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ABSTRACT filter theory.

In this paper, we propose to show that a particular fuzzyjpj| now, this analogy is just in the philosophy of thesetec
extension of the mathematical morphology coincides with iques but not in their mathematical expressions. Indesd, ¢
no_n-additive extension of the linear filtering based on @nv \,|ytion filtering and mathematical morphology are gerigral
lution. considered as being complementary approaches but not com-
Index Terms— linear filtering, possibility theory, mor- patible. In this paper, we propose a unified view of these two
phology approaches. More precisely, we prove that the image olataine
by dilation (resp. erosion) of an original image is the upper
(resp. lower) bound of all the images that would have been
obtained by filtering the original image with a particulamfa

ily of convolution kernels. Filtering with a family of convo

In image processing, convolution filtering and mathematica - . ) ) . A
morphology are generally distinguished. alut|on kernels is not a straightforward extension of filbgyi

Filtering by convolution on an image groups many tech_w?th a unique convolution kernel. Perf_orming all the fiI_mJi
hiques that originate from the signal processing domainW'th all the kernels would not be satisfactory regarding the

These techniques are based on the interpretation of a sig mr_’tl:,tl‘,"lt'oﬂal costincrease. In this pgp(ler, \;ve S,lhov‘; how the
as a distribution in the sense of Schwartz [1]. This approac 0SSl kllty t leorydc;;:m reﬁreéﬁnt a pa_lrtlcu arl fami ydo wn d
consists in convoluting the image to analyse by a speci tﬁtmn ernels and how the Choquet integral Is used to exten

function called the convolution kernel. The convolutiom-ke e_cl:‘ﬁ_rrespond_mgfllter_lnga foll Section 2 h
nel is shifted on the whole set of pixels of the image in order IS paper s organized as follows. Section 2 presents the

to emphasize or to attenuate some features of the imagBossibilistic extension of the usual linear filtering. Sect3

The modified features strongly depend on the choice of thBresents a particular fuzzy extension of thg usual mathemat

convolution kernel. ical morphology based on level cuts. Section 4 summarizes
Mathematical morphology on an image groups many'md concludes about the links of these methods.

techniques that originate from the pioneering works of Jean

Serra [2]. These techniques are set operations based on 2. KERNEL-BASED IMAGE FILTERING

Minkowski additions and subtractions. This approach con-

sists in modifying the original image by the use of a pattern2.1. Convolution kernel-based image filtering

called the structuring element. The structuring element iiet[beadiscreteimagedfpixels. Let/, be the measure of

shifted on the whole set of pixels of the image in order 046 illumination value associated with tiz’fé pixel andQ —

emphasize or to attenuate some features of the image. T

. : ?, ..., N'} be the set of all the pixels. Filteringby a filter,
modified features strongly depend on the choice of the Stru%efined gy its impulse responsemathematicaly corresponds
turing element.

Thi tation is intentionall it i Itto the discrete convolution dfby . That's the reason why
IS presentation IS intentionally quite provocative. Iq,p 5156 pe called the convolution kerng), the illumination

aims at stressing an obvious analogy between linear ﬁlteR?alue of the filtered image associated with & pixel of
ing and mathematical morphology. This analogy was alreadlx,é thus obtained by:

noted in [3]:

1. INTRODUCTION

The structuring element is to mathematical mor- i Z J 1)
phology what the convolution kernel is to linear " ’



wherex™ = (k}');=1,...~ IS the convolution kernet shifted Thus a unique possibility distribution™ can encode a

at then'” pixel of Q2. whole family of convolution kernelg™ with unitary gain,
In many applications like denoising, low-pass filtering ornoted M (7™) and defined by:

registrating, the convolution kernels that are used aréipes

and have a unitary gain, i.ezf‘\’:1 k; = 1. In that case, the M(7") ={r" |VA CQ, Nin(A) < Pin(A) <TIIzn(A)}.

convolution kernel can be seen as a probability distrilvutio

Therefore, a discrete convolution kermeinduces a discrete

probability measuré,, computed in this way: 2.2.2. The possibilistic extension of the linear filtering
Since a possibility measure is hon-additive, the conveatio
expectation operator cannot be used for linear filteringe Th
expectation operator must be replaced by its generalizatio
For each pixel, its associated shifted convolution keritels ~ called the Choquet integral. Using a Choquet integral and
still a probability distribution. Thus, expression (1) uiva-  a possibility distribution leads to an interval-valued ea-

lent to computing the expected valfieof the illuminationZ,,  tion, instead of a single value, whose upper and lower bounds
at the pixeln, considering the probability measuRe» over are computed in this way:

the set of the measured illuminatiohs.e.:

