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ABSTRACT

In this paper, we propose to show that a particular fuzzy
extension of the mathematical morphology coincides with a
non-additive extension of the linear filtering based on convo-
lution.

Index Terms— linear filtering, possibility theory, mor-
phology

1. INTRODUCTION

In image processing, convolution filtering and mathematical
morphology are generally distinguished.

Filtering by convolution on an image groups many tech-
niques that originate from the signal processing domain.
These techniques are based on the interpretation of a signal
as a distribution in the sense of Schwartz [1]. This approach
consists in convoluting the image to analyse by a special
function called the convolution kernel. The convolution ker-
nel is shifted on the whole set of pixels of the image in order
to emphasize or to attenuate some features of the image.
The modified features strongly depend on the choice of the
convolution kernel.

Mathematical morphology on an image groups many
techniques that originate from the pioneering works of Jean
Serra [2]. These techniques are set operations based on
Minkowski additions and subtractions. This approach con-
sists in modifying the original image by the use of a pattern,
called the structuring element. The structuring element is
shifted on the whole set of pixels of the image in order to
emphasize or to attenuate some features of the image. The
modified features strongly depend on the choice of the struc-
turing element.

This presentation is intentionally quite provocative. It
aims at stressing an obvious analogy between linear filter-
ing and mathematical morphology. This analogy was already
noted in [3]:

The structuring element is to mathematical mor-
phology what the convolution kernel is to linear

filter theory.

Until now, this analogy is just in the philosophy of these tech-
niques but not in their mathematical expressions. Indeed, con-
volution filtering and mathematical morphology are generally
considered as being complementary approaches but not com-
patible. In this paper, we propose a unified view of these two
approaches. More precisely, we prove that the image obtained
by dilation (resp. erosion) of an original image is the upper
(resp. lower) bound of all the images that would have been
obtained by filtering the original image with a particular fam-
ily of convolution kernels. Filtering with a family of convo-
lution kernels is not a straightforward extension of filtering
with a unique convolution kernel. Performing all the filtering
with all the kernels would not be satisfactory regarding the
computational cost increase. In this paper, we show how the
possibility theory can represent a particular family of convo-
lution kernels and how the Choquet integral is used to extend
the corresponding filtering.

This paper is organized as follows. Section 2 presents the
possibilistic extension of the usual linear filtering. Section 3
presents a particular fuzzy extension of the usual mathemat-
ical morphology based on level cuts. Section 4 summarizes
and concludes about the links of these methods.

2. KERNEL-BASED IMAGE FILTERING

2.1. Convolution kernel-based image filtering

Let I be a discrete image ofN pixels. LetIi be the measure of
the illumination value associated with theith pixel andΩ =
{1, ..., N} be the set of all the pixels. FilteringI by a filter,
defined by its impulse responseκ, mathematicaly corresponds
to the discrete convolution ofI by κ. That’s the reason whyκ
can also be called the convolution kernel.În, the illumination
value of the filtered image associated with thenth pixel of Ω
is thus obtained by:

În =

N
∑

i=1

Iiκ
n
i . (1)



whereκn = (κn
i )i=1,...,N is the convolution kernelκ shifted

at thenth pixel of Ω.
In many applications like denoising, low-pass filtering or

registrating, the convolution kernels that are used are positive
and have a unitary gain, i.e.

∑N
i=1 κi = 1. In that case, the

convolution kernel can be seen as a probability distribution.
Therefore, a discrete convolution kernelκ induces a discrete
probability measurePκ, computed in this way:

∀A ⊆ Ω, Pκ(A) =
∑

i∈A

κi, (2)

For each pixel, its associated shifted convolution kernelκn is
still a probability distribution. Thus, expression (1) is equiva-
lent to computing the expected valueÎn of the illuminationIn

at the pixeln, considering the probability measurePκn over
the set of the measured illuminationsI, i.e.:

În = EPκn (I). (3)

2.2. Extension of image filtering to possibility theory

By writing the linear filtering with a unitary gain filter as an
expectation according to a probability measure, we open new
perspective to this approach by looking in the field of the new
uncertainty theory. Instead of using an additive measure for
each neighborhood of a pixel, i.e. a probability measure, we
propose to use a non-additive confidence measure called a
possibility measure [4]. Besides, we propose to use the Cho-
quet integral that extends the usual linear filtering by extend-
ing the convolution operator to possibility measures in place
of probability measures. This section presents and interprets
this new filtering approach, based on possibility measures and
Choquet integrals, that enables filtering an image with a fam-
ily of convolution kernels.

