the sensory device

(measurement and converter), this impulse response being

more often than not a summative kernel. Thus, going from

continuous to discrete convolution involves convoluting

both the involved filtering kernel and the signal with a

smoothing (summative) kernel, provided this latter one is

known (Bracewell 1965). However, when considering a

digital signal, the sampling kernel which is the impulse

response of the sensory device is often unknown. Then

digitalising the kernel should rather involve a whole family

of possible sampling kernels.

We start by introducing summative and maxitive kernels,

before showing how cloudy kernels can act as intermediate

representations between them (Sect. 2). Section 3 then

studies the computational aspects of using cloudy kernels

and provides an efficient algorithm to perform signal fil-

tering with such kernels. The results of some experiments

on different signals are then discussed (Sect. 4).

2 Between summative and maxitive kernels:

cloudy kernels

In this section, we review the basics about summative and

maxitive kernels, before introducing cloudy kernels (i.e.,

kernels based on clouds). We then relate them to the two

former representations, and show that they can be used to

model sets of summative kernels with a lower-bounded

(and upper-bounded) bandwidth.

For readability purposes, we will restrict ourselves to

representations on the real line R and its discretisation X:

However, extensions of the presented methods to some

product space R
p is straightforward.

2.1 Summative kernels

We define a summative kernel l as a Lebesgue-measurable

positive function l : R! R
þ satisfying the normalisation

condition
R1
�1 lðxÞdx ¼ 1: It is formally equivalent to a

probability distribution on the real line and can be inter-

preted as such. The associated probability measure, a

function Pl : 2jRj ! ½0; 1� from the measurable subsets of

R to the unit interval, is such that for any measurable

subset A � R (also called an event) we have

PlðAÞ ¼
Z

A

lðxÞdx:

In this paper, we often consider families of bounded,

continuous, symmetrical and monomodal kernels parame-

terised by their bandwidth. In order to improve readability,

822 S. Destercke, O. Strauss

123



we will use the notation j when referring to kernels

belonging to such families, while keeping l as a notation

for generic summative kernels. Let j denote a basic con-

tinuous summative kernel such that j(x) = j(- x), whose

support is [-1, 1]. We denote by jD the summative kernel

derived from j by jDðxÞ ¼ 1
D jðxDÞ: This means that the

kernel jD has a bandwidth D and is defined on a compact

interval ½�D;D� � R centred around zero. Typical kernels

belonging to such families are recalled and represented in

Table 1.

To a summative kernel jD can be associated its (con-

tinuous) cumulative distribution function FjD : ½�D;D� !
½0; 1�: For any x 2 ½�D;D�; we have

FjDðxÞ ¼
Zx

�D

jDðxÞdx ¼ PjDð½�D; x�Þ; ð1Þ

and FjD is such that FjDð0Þ ¼ 1=2 and F(x) ? F(- x) = 1.

Similarly, to any summative kernel l its cumulative dis-

tribution Fl can be associated with Eq. 1.

2.2 Maxitive kernels

A maxitive kernel p is a normalised function p : R! ½0; 1�
with at least one x 2 R such that p(x) = 1. A maxitive

kernel can be associated with a possibility distribution

(Dubois and Prade 1988) and its two (lower and upper)

confidence measures, respectively, called necessity and

possibility measures. These measures are dual (in the sense

that providing one of them on all events is sufficient to

retrieve the other measure) and are such that, for any event

A � R; we have:

PðAÞ ¼ sup
x2A

pðxÞ; NðAÞ ¼ 1�PðAcÞ ¼ inf
x2Ac
ð1� pðxÞÞ;

ð2Þ

with Ac the complement of A. The properties of these lower

and upper confidence measures is what make maxitive

kernels instrumental and computationally tractable tools to

filter signals with sets of kernels. Note that a maxitive

kernel is formally equivalent to a fuzzy set (Zadeh 1978).

From a basic maxitive kernel p whose support is [-1, 1],

another maxitive kernel pD whose bandwidth is ½�D;D�
can be computed by the following equation:

pDðxÞ ¼ p
x

D

� �
:

A maxitive kernel defines a convex set of summative

kernels Pp whose associated probability measures are

bounded by the necessity and possibility measures induced

by p:

Pp ¼ l 2 PR j 8A � R; NðAÞ�PlðAÞ�PðAÞ
� �

;

with PR being the set of all summative kernels over

R;PðAÞ and N(A) being the possibility and necessity

measures induced by p. If a given summative kernel l is in

Pp; we say, by a small abuse of language, that p includes l
(or that l is included in p). Moreover, if a kernel j is

included in p then jD is included in pD: This particular

interpretation, together with the fact that Eq. 2 is simple to

evaluate (compared to the evaluation of a probability

measure from a summative kernel, it simply consists in

replacing the summation with a maximum), makes max-

itive kernels instrumental tools to filter signals when the

identification of a single summative kernel is difficult

(Loquin and Strauss 2008).

