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Abstract

The way catadioptric images are acquired implies that
they present radial distortions. Therefore, classical proces-
sing may not be suitable. This statement will be illustra-
ted by considering edge detection matter. Classical edge
detectors usually consist in three steps : gradient compu-
tation, maximization and thresholding. The two lasts steps
use pixels neighborhood concept. On the opposite of pers-
pective images where pixel neighborhood is intuitive, ca-
tadioptric images present radial resolution changes. Then,
the size and shape of pixel neighborhood have to be de-
pending on pixel location. This article presents a new gra-
dient estimation approach based on non-additive kernels.
This technique is adapted to catadioptric images and also
provides a natural threshold discarding the arbitrary thre-
sholding step.

1. Introduction
Omnidirectional vision aims to enhance the perspective

cameras field of view. Many applications, such as mobile
robotics, video-conference, virtual reality representations,
have found an interest in this approach. Among all ways
to enlarge the field of view, the catadioptric approach is
one of the most frequently used. These sensors acquire
360˚ images by combining a perspective camera with a
revolution mirror. However, the mirror geometry provides
important radial distortions on the image. Moreover, the
image sampling combined with the distorsion brought by
the mirror leads to a non-uniform resolution all over the
image (the image resolution is lower at the center than at
the periphery). Such phenomena complicate omnidirectio-
nal image processing.

This article focuses on the gradient-based edge detection
on omnidirectional images. Edge detection is a preliminary
crucial stage for many applications. Edges are characteri-
zed by the discontinuities in the intensity function. Discrete
image processing algorithms often derive from continuous
signal processing. To ensure a kind of continuity on dis-
crete images, an interpolation is needed. This interpolation

is performed by convolving kernels with the image. Ker-
nels define a weighted neighborhood, providing an interplay
between continuous and discrete domains of each sampled
location. This neighborhood reduces the effect of random
noise by providing regularization in the interpolation pro-
cess. A pixel value is computed by a linear combination of
the grey levels values of this pixel and its neighborhood.
The gradient-based approach consists in extracting the local
maxima of the intensity function first derivative. Thus, the
gradient norm at pixel Pi,j is compared with the two neigh-
bors gradient norms in the gradient direction. This neigh-
bors (noted PA and PB) are supposed to be at a unit dis-
tance on both sides of Pi,j . An edge point is detected if the
gradient value is maximum along this line in Pi,j .

(a) perspective image (b) omnidirectional image

FIG. 1. Gradient local extrema extraction.

For perspective images, where pixels constitute a regular
Cartesian grid of the projected scene, the neighborhood
concept is rather intuitive. Each pixel neighborhood is de-
fined for a given direction and the gradient norm is com-
puted by linear interpolation. On Figure 1(a), the pixel
Pi,j is an edge point if ||∇I(Pi,j)|| > ||∇I(PA)|| and
||∇I(Pi,j)|| > ||∇I(PB)|| where ||∇I(P )|| is the gradient
norm of the image I at location P .
On catadioptric images, the neighborhood topology is mo-
dified by the mirror geometry. The definition of PA and PB
is less trivial. In fact, the projection of the 3D scene on mir-
ror and retina concentrates the information on the center of
the image : the resolution is not radially invariant. Thus,
the definition of two points distant of one unit from Pi,j
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is meaningless on the image. It is necessary to find these
two points in a representation space where distances are ho-
mogeneous whatever Pi,j location may be on the image.
A solution to define the Pi,j neighbors in the gradient di-
rection consists in using the projection models described in
[15] via the cylinder. Figure 1(b) illustrates the computation
of the two ”pixels” PA and PB using the cylindrical projec-
tive model. However, the computing time of the projective
approach is very expensive : a pre-computation is quite im-
possible because the gradient direction can vary for each
pixel.