2.2.1. A possibility measure is a family of filters

Since a possibility measure is non-additive,Π(A) 6= 1 −
Π(Ac), whereAc is the complementary set ofA in Ω. There-
fore, a possibility measure also defines a dual confidence mea-
sure, called a necessity measure, notedN and computed in
this way:

∀A ⊆ Ω, N(A) = 1 − Π(Ac), (4)

These two measures,Π andN , encode a family of probability
measures, notedM(Π), and defined by:

M(Π) = {P | ∀A ⊆ Ω, N(A) ≤ P (A) ≤ Π(A)}.

This encoding property is due to the imprecise probability [5,
6] interpretation of the possibility theory.

A possibility measure can be defined from a possibility
distributionπn. Such a distribution is normalized in the sense
thatsupi∈Ω πn

i = 1. Its associated possibility measure is ob-
tained by:

∀A ⊆ Ω, Ππn(A) = sup
i∈A

πn
i , (5)

Thus a unique possibility distributionπn can encode a
whole family of convolution kernelsκn with unitary gain,
notedM(πn) and defined by:

M(πn) = {κn | ∀A ⊆ Ω, Nπn(A) ≤ Pκn(A) ≤ Ππn(A)}.

2.2.2. The possibilistic extension of the linear filtering

Since a possibility measure is non-additive, the conventional
expectation operator cannot be used for linear filtering. The
expectation operator must be replaced by its generalization,
called the Choquet integral. Using a Choquet integral and
a possibility distribution leads to an interval-valued expecta-
tion, instead of a single value, whose upper and lower bounds
are computed in this way:

In = CΠπn (I) =

N
∑

i=1

Ππn(A(i))(I(i) − I(i−1)), (6)

In = CNπn (I) =

N
∑

i=1

Nπn(A(i))(I(i) − I(i−1)). (7)

The index notation(.) indicates a permutation that sorts the
pixels such thatI(1) ≤ I(2) ≤ ... ≤ I(N) andA(i) is a set
of pixels whose value is greater thanI(i), i.e. A(i) = {j ∈
{1, ..., N}|Ij > I(i)}. By convention,I(0) = 0.

The Choquet integral can be considered as a generaliza-
tion of the conventional expectation operator since, when the
used confidence measure is a probability measure, expres-
sions (6) and (7) coincide and equal to the conventional ex-
pectation operator (3).

The key point of this approach is that the interval-valued
expectation obtained by using a possibility distribution is the
set of all the single-valued expectations obtained by usingall
the convolution kernels encoded by the considered possibility
distribution. This property is shown in [7] and derived from
a domination theorem proved by Denneberg [8], proposition
10.3 and Schmeidler [9], proposition3:

Theorem 1 Let πn be a possibility distribution. For allI
such thatCΠπn (|I|) < +∞, we have that

∀κn ∈ M(πn), CNπn (I) ≤ EPκn (I) ≤ CΠπn (I). (8)

Therefore, using a possibility distribution allows the model-
ing of a lack of knowledge on the proper convolution kernel to
be used. Using the generalized expectation operator (6) and
(7) directly impacts this ill-knowledge on the output. In [10],
it is shown that the length of the interval[CNπn (I), CΠπn (I)]
depends on the specificity ofπn, i.e. on the size of the fam-
ily of convolution kernelsM(πn). Obviously, the size of this
family is a marker of the lack of knowledge on the convolu-
tion kernel to use and it is impacted on the size of the resulting
interval by this approach.