There are many ways to construct a maxitive kernel that

includes a given set of summative kernels (Baudrit and

Dubois 2006, Dubois et al. 2004). Here, we will consider

the so-called Dubois–Prade transformation. This transfor-

mation provides a way to build the most specific maxitive

kernel pl including a given summative kernel l [in the

sense that any maximitive kernel p0 such that p0 B pl with

at least one x such that p0(x) \ pl(x) does not include l].

When one wants to build a maxitive kernel including a set

P of summative kernels, it is then sufficient to take the

maximum of each maxitive kernel built from each sum-

mative kernel in P; using the Dubois–Prade transformation

each time.

When summative kernels to include in a maxitive kernel

belong to a particular family jD; we just need to consider

the Dubois–Prade transformation of the summative kernel

with the largest bandwidth, that is the one that gives the

Table 1 Some classical summative kernels

Name jD Shape

Epanechnikov jDðxÞ ¼ 1
D

3
4
ð1� ðxDÞ

2ÞID

Triangular jDðxÞ ¼ ð1� j x
D jÞID

Uniform jDðxÞ ¼ 1
2D ID

Truncated

Gaussian
jDðxÞ ¼ 4

D
ffiffiffiffi
2p
p expð�ðx

DÞ
2ÞID
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least specific maxitive kernel. This corresponds to the case

where the shape of the suitable summative kernel is known

but where the suitable bandwidth is ill-known. It is then

sufficient to consider the kernel jD having the maximal

bandwidth and to apply the Dubois–Prade transformation

to obtain a maxitive kernel including all other summative

kernels jD0 with D0 �D: Also, in this case the Dubois–

Prade transformation can be formulated in a simple way.

Given a summative kernel jD; the maxitive kernel pjD

resulting from the Dubois–Prade transformation is such

that

pjDðxÞ ¼
2� FjDðxÞ if x� 0

2ð1� FjDðxÞÞ if x [ 0

�

And pþjD
; p�jD

denote the following functions

p�jD
ðxÞ ¼ pjDðxÞ if x� 0

1 if x [ 0;

�

ð3Þ

pþjD
ðxÞ ¼ 1 if x� 0

pjDðxÞ if x [ 0:

�

ð4Þ

The convex set PpjD
includes, among others, all summative

kernels jD0 with D0 2 ½0;D� (Baudrit and Dubois 2006).

Among such summative kernels is the Dirac distribution

centered in 0, denoted by d0. This means that the use of

maxitive kernels allows us to consider families of kernels

whose bandwidths are upper-bounded, but not lower-

bounded. This is clearly a shortcoming of maxitive kernels,

as in many applications involving signal filtering, the use

of the Dirac measure is unwanted (e.g., for modelling a set

of smoothing kernels). In such cases, it is desirable to

consider families of kernels where the bandwidth is both

lower- and upper-bounded.

In the next sections, we show that the recent uncer-

tainty representation called clouds can meet this require-

ment while preserving computational efficiency. We call

(imprecise) kernels derived from such representation cloudy

kernels.

2.3 Cloudy kernels

Cloud, the uncertainty representation used to model cloudy

kernels, was introduced by Neumaier (2004) as a way to

deal with imprecise probabilistic knowledge. Clouds on the

real line are defined as follows:

Definition 1 A cloud is a pair of mappings [p, g] from R

to the unit interval [0, 1] such that g B p and there is at

least one element x 2 R such that p(x) = 1 and one ele-

ment y 2 R such that g(y) = 0.

Following Neumaier (2004), a cloud [p, g] induces a

probability family P½p;g� such that

P½p;g� ¼ l 2 PR j Plð x j gðxÞ� af gÞ
�

� 1� a�Plð x j pðxÞ[ af gÞ
�

ð5Þ

Similarly to the necessity and possibility measures of

maxitive kernels, P½p;g� induces lower and upper confidence

measures P½p;g�;P½p;g� such that, for any event A � R;

P½p;g�ðAÞ ¼ inf
l2P½p;g�

PlðAÞ and P½p;g�ðAÞ ¼ sup
l2P½p;g�

PlðAÞ:

Also note that, formally, clouds are equivalent to interval-

valued fuzzy sets (Dubois and Prade 2005) satisfying

additional boundary conditions [i.e., p(x) = 1 and

g(y) = 0]. They thus provide a semantic interpretation for

this type of modelling in terms of uncertainty representa-

tions. A particularly interesting family of clouds are

comonotonic clouds, also called generalised p-boxes

(Destercke et al. 2008) (due to their relationship with

another popular uncertainty model called p-box; Ferson

et al. 2003). Comonotonic clouds are defined as follows:

Definition 2 As cloud is said to be comonotonic if

8x; y 2 R; pðxÞ\pðyÞ ) gðxÞ� gðyÞ:

A cloudy kernel is simply a pair of functions [p, g] that

satisfies Definition 1. The notion of cloudy kernel is

illustrated in Fig. 1. As for maxitive kernels, we can

associate cloudy kernels with sets of summative kernels by

identifying P½p;g� with the corresponding set of summative

kernels. In this paper, we will restrict ourselves to cloudy

kernels represented by continuous, bounded, symmetric

and unimodal comonotonic clouds. Again, to make the

notations easier, we will consider that they are defined on

the interval ½�D;D�:

Definition 3 A continuous, unimodal and symmetric

cloudy kernel defined on ½�D;D� is such that, for any x 2
½�D;D�; gðxÞ ¼ gð�xÞ; pðxÞ ¼ pð�xÞ and g, p are contin-

uous non-decreasing (non-increasing) in ½�D; 0�ð½0;D�Þ.

Such a cloudy kernel is pictured in Fig. 1. As done in the

case of maxitive kernels with Eqs. 3 and 4, given a

Fig. 1 Example of a cloudy kernel
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unimodal symmetric cloudy kernel, g?, g- denote the

functions such that

g�ðxÞ ¼ gðxÞ if x� 0

1 if x [ 0

�

ð6Þ

gþðxÞ ¼ 1 if x� 0

gðxÞ if x [ 0:

�

ð7Þ

Two particular cases of cloudy kernels that will be of

interest here correspond to so-called thin and fuzzy clouds.

Definition 4 A cloudy kernel is said to be thin if

8x 2 R; pðxÞ ¼ gðxÞ:

Definition 5 A cloudy kernel is said to be fuzzy if

8x 2 R; gðxÞ ¼ 0:

Figure 2 pictures a thin cloudy kernel. Note that the set

of summative kernels P½p;g� modelled by a fuzzy cloudy

kernel [p, g] coincide with the set modelled by the max-

itive kernel p alone (Destercke et al. 2008), showing that

maxitive kernels are particular instances of cloudy kernels.

We now recall some properties of clouds and cloudy ker-

nels that will be used in this study.

Proposition 1 (Neumaier 2004) A cloudy kernel [p, g] is

included in another one ½p0; g0� (in the sense that P½p;g� �
P½p0;g0 �) if and only if, for all x 2 R; ½pðxÞ; gðxÞ� �
½p0ðxÞ; g0ðxÞ�:

Hence, given a cloudy kernel [p, g], any thin cloud

½p0; g0� such that g� g0 ¼ p0 � p is included in [p, g]. Also

note that if [p, g] is a continuous, symmetric unimodal

cloud and ½p0; g0� a continuous, symmetric unimodal thin

cloud with the same mode as [p, g], then if ½p0; g� does not

satisfy this condition [i.e. there is an x such that g0ðxÞ\gðxÞ
or p0ðxÞ[ pðxÞ], we have P½p;g� \P½p0;g0 � ¼ ;:

Proposition 2 (Destercke et al. 2008) The convex set

P½p;g� induced by a thin cloudy kernel [p, g] includes the

two summative kernels having F-, F? for cumulative dis-

tributions such that, for all x 2 R

F�ðxÞ ¼ g�ðxÞ ¼ p�ðxÞ; ð8Þ

FþðxÞ ¼ 1� gþðxÞ ¼ 1� pþðxÞ: ð9Þ

Note that, since P½p;g� is a convex set, every convex com-

bination of F�;Fþ is also in the thin cloudy kernel.

2.4 Summative kernel approximation with cloudy

kernels

Now that cloudy kernels have been introduced, let us show

how they can solve the problem occurring with the use of

maxitive kernels, i.e., how they can model families of

kernels jD where D is lower- and upper-bounded. Note that

from now on, we will only deal with continuous, unimodal

and symmetric cloudy kernels (kernels satisfying Defini-

tion 3) and their discretisation. Assume that we want a

model including the family of kernels jD such that D 2
½Dinf ;Dsup�; and no other kernel of this family with D out-

side this interval. To satisfy this requirement, we propose

to consider the cloudy kernel ½p; g�½Dinf ;Dsup� such that, for

any x 2 R:

pDsup
ðxÞ ¼ 2� FDsup

ðxÞ if x� 0

2ð1� FDsup
ðxÞÞ if x� 0

�

ð10Þ

gDinf
ðxÞ ¼ 2� FDinf

ðxÞ if x� 0

2ð1� FDinf
ðxÞÞ if x� 0

�

ð11Þ

We now show that this cloudy kernel contains the two

kernels having Dinf ;Dsup for bandwidth, as well as all

the kernels of the same family having a bandwidth D 2
½Dinf ;Dsup�:

Proposition 3 The cloudy kernel ½p; g�½Dinf ;Dsup� includes

the two summative kernels jDinf
and jDsup

:

Proof To prove this proposition, we will simply show

that the cumulative distribution FDinf
(resp., FDsup

) of jDinf

(resp., jDsup
) is included in the cloudy kernel ½p; g�½Dinf ;Dsup�:

First, from the definition of our cloudy kernel, thin

cloudy kernels having pDsup
and gDinf

as distributions are

both included in ½p; g�½Dinf ;Dsup� (Proposition 1).