VACQ, Pu(A) =) ki, 2)
€A

N
I, =Ep_. (I). (3) In=Cn.(I)=> Te(Aw) U — Ii-1),  (6)

i=1

2.2. Extension of image filtering to possibility theory N
o . o . o L, =Cn.(I) =Y Nen(Aw) ) — Ii—))- (7)

By writing the linear filtering with a unitary gain filter as an =1

expectation according to a probability measure, we open new

perspective to this approach by looking in the field of the newT he index notatior{.) indicates a permutation that sorts the
uncertainty theory. Instead of using an additive measure fopixels such that(;) < I3y < ... < I(x) and A is a set
each neighborhood of a pixel, i.e. a probability measure, wef pixels whose value is greater thdp), i.e. A, = {j €
propose to use a non-additive confidence measure called{a, ..., N }|I; > I(;}. By convention] = 0.

possibility measure [4]. Besides, we propose to use the Cho- The Choquet integral can be considered as a generaliza-
guet integral that extends the usual linear filtering by eatte  tion of the conventional expectation operator since, when t
ing the convolution operator to possibility measures ircpla used confidence measure is a probability measure, expres-
of probability measures. This section presents and intéspr sions (6) and (7) coincide and equal to the conventional ex-
this new filtering approach, based on possibility measurds a pectation operator (3).

Choquet integrals, that enables filtering an image with afam  The key point of this approach is that the interval-valued

ily of convolution kernels. expectation obtained by using a possibility distributistie
set of all the single-valued expectations obtained by uaihg
2.2.1. A possibility measure is a family of filters the convolution kernels encoded by the considered poggibil
) o _ N distribution. This property is shown in [7] and derived from
Since a possibility measure is non-additN&A4) # 1 — 5 gomination theorem proved by Denneberg [8], proposition

II(A°), whereA€ is the complementary set gf in Q. There- 103 and Schmeidler [9], propositich
fore, a possibility measure also defines a dual confidence mea
sure, called a necessity measure, natednd computed in - Theorem 1 Let 7" be a possibility distribution. For alll
this way: such thatCr;_, (|I]) < +o0, we have that
VACQ, N(A) =1-TI(A°), 4)
These two measure,andN, encode a family of probability ~ 7+" € M(7"), Cx... (1) < Ep,. (1) < Crr (1) (8)
measures, noted(IT), and defined by: . o
Therefore, using a possibility distribution allows the rebd
M) ={P|VAC Q,N(A) < P(A) <TI(A)}. ing of a lack of knowledge on the proper convolution kernel to
. . . . . . be used. Using the generalized expectation operator (6) and
This encoding property is due to the imprecise probabifity [ (7) directly impacts this ill-knowledge on the output. 10]1

6] interpretation of the possibility theory. __itis shown that the length of the intervl ... (1), Crr_... ()]
A possibility measure can be defined from a p033|b|lltydepends on the specificity af’, i.e. on the size of the fam-

distributions™. Such a distribution s normalized in the SE€NSE)y of convolution kernelsM (7™). Obviously, the size of this
thatsup,cq 7] = 1. Its associated possibility measure is ob-

ined by: family is a marker of the lack of knowledge on the convolu-
tained by: tion kernelto use and it is impacted on the size of the resylti

VACQ, lxn(A) = supy, ®) interval by this approach.

€A



3. FUZZY MORPHOLOGY BY LEVEL CUTS neighborhoods’ of the pixeli. Its a-cuts are defined by
¢ = {w € Ql¢*(w) > a} for each neighborhood of pixel.

Erosion and dilation are the two dual basic operations of the |n the same way, the structuring element, positioned on a
mathematical morphology. Their names come from the efpixel n is modeled by a fuzzy subset that corresponds to
fects that these operators produce on binary images. Suchige membership of an elemenbf the underlying infinite 2D
binary image is often obtained by classifying the pixels@s b domain of2 to the structuring element* shifted on the pixel
longing or not to a particular category of pixels. The restilt 5, Its a-cuts are defined by” = {w € Q|v™(w) > a}. The
this classification is a binary image i.e. I; € {0,1},Vi €  range ofx for »™ and<’ is [0, 1] because they are membership
{1,..., N}. For instance, a medical image of a brain can bunctions of fuzzy subsets [12].
segmented by a nuclear medicine physician into a gray matter The fuzzy generalization of the dilation that we consider
region and a white matter region. Similarly, the structgrin here first applies the usual binary morphology operation to
element to be used for performing morphology operations igjiven levelsa and~. It checks if for thea-level cut of the
a binary patterm, shifted on the pixels € {1,...,N}. The  structuring element” and thev-level cut of the image”
structuring element is noted' when it is shifted on the pixel have a non empty intersection. In that case, the value of the

n. dilated image om for the levelsoe and~y equalsl.
The dilation of a binary (classified) imagdes the classi- Mathematicallyyn € {1,..., N},
fied image:
DI = sup |sup [Ig (w)Lyn(w)|1;]]. (11)
DI, = ]l{j‘y}":l}ﬁ{ﬂ[j:l}#@’ Yne{l,..,N}. (9) i=1,...,N |:UJEQ [ so ] }