3. FUZZY MORPHOLOGY BY LEVEL CUTS

Erosion and dilation are the two dual basic operations of the
mathematical morphology. Their names come from the ef-
fects that these operators produce on binary images. Such a
binary image is often obtained by classifying the pixels as be-
longing or not to a particular category of pixels. The resultof
this classification is a binary imageI, i.e. Ii ∈ {0, 1}, ∀i ∈
{1, ..., N}. For instance, a medical image of a brain can be
segmented by a nuclear medicine physician into a gray matter
region and a white matter region. Similarly, the structuring
element to be used for performing morphology operations is
a binary patternν, shifted on the pixelsn ∈ {1, ..., N}. The
structuring element is notedνn when it is shifted on the pixel
n.

The dilation of a binary (classified) imageI is the classi-
fied image:

DIn = 1l{j|νn
j

=1}∩{j|Ij=1}6=∅, ∀n ∈ {1, ..., N}. (9)

The value at thenth pixel of the dilated imageDI equals1 if
there exist a pixelj of the neighborhood defined by shifting
the structuring element inn, that is included in the set of the
pixels of the imageI whose value equals1. The value of a
pixel n of the dilated imageDI equals0 otherwise.

The erosion of a binary (classified) imageI results in the
eroded binary (classified) image:

EIn = 1l{j|νn
j

=1}⊆{j|Ij=1}, ∀n ∈ {1, ..., N}. (10)

The value at thenth pixel of the eroded imageEI equals1
if all the pixels of the neighborhood defined by shifting the
structuring element inn, are included in the set of the pixels
of the imageI whose value equals1. The value of a pixeln
of the eroded imageEI equals0 otherwise.

The considered extension of these operators is called a
fuzzy morphology, because the structuring element and the
pixels are no more seen as crisp binary elements but as fuzzy
sets. This approach (definition 1 in [11]) makes an extensive
use of the level cuts of these fuzzy sets and of the underlying
image.

The imageI is no more binary but is grey-leveled, i.e.
∀i ∈ {1, ..., N}, Ii ∈ IR+. For extending the usual binary
approach, binary images are extracted form this grey-leveled
image, by using theγ-cuts ofI. These binary images, noted
Iγ , are defined by:

I
γ
i = 1, if Ii ≥ γ,

I
γ
i = 0, otherwise.

As for the partitionning of the image, the usual binary
approach is based on punctual pixels. Mathematically, ev-
ery pixel is modeled by a Dirac distribution on the center of
the pixel. In the fuzzy approach, for each pixeli, a fuzzy
subsetςi is defined that quantifies the membership of an el-
ementω of the underlying infinite 2D domain ofΩ to the

neighborhoodςi of the pixel i. Its α-cuts are defined by
ςi
α = {ω ∈ Ω|ςi(ω) ≥ α} for each neighborhood of pixel.

In the same way, the structuring element, positioned on a
pixel n is modeled by a fuzzy subsetνn that corresponds to
the membership of an elementω of the underlying infinite 2D
domain ofΩ to the structuring elementνn shifted on the pixel
n. Its α-cuts are defined byνn

α = {ω ∈ Ω|νn(ω) ≥ α}. The
range ofα for νn andςi is [0, 1] because they are membership
functions of fuzzy subsets [12].

The fuzzy generalization of the dilation that we consider
here first applies the usual binary morphology operation to
given levelsα andγ. It checks if for theα-level cut of the
structuring elementνn

α and theγ-level cut of the imageIγ

have a non empty intersection. In that case, the value of the
dilated image onn for the levelsα andγ equals1.