Let F�p ;F
þ
p and F�g ;F

þ
g denote the cumulative distri-

butions given by Eqs. 8 and 9, respectively, applied to the

thin cloudy kernels pDsup
and gDinf

: By Proposition 2, they

are included in the cloudy kernel ½p; g�½Dinf ;Dsup�; and since

P½p;g�½Dinf ;Dsup �
is a convex set, 1=2F�p þ 1=2Fþp and 1=2F�g þ

1=2Fþg are also included in the kernel. As these two convex

mixtures are equal to FDinf
;FDsup

; this ends the proof. h

Proposition 4 The cloudy kernel ½p; g�½Dinf ;Dsup� includes

any summative kernel jD (derived from j) such that

D 2 ½Dinf ;Dsup�:

Fig. 2 Example of a thin cloud
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Proof For a given kernel jD;FD denotes its cumulative

distribution. We know from Proposition 2 that the thin

cloudy kernel ½p; g�FD
such that

pDðxÞ ¼
2� FDðxÞ if x� 0

2ð1� FDðxÞÞ if x� 0

�

includes the cumulative distribution FD: Moreover,

FDinf
ðxÞ�FDðxÞ�FDsup

ðxÞ for x B 0, and FDsup
ðxÞ�FDðxÞ

�FDinf
ðxÞ for x C 0, due to the symmetry of considered

summative kernels. This means that pDsup
� pD� gDinf

;

therefore the thin cloudy kernel ½p; g�FD
is included in

½p; g�½Dinf ;Dsup�; and this ends the proof. h

These two propositions show that cloudy kernels can be

built to include all summative kernels that have a band-

width between Dinf and Dsup: However, this property is also

fulfilled by maxitive kernels. Let us now show that, in

contrast with maxitive kernels, they can be built to exclude

summative kernels with a bandwidth smaller than Dinf ;

including the Dirac measure.

Proposition 5 A kernel jD; derived from j, having a

bandwidth D such that D\Dinf or D [ Dsup is not included

in the cloudy kernel ½p; g�½Dinf ;Dsup�:

Proof In the case of D\Dinf ; we have FDðxÞ�FDinf
ðxÞ

for x B 0, and FDðxÞ�FDsup
ðxÞ for x C 0 (with at least one

x 2 R such that the inequality is strict). When D[ Dsup; we

have FDðxÞ�FDsup
ðxÞ for x B 0, and FDðxÞ�FDinf

ðxÞ for

x C 0 (with at least one x 2 R such that the inequality is

strict). Hence, the thin cloudy kernels ½p; g�FD
such that

pDðxÞ ¼
2� FDðxÞ if x� 0

2ð1� FDðxÞÞ if x� 0

�

does not satisfy Proposition 1, so jD is not included in

P½p;g�½Dinf ;Dsup �
when D\Dinf or D [ Dsup: h

Hence, using cloudy kernels allows us to remove some

of the undesired kernels included in maxitive kernels. Still,

as for maxitive kernels, other kernels than the summative

kernels of the jD family are included in P½p;g�½Dinf ;Dsup �
:

However, the next proposition shows that using cloudy

kernels also limits the bandwidth of such summative

kernels.

Proposition 6 Any summative kernel l, not derived

from j and included in P½p;g�½Dinf ;Dsup �
has a bandwidth

D 2 ½Dinf =2;Dsup�

Proof The fact that the bandwidth of any kernel in

P½p;g�½Dinf ;Dsup �
is bounded above by Dsup follows from the fact

that ½p; g�½Dinf ;Dsup� is included in the maxitive kernel mod-

elled by pDsup
:

Now, let us prove that the bandwidth of any kernel in

P½p;g�½Dinf ;Dsup �
is bounded below by Dinf=2: First, consider

inequalities given by Eq. 5 and a level a ¼ 1� e: Sum-

mative kernels l in P½p;g�½Dinf ;Dsup �
must satisfy the inequality

e�Plð½ðp�Dsup
Þ�1ð1� eÞ; ðpþDsup

Þ�1ð1� eÞ�Þ:

As e! 0; the interval ½ðp�Dsup
Þ�1ð1� eÞ; ðpþDsup

Þ�1ð1� eÞ�
tends to {0}, which means that P½p;g�½Dinf ;Dsup �

ðf0	 bgÞ[ 0

for any b[ 0. This means that any summative kernel in

P½p;g�½Dinf ;Dsup �
must be strictly positive in the immediate

neighborhood of the point {0}.

