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The probability density function is a fundamental concept in statistics. Spec-
ifying the density function f of a random variable X on Ω gives a natural
description of the distribution of X on Ω. When it cannot be specified, an
estimate of this density may be performed by using a sample of n observations
iid (X1, ..., Xn) of X .

Histogram is the oldest and most widely used density estimator for pre-
sentation and exploration of observed univariate data. The construction of a
histogram consists in partitioning a given reference interval Ω into p bins Ak

and to count the number Acck of observations that belong to each cell Ak.
If all the Ak have the same width h, the histogram is said to be uniform or
regular. Let 1lAk

be the characteristic function of Ak, we have

Acck =

n∑

i=1

1lAk
(Xi) (1)

By hypothesizing a uniform density of the data observed in each cell, an
estimate f̂hist(x) of the underlying probability density function f(x) at any
point x of Ak can be computed by:

f̂hist(x) =
Acck

nh
(2)

Its popularity is due not only to its simplicity (no particular skills needed
to manipulate this tool) but also to the fact that the piece of information
provided by a histogram is more than a rough representation of the density
underlying the data. In fact, a histogram displays the number of data (or
observations) of a finite data set that belong to a given class i.e. in complete
agreement with the concept summarized by the label associated with each bin
of the partition thanks to the quantity Acck.

However, the histogram density estimator has some weaknesses. The ap-
proximation given by expression (2) is a discontinuous function. The choice
of both reference interval and number of cells (i.e. bin width) have quite an
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effect on the estimated density. The apriorism needed to set those values make
it a tool whose robustness and reliability are too low to be used for statistical
estimation.

In the last five years, it has been suggested by some authors to low the ef-
fect of arbitrariness of partitioning by replacing the binary partition by a fuzzy
partition. This solution has been studied as a practical tool for Chi-squared
tests [Run04], estimation of conditional probabilities in a learning context
[VDB01], or estimation of percentiles [SCA00] and modes [SC02]. Fuzzy par-
titioning has received considerable attention in the literature especially in the
field of control and decision theory. Recently, some authors have proposed
to explore the universal approximation properties of fuzzy systems to solve
system of equations [Per, Per04a, Per04b, Wan98, HKAS03, HKAS06, Lee02].

In a first part, we will formally present the fuzzy partition as proposed in
[Per]. Secondly, an histogram based upon this previous notion will be defined,
we will call it a fuzzy histogram. And in a last section some estimators of
probability density functions will be shown, before concluding.

1 Fuzzy partitions

1.1 Preliminary

Prior to formally defining a fuzzy partition, let me remind you that the Fuzzy
Set Theory is nothing else than a softened generalization of the Classical Set
Theory. Indeed, in the latter, the decision whether the element x belongs to
a subset F of Ω, the universe, is tantamount to the question whether it is
true that x ∈ F (this is a binary question). However, in many practical cases,
this question cannot be precisely answered : there exists a vagueness in the
”frontiers” of F . A reasonable solution consists in using a scale whose elements
would express various degrees of truth of x ∈ F . Let L be this scale of truth
values. We usually put L = [0, 1]. Then

Definition 1. The fuzzy subset F is identified with its membership function

µF : Ω → L = [0, 1]

assigning the value µF (x) ∈ L to each element x ∈ Ω which is the membership
degree of x in F . We will note F ⊏ Ω if F is a fuzzy subset of Ω. The set of
all fuzzy subsets of Ω is F(Ω) = {F | F ⊏ Ω} = LΩ. Note that F(Ω) contains
the classical subsets of Ω. Indeed, if F is an classical subset of Ω, we take
µF (x) = 1lF (x).

Once recalled this basic notion, We will now replace the classical subsets which
form a partition of the universe, by fuzzy subsets.
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1.2 Strong Uniform Fuzzy Partition of the Universe

Here we will take an interval Ω = [a, b] (real) as the universe. Then,

Definition 2. Let m1 < m2 < ... < mp be p fixed nodes of the uni-
verse, such that m1 = a and mp = b, and p ≥ 3. We say that the set of
the p fuzzy subsets A1,A2,...,Ap, identified with their membership functions
µA1

(x),µA2
(x),...,µAp

(x) defined on the universe, form a strong uniform fuzzy
partition of the universe, if they fulfil the following conditions :

for k = 1, ..., p

1. µAk
(mk) = 1 (mk belongs to what is called the core of Ak),

2. if x /∈ [mk−1, mk+1], µAk
(x) = 0 (because of the notation we should add :

m0 = m1 = a and mp = mp+1 = b),
3. µAk

(x) is continuous,
4. µAk

(x) monotically increases on [mk−1, mk] and µAk
(x) monotically de-

creases on [mk, mk+1],
5. ∀x ∈ Ω, ∃k, such that µAk

(x) > 0 (every element of the universe is treated
in this partition).