Mathematically,∀n ∈ {1, ..., N},

DIγα
n = sup

i=1,...,N

[

sup
ω∈Ω

[

1lςi
α
(ω)1lνn

α
(ω)

]

I
γ
i

]

. (11)

The integration of all these valuesDIγα
n (for all the levelsγ

andα, for each pixeln ∈ {1, ..., N}) leads to the following
fuzzy extension:

DIn =

∫ +∞

0

∫ 1

0

DIγα
n dαdγ,

=

∫ +∞

0

∫ 1

0

sup
i=1,...,N

[

sup
ω∈Ω

[

1lςi
α
(ω)1lνn

α
(ω)

]

I
γ
i

]

dαdγ,

=

∫ +∞

0

sup
i=1,...,N

[

sup
ω∈Ω

[

∫ 1

0

1lςi
α
(ω)1lνn

α
(ω)dα

]

I
γ
i

]

dγ.

We can see that∀α ∈ [0, ..., 1] and∀ω ∈ Ω, 1lςi
α
(ω)1lνn

α
(ω) =

1lςi
α∩νn

α
(ω). This characteristic function equals1 until a

level α0, because the level cuts of the maxitive kernels
ςi and νn are stacked.α0 can equal0 if ω is not in the
support of the intersection of the maxitive kernelsνn and
ςi. Thus,

∫ 1

0 1lςi
α∩νn

α
(ω)dα =

∫ α0

0 1lςi
α∩νn

α
(ω)dα = α0 =

sup{α|ω ∈ ςi
α ∩ νn

α}. Such an expression is identified to the
membership function of a fuzzy subset (see [4]) defined by
min(ςi(ω), νn(ω)). To sum up:

∫ 1

0

1lςi
α
(ω)1lνn

α
(ω)dα = min(ςi(ω), νn(ω)).

Therefore, we obtain:

DIn =

∫ +∞

0

sup
i=1,...,N

[

sup
ω∈Ω

min(ςi(ω), νn(ω))Iγ
i

]

dγ.

Let’s define

πn
i = sup

ω∈Ω
min(ςi(ω), νn(ω)).

πn
i is a possibility distribution. Indeed,πn

n = 1. The associ-
ated possibility measure can be written as:∀A ⊆ {1, ..., N},

Ππn(A) = sup
i∈A

πn
i = sup

i=1,...,N

1lA(i)πn
i .



Therefore, from the definition ofIγ , we have:

DIn =

∫ +∞

0

Ππn({j ∈ {1, ..., N} | Ij ≥ γ})dγ.

Reminded that the index notation(.) indicates a permutation
that sorts the pixels such thatI(1) ≤ I(2) ≤ ... ≤ I(N) and
A(i) is a set of pixels whose value is greater thanI(i), i.e.
A(i) = {j ∈ {1, ..., N}|Ij > I(i)}, we have that∀γ ∈ [0,∞[,
there existsi ∈ {1, ..., N}, such thatI(i−1) < γ ≤ I(i).
Therefore, for a givenγ ≥ 0, ∃i ∈ {1, ..., N}, such that
{j ∈ {1, ..., N}|Ij ≥ γ} = {(i), ..., (n)} = A(i). Therefore,

DIn =

N
∑

i=1

∫ I(i)

I(i−1)

Ππn(A(i))dγ, thus,

DIn =

N
∑

i=1

(I(i) − I(i−1))Ππn(A(i)). (12)

With the same calculus, the fuzzy erosion can be obtained by:

EIn =
N

∑

i=1

(I(i) − I(i−1))Nπn(A(i)). (13)

4. CONCLUSION

The obvious conclusion of this paper is that the fuzzy dila-
tion and erosion are respectively equivalent to the upper and
lower bound of a maxitive kernel based filtering. Indeed, ex-
pressions (12) and (6) are equal, as well as expressions (13)
(7). According to our knowledge, this is the first time that the
mathematical morphology and the linear filtering are mean-
ingfully linked. This new insight could be the basis of nu-
merous further development for each approach. It could be
possible to use one operator in place of the other. As a clue of
this possible interplay is the edge detection: Both the linear
filtering and the mathematical morphology are used for de-
tecting edges on an image. By the way, in a previous paper
[13], we proposed an edge detector based on the extension of
the filtering with possibility theory.
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