Now, still consider inequalities given by Eq. 3 and

a level a ¼ e: Summative kernels l in P½p;g�½Dinf ;Dsup �
must

satisfy the inequality

e�Plð½ðg�Dinf
Þ�1ðeÞ; ðgþDinf

Þ�1ðeÞ�cÞ;

with Ac being the complement of A. As e! 0; the interval

½ðg�Dinf
Þ�1ðeÞ; ðgþDinf

Þ�1ðeÞ�c tends to ½�Dinf ;Dinf �c; so

P½p;g�½Dinf ;Dsup �
ð½�Dinf þ b;Dinf � b�cÞ[ 0 for any b[ 0. This

means that any summative kernel in P½p;g�½Dinf ;Dsup �
must be

strictly positive for some values in the immediate neigh-

borhood of either f�Dinfg or fDinfg:
This shows that the support of any l in P½p;g�½Dinf ;Dsup �

is

lower-bounded by Dinf=2; as any l 2 P½p;g�½Dinf ;Dsup �
will be

strictly positive around {0} and around either f�Dinfg or

fDinfg: h

Note that the lower-bound Dinf=2 is actually a minimum.

Indeed, the summative kernel having for cumulative dis-

tribution F ¼ g�Dinf
is in P½p;g�½Dinf ;Dsup �

and has a support equal

to Dinf=2:

3 Practical computations

In this section, we discuss how digital filtering can actually

be achieved with cloudy kernels while maintaining low

computational complexity. Note that while filtering kernels

used in a particular problem are usually specified in a

continuous setting, their use in computations is discrete.

Hence in this section, we consider that we are working on a

finite domain X of N elements, that corresponds here to a

finite sampling of the (continuous) signal.

We first describe how discretisation of the cloudy ker-

nels introduced in the previous section is done, so that we

can move from the continuous to the discrete case. We then

explain how classical expectation operators (equivalent to

filtering with summative kernels) can be extended through

the use of Choquet integrals. We first describe the Choquet

integral (Choquet 1954; Denneberg 2000) and its links with
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expectation operators, summative kernels and maxitive

kernels. We then propose an efficient algorithm for com-

puting this Choquet integral for cloudy kernels.

3.1 Discretising cloudy kernels

Let ½p; g�½Dinf ;Dsup� be the cloudy kernel selected to filter the

signal f ; y 2 R the value for which we want to reconstruct

the signal value and X the set of sampled values [i.e.,

values x for which the signal value f(x) is known] that lies

within the interval ½y� Dsup; yþ Dsup�:
The discrete cloud [p, g] necessary to achieve the

computations is built from X and ½p; g�½Dinf ;Dsup� in the fol-

lowing steps:

• let x
 2 X ¼ arg maxx2X pDsup
ðxÞ: Set p(x*) = 1;

• for all x = x* in X; set pðxÞ ¼ pDsup
ðy� xÞ;

• let x
 2 X ¼ arg minx2X gDinf
ðxÞ: Set g(x*) = 0;

• for all x 6¼ x
 in X; set gðxÞ ¼ gDinf
ðy� xÞ:

Values1 pðx
Þ and gðx
Þ ensure that the discretised

cloudy kernel satisfies Definition 1.

Note that it is possible to define a more conservative

discretisation ½p0; g0�; i.e. for any x 6¼ x
; define p0ðxÞ :¼
minfpðyÞjy 2 X; pðyÞ[ pðxÞg and for any x 6¼ x
; define

g0ðxÞ :¼ maxfgðyÞjy 2 X; gðyÞ\gðxÞg (p0 and g0 being

equal to p and g for elements x
 and x
; respectively). If N

is low or if the cloudy kernel ½p; g�½Dinf ;Dsup� is thin, using this

latter discretisation is better as it is a guaranteed outer-

approximation of ½p; g�½Dinf ;Dsup�: However, in practical

applications, the cloudy kernel is not thin (otherwise it

would be better and simpler to filter with the summative

kernel it approximates) and N is usually sufficiently high,

so that the difference between filtering with [p, g] or ½p0; g0�
is negligible. This is why we prefer to discretise

½p; g�½Dinf ;Dsup� into [p, g], which is computationally less

complex to evaluate. Finally, it should be noticed that if

½p; g�½Dinf ;Dsup� is comonotonic, so are [p, g] and ½p0; g0�:

3.2 Expectation operator and Choquet integral

Consider now an arbitrary indexing X ¼ fx1; . . .; xNg of

domain X elements (not necessarily the usual ordering

between real numbers) and a real-valued function f (here, the

sampled values of the signal) on X; together with a discre-

tised summative kernel li; i ¼ 1; . . .;N; where li = l(xi).