Many solutions have been proposed to process omnidi-
rectional images in the literature. Let’s remind that cata-
dioptric sensors satisfying the single view point constraint
[16], allow the generation of geometrically correct perspec-
tive images from one omnidirectional image. A first intui-
tive approach consists in reconstructing the image in ano-
ther space (perspective, cylindrical, spherical, etc.) to pro-
cess it. This approach involves interpolations and smoo-
thing that modify the image grey levels. The mirror geome-
try plays a central role in the omnidirectional images for-
mation and must be carefully taken into account in image
processing. In [9] the partial differential equations are used
to cope with geometrical constraints and adapt finite diffe-
rences filters. Some authors have redefined these operators
using the unified projection model [2]. In [12], the omni-
directional image is projected onto a virtual sphere to de-
fine the gradient. In [17], the authors develop convolution
tools directly on the sphere. Spherical images are also used
in [10] to compute the correlation function. Another solu-
tion is to project, on each pixel, a kernel whose geometry
is defined in a more suitable space using the system cali-
bration parameters. In [1], the pixel neighborhood is defi-
ned with the unified projection model to apply a Markov
random fields. The authors of [18] deals with the interest
points mapping problem between two catadioptric images :
the proposed solution consists in using the neighborhood
geometry whose size depends on the image position. A si-
milar method is presented in [15] : the neighborhood is geo-
metrically defined on a cylinder and projected on the omni-
directional image. Fuzzy morphological kernels are used to
deals with the imprecisions brought by the image sampling
and neighborhood localization. In [8], this fuzzy model is
used to adapt convolution masks to omnidirectional images.
In medical imaging [14], an image processing method is
developped directly on echographic images, which are not
really omnidirectional images, but still present distortions
due to the image acquisition process.

In this article, we introduce a non-additive approach for
gradient-based edge detection adapted to the omnidirectio-
nal images geometry. This approach avoids the maximiza-
tion and threshold stages by providing a natural threshold.
This natural threshold provides robustness against uniform

and non-uniformly noise.

2. Summative and Non-Summative Kernels
This chapter briefly explains the basic notions on kernels

operations (summative and non-summative). These tech-
niques are used in image processing to estimate the conti-
nuous signal knowing the discrete one.

2.1. Summative Kernels

Summative kernels are R-valued functions κ defined on
a domain Ω, satisfying the summative normalization pro-
perty : ∫

Ω

κ(ω)dω = 1. (1)

In image processing they are usually positive, centered,
bounded, uni-modal and symmetric. Positivity implies that
they can be seen as probability density functions, asso-
ciated to a probability measure Pκ : ∀A ⊆ Ω, Pκ(A) =∫
A
κ(ω)dω.

Estimation of a signal S convolved with a summative or
probabilistic neighborhood κ is the expectation of this si-
gnal according to κ :

Eκ(S) =
∫

Ω

SdPκ =
∫

Ω

S(ω)κ(ω)dω. (2)

2.2. Non-Summative Kernels

Non-summative kernels are [0, 1]-valued functions π de-
fined on a domain Ω, satisfying the maximitive normaliza-
tion property :

max
ω∈Ω

π(ω) = 1. (3)

As a summative kernel is associated to a probability den-
sity function, a non summative kernel can be associated to a
possibility density function [3] whose mesure Ππ is defined
by : ∀A ∈ Ω,Ππ(A) = supω∈A π(ω).

2.3. Link between Summative and Non-Summative
Kernels

Estimation using kernels provides an interpolation bet-
ween continuous and discrete. However each summative
kernel presents its own properties. How to choose the ap-
propriate one for an estimation ?
To be compared, summative kernels have to be normalized
to present the same granulosity [13]. In this case, it is pos-
sible to choose a non-summative kernel dominating a family
of same granulosity summative kernel. This kernel estima-
tion will provide the upper and lower boundaries of all va-
lues estimated using the dominated summative kernels.
Dubois and al. [4] have proposed a transformation from
a probability distribution to a possibility distribution. Any
summative kernel κ is associated to a non-summative kernel



π satisfying the domination principle : ∀A ⊆ Ω, Pκ(A) ≤
Ππ(A). Moreover, they have shown that any summative
kernel κ bounded on an interval [−∆,∆] satisfies : ∀A ⊆
Ω, Pκ(A) ≤ ΠT (A), where T is the triangular possibility
distribution on [−∆,∆]. This means that T dominates any
centered symmetric summative kernel. In the following, tri-
angular non-summative kernel will be used as our non sum-
mative kernel.