The integration of all these valudI;' (for all the levelsy
andq, for each pixeln € {1, ..., N}) leads to the following
fuzzy extension:

The value at the:!” pixel of the dilated imag@®I equalsl if
there exist a pixej of the neighborhood defined by shifting
the structuring element in, that is included in the set of the
pixels of the imagd whose value equals. The value of a
pixel n of the dilated imagé> equals) otherwise. DI, = / / DIy“dady,

The erosion of a binary (classified) imageesults in the too
eroded binary (classified) image: / / sup bup [11 a(w)llug (w)} jﬂ dadry,

0

13C = :IO 1=1,..., N wEN
: = / Sul) S ) / ]gi (w)]ly(yn (( ’)dO{ IZ'Y d,y.
0 1= /N 0 @

The value at thex*" pixel of the eroded imagé&1 equalsl weh

if all the pixels of the neighborhood defined by shifting the\ye can see thata ¢ [0,...,1] andvw € Q, 1 (W), (w) =
structuring element im, are included in the set of the pixels N ryn (). This characteristic functi(;n Equallsauntil a

of the imagel whose value equals The value of a pixeh Ievel oo, because the level cuts of the maxitive kernels

of the eroded imag&'/ equals) otherwise. i andv™ are stacked.« can equald if w is not in the

The considered extension of these operators is called éhpport of the intersection of the maxitive kernels and

fuzzy morphology, because the structuring element and th?, Thus, fo vz (@)da = an iy (w)dor
pixels are no more seen as crisp binary elements but as fuzz
sets. This approach (definition 1 in [11]) makes an extenswe

use of the level cuts of these fuzzy sets and of the underlymgI

= ao =

p{ajw € ¢, Nv7}. Such an expression is identified to the

embershlp function of a fuzzy subset (see [4]) defined by
¢"(w), ™ (w)). To sum up:

image.
The imagel is no more binary but is grey-leveled, i.e. 1 . .
Vi € {1,..,N}, I, € R". For extending the usual binary /0 Ig; (@) (w)da = min(s* (), v" (w)).

approach, binary images are extracted form this grey-éevel
image, by using the-cuts of I. These binary images, noted 1 herefore, we obtain:

17, are defined by: +oo ,
DI, :/ sup [sup min(s*(w), v" (w))I; | dy.
[17 =1, if I; >, 0 i=1,...,N LweQ
I =0, otherwise Let's define
As for the partitionning of the image, the usual binary " = sup min(s'(w), " (w)).

approach is based on punctual pixels. Mathematically, ev- wea

ery pixel is modeled by a Dirac distribution on the center ofr is a possibility distribution. Indeed; = 1. The associ-
the pixel. In the fuzzy approach, for each pixela fuzzy ated possibility measure can be written'dd C {1,..., N},
subset® is defined that quantifies the membership of an el- Tl (A) = sup sup  Ta (i),

ementw of the underlying infinite 2D domain of to the e\ ) AR = TP Al



Therefore, from the definition af”, we have:

+oo
DI, :/ Men({j € {1,.., N} | I; > v})dy.
0

Reminded that the index notatidn) indicates a permutation
that sorts the pixels such tht, < I5) < ... < I(y) and
Ay is a set of pixels whose value is greater thigy, i.e.
Auy =1{j € {1,...., N}|I; > I;}, we have thaty € [0, co],
there existsi € {1,..., N}, such that/;;_yy < v < I).
Therefore, for a giveny > 0, 3i € {1,..., N}, such that
{7 €{1,....,N}I; >~} ={(i),...,(n)} = Ag. Therefore,

(i-1)

N rla

DI, =>_ / I (Ag))dy, thus,
i=171
N

i=1

(12)

With the same calculus, the fuzzy erosion can be obtained by:

N
El, = (I — Ii-1))Nan (Ag)-

i=1

(13)

4. CONCLUSION

(7). According to our knowledge, this is the first time that th

(10]

(11]

The obvious conclusion of this paper is that the fuzzy dila-
tion and erosion are respectively equivalent to the uppér an
lower bound of a maxitive kernel based filtering. Indeed, ex
pressions (12) and (6) are equal, as well as expressions (1
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mathematical morphology and the linear filtering are meanfl3] F. Jacquey, K. Loquin, F. Comby, and O. Strauss, “Non-

ingfully linked. This new insight could be the basis of nu-

merous further development for each approach. It could be
possible to use one operator in place of the other. As a clue of

this possible interplay is the edge detection: Both thedline

filtering and the mathematical morphology are used for de-

additive approach for gradient-based edge detection,” in
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tecting edges on an image. By the way, in a previous paper
[13], we proposed an edge detector based on the extension of

the filtering with possibility theory.
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