Classical convolution between the discretised kernel l
and the sampled signal f is equivalent to applying an

expectation operator, i.e. computing Elðf Þ such that

Elðf Þ ¼
XN

i¼1

lif ðxiÞ:

When working with a set P of kernels defined on X; the

expectation operator E becomes imprecise, and its result

when applied to f is an interval-valued expectation

½Eðf Þ;Eðf Þ� such that

Eðf Þ ¼ inf
l2P

Elðf Þ; Eðf Þ ¼ sup
l2P

Elðf Þ: ð12Þ

In general, these bounds are not easy to compute. However,

in some specific cases, practical tools are available that

make them easily computable. First recall (Walley 1991)

that the lower and upper confidence measures induced by

P on an event A � X are such that PðAÞ ¼ infl2P PlðAÞ
and PðAÞ ¼ infl2P PlðAÞ and are dual in the sense that

PðAÞ ¼ 1� PðAcÞ for any A � X: If P satisfies a property

of 2-monotinicity, that is if for any pair fA;Bg � X we

have PðA \ BÞ þ PðA [ BÞ�PðAÞ þ PðBÞ; then Eq. 12 can

be solved using the Choquet integral.

Consider a positive bounded function2 f on X: If ( )

denotes a reordering of elements of X such that

f ðxð1ÞÞ � � � � � f ðxðNÞÞ; Choquet integrals giving lower and

upper expectations are given by

CPðf Þ ¼ Eðf Þ ¼
XN

i¼1

ðf ðxðiÞÞ � f ðxði�1ÞÞPðAðiÞÞ;

CPðf Þ ¼ Eðf Þ ¼
XN

i¼1

ðf ðxðiÞÞ � f ðxði�1ÞÞPðAðiÞÞ;

with f(x(0)) = 0 and AðiÞ ¼ fxðiÞ; . . .; xðNÞg: The main diffi-

culty is then to compute the lower and upper confidence

measures for the N sets A(i).

3.3 Imprecise expectations with cloudy kernels

Since cloudy kernels satisfying Definition 2 (this is the

case here) induce lower confidence measures that are

1-monotone (Destercke et al. 2008a, b) (an even more

restrictive property than 2-monotonicity), the Choquet

integral can be used to compute expectations. Let us now

see how the lower confidence measures on various events

can be efficiently computed (upper confidence measures

can be obtained by duality).

1 If X have multiple elements corresponding to arg maxx2X pDsup
ðxÞ

or arg minx2X gDinf
ðxÞ; for all of them p(x*) = 1 and gðx
Þ ¼ 0;

respectively.

2 Assuming positivity is not constraining here, since if c is a constant

Eðf þ cÞ ¼ Eðf Þ þ c and the same holds for E: Therefore any

bounded function can be made positive by a simple translation.
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Cloudy kernels [p, g] defined on X induce a complete

pre-order B [p,g] between elements of X; in the sense that x

B [p,g]y if and only if g(x) B g(y) or p(x) B p(y). Given a

set A � X and this pre-ordering, xA and xA denote,

respectively, its lowest and highest elements with respect to

B [p,g]. We now introduce the concepts of [p, g]-connected

sets, since these sets are instrumental in the computation of

confidence measures induced by cloudy kernels.

Definition 6 Given a cloudy kernel [p, g] over X; a

subset C � X is called [p, g]-connected if it contains all

elements between xC and by xC; that is

C ¼ x 2 X j xC � ½p;g�x� ½p;g�xC

� �
:

Let C be the set of all [p, g]-connected sets of X: Now, any

event A can be inner approximated by another event A

such that A
 ¼

S
C2C;C�A C is the union of all maximal

[p, g]-connected sets included in A. Due to an additivity

property of the lower confidence measure induced by

comonotonic clouds on [p, g]-connected sets (Destercke

and Dubois 2009), we have

PðAÞ ¼ PðA
Þ ¼
X

C2C;C�A

PðCÞ: ð13Þ

To simplify the notations used in the filtering algorithm,

we consider that elements of X are indexed accordingly to

B [p,g], i.e. elements x1; . . .; xN are indexed from the start

such that i B j if and only if g(xi) B g(xj) or p(xi) B p(xj).

Given this ordering, the lower confidence measure of a

[p, g]-connected set C ¼ fxi; . . .; xjg is given by the simple

formula3

PðCÞ ¼ maxf0; gðxjþ1Þ � pðxi�1Þg;

with g(xN?1) = 1 and p(x0) = 0. As B [p,g] is a pre-order,

we have to be cautious about possible equalities between

some elements. In our case (discretisation of unimodal,

symmetric cloudy kernels), at most two elements can be

equal with respect to B [p,g] (this will often be the case, as

sampling is often performed at regular time intervals).