3. Signal Processing
3.1. Non-Summative Kernel Estimation

The signal sampling introduces an imprecision on
the information localization. Using a fuzzy partition
(Hi)i∈{1,...,N}, depicted on Figure 2, to represent the sam-
pling effects allows to take into account this imprecision.
However, Equation (2) cannot be used when data are im-
precise. Convolution product needs to be replaced by a Cho-
quet integral to transfer the fuzzy partition knowledge to the
non-summative kernel W . This integral provides two boun-
daries of the estimation of W value :

Cνc
W

(S) ≤ Eκ(S) ≤ CνW
(S) (4)

where κ represents any summative kernel dominated by W .
The Choquet integral is given by :

CνW
(S) =

N∑
n=1

S(n)[νW (A(n))− νW (A(n+1))], (5)

where Sn is the real positive value associated with the nth

cell Hn and (.) indicates a permutation such that S(1) ≤
S(2) ≤ ... ≤ S(N). The A(n) = {H(n), ...,H(N)} are bi-
nary coalitions of cells whose associated values are greater
or equal to S(n). Computation of Cνc

W
(S) can be simply

FIG. 2. R strong triangular partition and fuzzy neighborhood W .

achieved by noticing that Cνc
W

(S) = −CνW
(−S). We pro-

pose to use the pignistic transfer to define the concave ca-
pacity used in Equation (5) :

νW (A(n)) =
|W

⋂
A(n)|

|W
⋂
A(1)|

. (6)

where |X| is the set X cardinality (area of X).

3.2. Derivation with Non-Summative Kernel

Estimation of the continuous signal s derivative results
from the convolution of discrete signal S with the derivative

summative kernel dκ. Most of usual approaches lead to a
derivative kernel obtained by subtracting two usual kernels
η+ and η− [7] :

dκ(x) = η+(x− εx)− η−(x+ εx). (7)

Convolving signal S with the derivative kernel given by
expression (7) is equivalent to add the convolution of S with
the kernel η+ and the convolution of the opposite of S with
kernel η− :

DS(x) = (η+(x+ εx)− η−(x− εx)) ∗ S(x)
= η+(x+ εx) ∗ S(x) + η−(x− εx) ∗ (−S(x)).

(8)

FIG. 3. Derivative kernel (subtraction of two usual kernels).

Let’s define κ+(x) = η+(x+εx) and κ−(x) = η−(x−εx).
The estimation of S derivative at location x (DS(x)) is :

DS(x) = Eκ+(S) + Eκ−(−S) (9)

with

{
Eκ+(S) ∈ [−Cν+

W
(−S),Cν+

W
(S)]

Eκ−(−S) ∈ [−Cν−W (S),Cν−W (−S)]

If κ+ (resp. κ−) is a bounded, symmetric and positive ker-
nel, then the triangular possibility distribution can be used
to ensure its domination (see Section 2). Expression (9)
gives an imprecise estimation of the discrete signal deriva-
tive :

[DS,DS]
= [−Cν+

W
(−S),Cν+

W
(S)] + [−Cν−W (S),Cν−W (−S)]

= [−Cν+
W

(−S)− Cν−W (S),Cν+
W

(S) + Cν−W (−S)].

(10)

If νW is a concave capacity, this interval contains all the
derivative possible values.

3.3. Edge Detection with non-summative kernel ba-
sed gradient

Images are 2D discrete signals, then the grey level locali-
zation is imprecise. Let Pi,j be the pixel located at (i, j) on
the image. Its grey level localization is unknown within the
2D interval [i−∆h, i+ ∆h]× [j−∆v, j+ ∆v], where ∆h



(resp. ∆v) is half the width of the horizontal (resp. vertical)
sampling. This imprecision is due to the spatial sampling
and can be modeled by a fuzzy partition [15]. Each pixel of
the image is considered as a bi-dimensional imprecise quan-
tity. The 1-D triangular fuzzy numbers presented in Section
2 are extended in 2D pyramidal fuzzy numbers (Figure 4(a))
using the t-norm min. They provide a strong fuzzy partition
of the image.

(a) Fuzzy pixel (b) 2D non-summative kernels
FIG. 4. Fuzzy representation.