6. for all x ∈ Ω,
∑p

k=1 µAk
(x) = 1

7. for k 6= p, hk = mk+1 − mk = h = constant, so, mk = a + (k − 1)h,
8. for k 6= 2 and k 6= p, ∀x ∈ [0, h] µAk

(mk − x) = µAk
(mk + x) (µAk

is
symmetric around mk),

9. for k 6= 2 and k 6= p, ∀x ∈ [mk, mk+1], µAk
(x) = µAk−1

(x − h) and
µAk+1

(x) = µAk
(x − h) (all the µAk

, for k = 2, ..., p − 1 have the same
shape, with a translation of h. And as for µA1

and µAp
, they have the same

shape, but truncated, with supports twice smaller than the other ones).

We can add that the condition 6. is the strength condition, i.e. that without
this condition the fuzzy partition is no more strong. Moreover, we can stress
the importance of this condition, because it gives a normal weight of 1, to each
element x of the universe in the partition. In the same way, the conditions 7.,
8. and 9. are the uniformity conditions.

And now, comes a quasi-immediate proposition

Proposition 1. Let (Ak)k=1,...,p be a strong uniform fuzzy partition of the
universe, then
∃KA : [−1, 1] −→ [0, 1] pair, such that, µAk

(x) = KA(x−mk

h
)1l[mk−1,mk+1] and∫

KA(u)du = 1.

Proof. We can take KA(u) = µAk
(hu + mk), ∀k. The support of KA comes

from the ones of the µAk
, and the parity, is deduced from a translation of the

symmetry of the µAk
. And eventually,

∫ 1

−1
KA(u)du =

∫ 1

−1
µAk

(hu+mk)du =∫ mk+1

mk−1

1
h
µAk

(x)dx = 1.
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Table 1. Strong uniform fuzzy partition examples

Crisp Triangular Cosinus

µA1
(x) = 1l[m1,m1+ h

2
](x) (m2−x)

h
1l[m1,m2](x) 1

2
(cos(π(x−m1)

h
) + 1)1l[m1,m2](x)

(x−mk−1)

h
1l[mk−1,mk ](x)

µAk
(x) = 1l[mk−

h
2

,mk+ h
2
](x) + 1

2
(cos(π(x−mk)

h
) + 1)1l[mk−1,mk+1](x)

(mk+1−x)

h
1l[mk,mk+1](x)

µAp(x) = 1l[mp−

h
2

,mp](x)
(x−mp−1)

h
1l[mp−1,mp](x) 1

2
(cos(

π(x−mp)

h
) + 1)1l[mp−1,mp]

KA(x) = 1l[− 1
2

, 1
2
](x) (1 − |x|)1l[−1,1](x) 0.5(cos(πx) + 1)1l[−1,1](x)

a: Cosinus b: Triangular
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Fig. 1. Fuzzy partitions with Ω = [0, 1] and p = 5

2 A fuzzy-partition based histogram

The accumulated value Acck is the key feature of the histogram technique. It is
the number of observations in complete agreement with the label represented
by the restriction of the real line to the interval (or bin) Ak. Due to the
important arbitrariness of the partition, the histogram technique is known as
being very sensitive to the choice of both reference interval and number of
cells (or bin width). As mentioned before, the effect of this arbitrariness can
be reduced by replacing the crisp partition by a fuzzy partition of the real
line.

Let (Ak)k=1,...,p be a strong uniform fuzzy partition of Ω, the natural
extension of the expression (1) induces a distributed vote. The value of the
accumulator Acck associated to the fuzzy subset Ak is given by:

Acck =

n∑

i=1

µAk
(Xi) (3)

Then, those accumulators still represent a ”real” (generally not an integer)
number of observations in accordance with the label represented by the fuzzy
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subset Ak. Moreover, the strength1 of the fuzzy partition (Ak)k=1,...,p implies
that the sum of the Acck equals to n, the number of observations. Having
said that, we can remark that the classical crisp-partition based histogram is
a particular case of the fuzzy-partition based histogram, when (Ak)k=1,...,p is
the crisp partition.

We propose, by mean of the figures 2 an illustration of the softening
property of the fuzzy histogram over the the crisp histogram. (a) displays
a crisp histogram of 35 observations drawn from a Gaussian process with
mean µ = 0.3 and variance σ2 = 1. (c) displays a fuzzy-partition based his-
togram of the same observations with the same reference interval position.
We have translated the latter of 30% of the bin width. It can be seen on
(b) that this translation had quite an effect on the crisp-partition based his-
togram, while the fuzzy-partition based histogram plotted on the (d) still has
the same general shape.