Figure 3 illustrates a cloudy kernel with 7 (irregularly)

sampled values, along with the associated indexing and

pre-order.

Algorithm 1 describes how to compute lower confidence

measures and the incremental summation giving the lower

expectation, while Example 1 provides an illustration of

the process. At each step, the [p, g]-connected sets forming

A(i) are extracted and the corresponding lower confidence

measure is computed. The Choquet integral value is then

incremented. Note that two orderings and set of indices are

used in the algorithm: the one where elements are ordered

by values of f, denoted by ( ), and the other where elements

are ordered using B [p, g], without parenthesis. Unless the

function f is increasingly monotonic in R; the indexing

following the natural order of numbers is never used.

Consider the situation pictured in Fig. 3 (i.e. triangular

distributions induced by uniform kernels). For each sam-

pled item x and associated sampled value f(x), we consider

that the corresponding distribution values are [g(x), p(x)].

Also note that, for symmetrical unimodal cloudy kernels,

the values are naturally ordered w.r.t. their distance from

the center of the cloud (i.e., the value for which the signal

value has to be reconstructed). The values of discretised

f, g and p are summarised in Table 2.

If we now apply Algorithm 1 with the lower probability,

we get the following steps:

1. i = 1, f ðxðiÞÞ � f ðxði�1ÞÞ ¼ 2;AðiÞ ¼ X;PðAðiÞÞ ¼ 1!
E ¼ 2

2. i = 2, f ðxðiÞÞ � f ðxði�1ÞÞ ¼ 3;AðiÞ ¼ C1 ¼ fx2; . . .; x7g
PðAðiÞÞ ¼ maxf0; gðx8Þ � pðx1Þg ¼ 0:7! E ¼ 3:8

x
x7

1

x6 x5x4 x3x2 x1

η(x6)

π(x6)

x1 [π,η] x2 ≤ [π,η] x3 ≤ [π,η] x4 = [π,η] x5 ≤ [π,η] x6 ≤ [π,η] x7≤

Fig. 3 Discretization of cloudy kernels and indexing of elements

around x7 (each xi corresponds to a sampled value)

Table 2 Values for example 1

Example 1 x1 x2 x3 x4 x5 x6 x7

g 0 0 0 0.2 0.2 0.6 1

p 0.3 0.4 0.5 0.6 0.6 0.8 1

f 2 9 8 10 5 6 12

( ) x(1) x(5) x(4) x(6) x(2) x(3) x(7)

3 Note that every element x 2 X such that x = [p,g]xi and y 2 X such

that y = [p,g]xi must be in the connected set.
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3. i = 3, f ðxðiÞÞ� f ðxði�1ÞÞ¼1;AðiÞ ¼C1[C2¼fx2;x3g
[fx6;x7g; PðAðiÞÞ¼maxf0;gðx4Þ�pðx1Þgþmaxf0;
gðx8Þ�pðx5Þg¼0:4!E¼4:2

4. i = 4, f ðxðiÞÞ� f ðxði�1ÞÞ ¼ 2;AðiÞ ¼C1 [C2 ¼ fx2;x3g
[fx7g;PðAðiÞÞ¼maxf0;gðx4Þ�pðx1Þgþmaxf0;gðx8Þ�
pðx6Þg¼0:2!E¼4:2þ2�0:2¼4:6

5. i = 5, f ðxðiÞÞ� f ðxði�1ÞÞ ¼ 1;AðiÞ ¼C1[C2¼fx2g[
fx7g;PðAðiÞÞ ¼maxf0;gðx3Þ�pðx1Þgþmaxf0;gðx8Þ�
pðx6Þg¼ 0:2!E¼ 4:8

6. i = 6, f ðxðiÞÞ� f ðxði�1ÞÞ¼1;AðiÞ ¼C1¼fx7g;PðAðiÞÞ¼
maxf0;gðx8Þ�pðx6Þg¼0:2!E¼5

7. i = 7, f ðxðiÞÞ � f ðxði�1ÞÞ ¼ 2;AðiÞ ¼ fx7g;PðAðiÞÞ ¼
maxf0; gðx8Þ � pðx6Þg ¼ 0:2;E ¼ 5:4

The lower expectation is finally 5.4. Note that, from step

i = 3 to step i = 7, element x4 is ignored, due to the fact

that x4 = [p, g] x5 (hence, any set including x4 but not x5 is

treated as if x4 was not included in it).

4 Experiment: comparison with summative

and maxitive kernels

In this section, we illustrate the advantage of using cloudy

kernels rather than simple maxitive kernels when filtering

a noisy signal. Figure 4 shows a (noisy) signal that has to

be filtered by a smoothing kernel. Imprecise kernels

(cloudy or maxitive) can be used if the exact shape of the

impulse response of the filter is unknown, but it is

assumed that this filter is symmetric, centred and has

lower and upper bounded bandwidths D 2 ½Dinf ;Dsup�:
Such information can be modelled by a single imprecise

kernel and filtering can be achieved by an efficient

algorithms, instead of considering multiple filtering with

different summative kernels.