Non-summative kernels are also extended in 2D to
compute an imprecise gradient estimation. Let κ(x, y) =
κx(x)κy(y) be a separable kernel. The 2D extension of ex-
pression (7) along the x-axis is given by :

δ

δx
(κ(x, y)) =

δ

δx
(κx(x)κy(y)) =

δ

δx
(κx(x))κy(y)

= (η+(x+ εx)− η−(x− εx))κy(y).

Let κ+
x = η+(x+ εx)κy(y) and κ−x = η−(x− εx)κy(y) be

two summative kernels. An estimation of the x-component
2D signal S (GSx) is given by the extension of Equation
(9) :

GSx = Eκ+
x

(S) + Eκ−x (−S). (11)

As Eκ+
x

(S) and Eκ−x (−S)) are imprecise quantities, GSx
is also imprecise. The triangular kernel in Equation (5) is
generalized into a pyramidal one.
As different kind of noise can produce spurious edges, a
thresholding step is necessary to keep relevant edges. Our
method produces an interval for the gradient estimation and
we can assume that if (0, 0) ∈ [GSx, GSx] × [GSy, GSy],
the extremum value can be discarded.

3.4. Adaptation to omnidirectional images

The operator defined in Section 3.3 is regularly sam-
pled. It is relevant to perspective images with a Cartesian
partition, but as seen in Section 1, omnidirectional images
present radial distorsions and resolution variations. As poin-
ted out in [12], it is crucial that data are kept in their origi-
nal space. Thus, if data are unchanged the operator needs
to be modified. Instead of projecting pixels values on ano-
ther support, the kernel will be geometrically defined on a
virtual space and projected on the omnidirectional image.
To remain independent of the mirror, the unifying projec-
tion theory of Geyer and Daniilidis is used. The projective

space used to define the kernels is the surrounding cylin-
der. Indeed, even if it presents some distorsions, this re-
presentation is very easy to sample and quasi equivalent
to a perspective image when the kernel size remains small.
Therefore, the approximation brought by the cylinder, with
respect to the perspective plane, is almost negligible for a
small kernel (the localization error on our projected kernel
is about 5.10−5 pixels in the worst case). Recall that the
image is not mapped on the cylinder ; it is only a projective
space, where kernels can be easily defined.

Our non-summative gradient operator is adapted to the om-
nidirectional image geometry with the following algorithm :

Algorithm 1 Projection algorithm
for all pixels Pi,j on the omnidirectional image I do

Project the pixel center P onto the cylinder P ′.
Compute the kernel geometry around P ′.
Back-project the kernel onto I .
Compute the gradient values.

end for

Figure 5 illustrates the projection of a pixel center on the
cylinder. Our fuzzy derivative kernel is defined around this
projection and back-projected on the panoramic image. The
kernels size depends on the size of the sought after edges.
The gradient value of the filtered pixel is computed with
respect to the projected kernel.

FIG. 5. Kernel projection on the omnidirectional image and detail
on the omnidirectional image.

The derivative kernel covers many pixels of the panoramic
image (Figure 5 detail). The gradient interval, described by
(11), associated to each projected kernel, is computed by a
Choquet integral (5).



4. Experiments
Our approach (called Gradient on the figures) is com-

pared with the Prewitt approach, its omnidirectional adap-
tation presented in [8] (called Adaptation on the figures)
and the optimal approaches of Canny-Deriche [5] and Shen-
Castan [11] on an artificial image. Real image experiments
are also presented.

4.1. Quantitative Estimation of Noise Sensibility

(a) Artificial image (b) Zoom on Ω.

FIG. 6. Synthetic image used for robustness tests.

In this section, we quantitatively evaluate the noise sensi-
bility of our approach on an artificial omnidirectional image
depicted in Figure 6(a). This image is composed by two re-
gions whose grey levels are 100 and 200. On this image, we
have the total control of all parameters (camera, mirror, etc).
This image has been corrupted with different kinds of noise
to compare the robustness of the edge detectors. The para-
meter P1, defined by Fram and Deutsch in [6], measures the
sensitivity of the detector in presence of noise. P1 = 1 if the
edge detection is optimal.