(a) crisp-partition based histograms (c) fuzzy-partition based histograms

(b) translated crisp-partition based histograms (d) translated fuzzy-partition based histograms
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Fig. 2. Partition translation effect on crisp ((a) and (b)) and fuzzy ((c) and (d))
histograms

1 Every observation Xi counts for 1 in the fuzzy partition, as the condition 6. of
the definition 2 suggests.



6 LOQUIN Kevin

3 Fuzzy histogram density estimators

Afterwards, we can, as in the crisp histogram case, deduce from this histogram,
by supposing a uniform repartition of the data around each bin, an estimate
f̂FH(x) of the underlying probability density function f(x) at any point x of
[mk − h/2, mk + h/2], which can be computed by:

f̂FH(x) =
Acck

nh
(4)

This fuzzy histogram density estimator is better than the crisp histogram
density estimator of the expression (2) in the sense that it is more robust to
partition translations or dilations. However, its discontinuity is kept. Then,
in order to cope with this flaw, we propose a different approach to construct
density estimators from fuzzy (or crisp) histograms.

First, we must remark that a fuzzy histogram is actually a set of p pairs
(Ak, Acck) or p points (mk, Acck), when reducing each fuzzy subset Ak to its
node mk. Then, assuming that our density estimators have to go through the
p points (mk, Acck

nh
), an interpolation (see [Kop55]) appears naturally as an

adequate solution.
In this paper we propose to use once again the concept of fuzzy partition,

to interpolate the normalized histogram (represented by the p points above
given). In other words,

Proposition 2. An interpolant of a fuzzy histogram (of the points (mk, Acck

nh
))

is given by

f̂FH(x) =
1

nh

p∑

k=1

AcckµBk
(x) (5)

where (Bk)k=1,...,p is a strong uniform fuzzy partition.

Proof. The conditions 1 and 6 of the definition 2 imply that µBk
(ml) = δkl for

k, l ∈ {1, ..., p}, where δkl is the Kronecker symbol. Then, f̂FH(ml) = Accl

nh
, for

all l ∈ {1, ..., p}, which means that f̂FH goes though the p points (mk, Acck

nh
).

Therefore, this interpolant (which is a density estimator) has the continuity
properties of the membership functions of the fuzzy partition (Bk)k=1,...,p,
except to the nodes mk, where the smoothness is not guaranteed. We can now
add a convergence property of the estimators (5). So, let us take as measure

of error between the underlying density f(x) and the estimate f̂FH(x), the

mean squared error (MSE), defined by MSE(x) , Ef [f̂FH(x) − f(x)]2. We
have proved in a paper in preparation, the following theorem.

Theorem 1. Let us suppose

1. f : Ω → [0, 1] is a density function such that f is bounded (∀x ∈ Ω,
f(x) ≤ fmax < +∞) and f ′ is bounded (∀x ∈ Ω, |f ′(x)| ≤ f ′

max < +∞),
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2. K, as defined in proposition 1, verifies
∫ 1

−1
K2(u)du < +∞.

Then, for all x ∈ Ω,

h → 0 and nh → +∞ ⇒ MSE(x) → 0 (6)

This theorem gives us mathematical evidence that the fuzzy histogram is a
proper representation of the distribution of data, because a simple interpola-
tion of a normalized histogram converges (in MSE) to the underlying density.
It converges under classical conditions, which are, the reduction of the support
of the membership functions, or the growth of the number of fuzzy subsets of
the partition (h → 0), and the growth of the mean number of data in each
accumulator (nh → +∞).

However, the use of the membership functions of a fuzzy partition as inter-
polation functions is not compulsory. And well known interpolation functions
could be used instead of them. We can here enumerate the polynomial inter-
polation (with the Lagrange form, see the yellow plotted curves of the figure 3,
or the Newton form), the interpolation by rational functions, the trigonomet-
ric interpolation, and last but not least the the spline interpolation, which has
the advantage to manage the smoothness at the nodes, see the cyan plotted
curves of the figure 3.

(a) crisp histogram (b) fuzzy histogram
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Fig. 3. Density estimation by interpolation

In this previous figure, we can observe estimations of the distribution of
eruption lengths of Old Faithful Geyser at Yellowstone (USA), based upon
a crisp histogram, for (a) an a fuzzy (triangular in that case) histogram for
(b). The green stars represent the histograms, the blue curves are the crisp



8 LOQUIN Kevin

estimation (see expression (4)), the red and black ones are the estimators by
fuzzy histogram interpolation (see expression (5)) with respectively triangular
and cosinus membership functions.
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