The signal pictured in Fig. 4 was obtained by super-

posing nine sine waves whose frequencies were randomly

chosen, and were corrupted by adding a normal centred

noise with a standard deviation of 5.

We consider here the family of uniform summative

kernels with a bandwidth D 2 ½0:018; 0:020�: The most

specific (triangular) maxitive kernel that dominates this

family is the triangular kernel with a bandwidth equal to

0.02, i.e. the maxitive kernel with a bandwidth equating the

upper bound of D (see Loquin and Strauss 2008). The

bounds obtained using such a kernel are displayed in Fig. 5

(solid lower and upper lines). As expected, the absence of

lower bounds and the inclusion of the Dirac measure inside

the maxitive kernel gives very large upper and lower filtered

bounds, that encompass the whole signal (i.e. the signal is

always in the interval provided by the maxitive kernel).

Given our knowledge about the bandwidth, it is clearly

desirable to also take account of the lower bound 0.018.

We can fulfil this need using the cloudy kernel presented

in this paper. Indeed, a more specific family of kernels that

takes the lower bound into account can be obtained using

the cloudy kernel composed of two triangular maxitive

kernels, with the lower kernel having a bandwidth Dinf ¼
0:018 and the upper kernel having a bandwidth Dsup ¼
0:020: The result of filtering the signal with Algorithm 1 is

also pictured in Fig. 5 (dotted upper and lower lines),

where we can see that the lower and upper bounds are now

much tighter, as expected. Hence, we now have bounds

with good confidence levels (as all desired kernels are

considered), and which are more informative. Of course,

the bounds obtained by cloudy filtering are always included

in those obtained by maxitive filtering.

To illustrate the capacity of maxitive and cloudy kernels

to encompass the desired kernels, in Fig. 6, we have plotted

ten filtered signals obtained using different symmetric

centered summative kernels whose bandwidth belongs to

the interval ½Dinf ;Dsup]. Every filtered signal belongs to the

interval-valued signal obtained using the cloudy kernel-

based approach.

Fig. 4 Original signal to be

filtered
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5 Conclusion

Both summative kernels and sets of summative kernels

represented by maxitive kernels have some shortcomings.

The former requires choosing a single kernel and band-

width, which is generally not easy, while the latter often

includes unwanted kernels such as the Dirac measure.

In this paper, we have proposed to use cloudy kernels

(using the uncertainty representations called clouds) to

achieve imprecise linear filtering. Cloudy kernels represent

a good trade-off between summative and maxitive kernels,

as they allow us to avoid having to choose a single sum-

mative kernel while being more expressive than maxitive

kernels. This is due to the ability of cloudy kernels to

model sets of summative kernels whose bandwidth is both

lower- and upper-bounded, while maxitive kernels can only

consider upper-bounded bandwidth. We have also pro-

posed simple and efficient (but not necessarily the most

efficient) algorithms to compute lower and upper expec-

tations related to cloudy kernels, while keeping a low

computational burden on the task of linear filtering.

Our experiments show that cloudy kernels have the

expected properties. Compared to summative and maxitive

kernels, they allow us to retrieve reliable and informative

envelopes for the filtered signal. However, it appears that

envelopes resulting from the use of cloudy kernels are still

not very smooth. We suspect that this is due to summative

kernels inside the cloudy kernels for which the probability

masses are concentrated around some specific points (i.e.

mixtures of Dirac measures). To avoid this, we could

consider existing techniques (Kozine and Krymsky 2007)

to limit the accumulation of such probability masses.

A lot of work is left for future studies, as in the present

paper we have only considered families of unimodal

bounded centered positive kernels. Many other families of

kernels, including kernels having positive and negative

values and causal kernels (which are barely symmetric),

could be approximated by clouds. However, how to build

comontonic clouds that would best represent such families

is not straightforward, and could require more ad hoc

procedures. In particular, we cannot use a double Dubois–

Prade transformation with such families, as they may have

many modes that can have different abscissae for different

bandwidths.

Another interesting avenue of research would be to

combine (or compare) the current approach, which uses

imprecise probabilistic representation to model ill-known

kernel filters, with the approach proposed by Benavoli

Fig. 6 Superposition of nine

filtered signals, the maxitive

imprecise filtering

(dotted upper and lower) and

the cloud-based imprecise

filtering (full upper and lower)

Fig. 5 Superposition of the

original signal, the maxitive

imprecise filtering (dotted upper
and lower) and the cloud-based

imprecise filtering (full upper
and lower)
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et al. (2009), where imprecise probabilistic models are

used to represent noise whose distribution is ill-known.
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