P1 =
nesig

nesig + (nenoise + n0) nin

fntot

(12)

where nesig = ne−ne
noise

1−
ne

noise
nin

and nenoise = n0 nin

nout
. Figure 6(b)

is a zoom on Ω (the white squared image region on Figure
6(a)). Ω represents the considered region for the P1 esti-
mation. This region is composed by westan = 30 columns
here. Let Ze be the edge zone in Ω. Ze contains we1 = 2
columns here. ntot is the total number of points flagged as
edge points by the edge detector, nin the part of ntot inside
Ze and nout the part outside Ze such as ntot = nin + nout.
n0 and ne are respectively the numbers of points flagged
as edge points outside and inside Ze after thresholding. Fi-
nally, let Ze = Ω−Ze, parameter f is used to normalize the
edge detector output such as the points proportion between
Ze and Ze is conserved : f = we

1
we

stan
.

The first experiment consists in adding a Gaussian noise
with an increasing variance σ to the image. First, edges are

detected without maximization and threshold. Figure 7(a)
shows that all approaches except ours fail when σ > 2.
Then, for each method, the gradient has been maximized
and thresholded, to provide the best result within the P1-
criterion. Figure 7(b) shows that the Prewitt filter and its
adaptation are the most sensible to noise. Our approach
gives good results : optimal edges are detected while σ <
45. When σ > 45, all gradient estimations are discarded as
being null. Only the Canny-Deriche approach can detect an
optimal edge when σ < 70.

(a) without maximization and threshold

(b) with maximization and threshold
FIG. 7. Noise sensibility of the edge detector.

Avoiding thresholding is highly valuable when images are
computed with a non-uniform noise. For example, tomogra-
phic images present noise following a Poisson noise distri-
bution. Some results are presented on Table 1. The fuzzy
approach is 8 times less sensitive than the Prewitt approach
and 5 times less than the Canny-Deriche and Shen-Castan
approaches.

Approche Prewitt Deriche Shen Fuzzy
P1 0.089676 0.14975 0.141 0.69881

TAB. 1. P1 values obtained with a Poisson noise

4.2. Experiments on real images

This section presents some results on a real image depic-
ted 8(a) to illustrate the good performances of our approach.
The mirror is hyperbolic and the sensor is calibrated. Our
image includes a grid made of black parallel lines. Half of
the lines are thin, the other half are thick. Due to distortions
brought by the projection onto the mirror, the black lines
seems to get thinner at the image center. Figure 8(b) shows
the edge detection without post-processing stage (no gra-
dient maximization nor threshold). High grey level values
(white) stand for high gradient values.



A good edge detector is able to find for each image line
a double edge from the periphery to the center. We can ob-
serve that edges are correctly identified on the omnidirectio-
nal image. The two edges are well highlighted and remain
separated from the periphery to the image center.

Optimal gradient operators (such as Canny-Deriche and
Shen-Castan) will also provide a good edge detection on
omnidirectional image. Nevertheless, their behavior will re-
main the same all over the image as if it was a perspective
one. They discard the resolution variations. Conversely, our
approach keeps the same behavior on the cylindrical projec-
tive space. This space, locally close to a perspective image,
allows to detect edges in a coherent manner with respect to
the real scene. Indeed, the edge thickness depends on the
radial position on the omnidirectional image.

(a) Original image (b) Edges detected

FIG. 8. Edge detection on real image.

5. Conclusion
In this article, a new non-additive approach for gradient-

based edge detection on omnidirectional images is presen-
ted. This approach uses a Choquet integral to estimate an
imprecise value of the image gradient (an upper and lo-
wer boundary of the gradient). A simple rule applied to
this interval allows to avoid maximization and thresholding
phases in the edge detection process. This is highly valuable
as an omnidirectional image processing ; these two phases
being relatively complex as they depend on the location on
the image. Non-summative kernels are adapted to the image
geometry by a projection on a virtual surrounding cylinder.
This allows to work directly in the image space instead of
projecting the image and add noise . The tests give good
results on artificial and real images. Further works will be
carried out to quantitatively evaluate our algorithm perfor-
mances applied to interest points detection.
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