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Gaston Giraud 34295 Montpellier cedex 5, France

Abstract. This article presents a new algebraic method for reconstruct-
ing emission tomography images. This approach is mostly an interval
extension of the conventional SIRT algorithm. One of the main char-
acteristic of our approach is that the reconstructed activity associated
with each pixel of the reconstructed image is an interval whose length
can be considered as an estimate of the impact of the random variation
of the measured activity on the reconstructed image. This work aims
at investigating a new methodological concept for a reliable and robust
quantification of reconstructed activities in scintigraphic images.

1 Introduction

In the field of nuclear medicine, the need for a reliable comparison of recon-
structed activities in two regions of interest often occurs when the question is
to decide whether the increase in the metabolism of a tissue is high enough,
compared with normal tissue in the neighborhood, to diagnose or to exclude
a particular disease. Since any reconstruction method tends to highly correlate
the acquisition error, a robust comparison of reconstructed activities in two (or
more) regions of interest leads to the need for a general methodology for reliably
predicting the noise and resolution properties in reconstructed images.
Several solutions have been proposed in the relevant literature for quantifying the
noise in the reconstructed slices. They generally assume that the reconstructed
image results from some optimization of a functional that takes into account
both a precise geometric description of the tomographic problem, a model of
the statistical properties of the measured projections and some a-priori knowl-
edge on the resolution of image to be reconstructed [1–4]. All these works are
based on an empirical or a numerical inversion of the Jacobian of the func-
tional, that is minimized by the reconstruction problem, to analytically deduce
the statistical properties of the reconstructed image from a presupposed Poisson
noise in the projections. Such an inversion is hard to compute with accuracy



for the ill-posed problem of tomography, especially when large image sizes are
used. This makes necessary to simplify the projection process, thus leading to
results whose accuracy and reliability is badly known and sub-optimal. Even
when strong simplifying hypotheses are put forward, the proposed methods are
generally too computationally expensive[1–3]. In [4], Budinger et al. propose an
empirical method for predicting the noise but this method concerns only recon-
struction algorithms that involve a single back-projection procedure (so mostly
filtered back projection).
In this article, we develop an efficient and faster approach for estimating the im-
age reconstruction error. This approach is based on considering a new projection
operator whose output is interval valued. As shown in [5], the imprecision of this
output interval is highly correlated with the statistical impact of the random
variations of the measures. In the present work, we keep these quantification
properties by extending a classical algebraic reconstruction technique. The error
quantification ability of the proposed technique is highlighted through a simu-
lated experiment.
This paper will be structured as follows: Section 2 briefly describes the Simulta-
neous Iterative Reconstruction Technique (SIRT). In Section 3, we recall some
interval arithmetic operations. Section 4 presents the new interval valued pro-
jection operator we use. Section 5 describes the NIBART approach. Section 6
presents an illustrative experiment highlighting the ability of the NIBART ap-
proach to provide a noise quantification.

2 Algebraic Reconstruction Techniques

The reconstruction problem in emission tomography consists in determining the
activity distribution in each pixel of the image to be reconstructed by using noisy
discrete observations of its projection. Let I = (I1, . . . , IN ) be the activity vector
of the N pixels to be reconstructed and S = (S1, . . . , SK) denote the measured
activity associated to each of the K detector positions. If no noise is assumed
in the acquisition process, then the relationship between S and I, known as the
discrete Radon transform, is defined by:

Sk =

N
∑

n=1

ρk,nIn = P(I), (1)

where P is a linear projection operator based on a K × N Radon matrix. Each
{ρk,n} element of the Radon matrix can be considered as the probability of the
activity in the nth pixel to be detected by the kth detector. Reconstructing the
activity distribution I from the measurement distribution S consists in invert-
ing the hight dimensional ill-conditioned linear equation Eq.(1). Many algebraic
methods have been proposed in the relevant literature that consists in iteratively
modifying a guessed activity density to bring each reconstructed projection in
agreement with the measured projections. The iterative modification can be ad-
ditive (see e.g. [6]) or multiplicative (see e.g. [7, 8]). In this paper, we consider



the SIRT method which achieves a global additive modification of the activity
because its interval extension rather straightforward. Conventionally, the SIRT
algorithm can be defined by the following equation [9]:

∀n ∈ {1, . . . , N}, Ii
n = Ii−1

n + λ

K
∑

k=1

ρk,n

K
∑

j=1

ρj,n

(

Sk −

N
∑

m=1

ρk,mIi−1

m

)

, (2)

where i is the iteration number and λ ∈ [0, 1] is a relaxation parameter.
For sake of simplicity, the SIRT algorithm (see Eq.(2)) can be reformulated as :

I
i = I

i−1 + λB∗
(

S − P(Ii−1)
)

, (3)

where B∗ is the linear normalized back-projection operator based on the trans-
posed Radon matrix. Using a SIRT-like algorithm to solve Eq.(1) can need a
very large number of iterations to complete the reconstruction. Though, when
used with noisy emission tomography measurements, the iterative reconstruc-
tion process leads to images with spurious features that rises owing to the ill-
conditionnedness of the problem. Moreover, the level of these spurious features
increases with the number of iterations. This last drawback can be a severe limit
for using such a method since the few techniques that are available to provides a
reliable termination criterion of the algorithm are rather intricate and generally
not used in clinical routine [10].

3 Interval arithmetic

In this section, we briefly present the interval arithmetic operations that will be
used to extend the conventional SIRT to interval valued data. In the following,
[a] = [a, a] will denote a real interval whose lower (rsp. upper) value is a (rsp.
a). Let [a] and [b] be two real intervals, the extension of addition to intervals can
be achieved in two ways [11]:

– the Minkowski addition:

[a] ⊕ [b] = [a, a] ⊕ [b, b] = [a + b, a + b], (4)

– the dual Minkowski addition:

[a] ⊞ [b] = [a, a] ⊞ [b, b] = [min(a + b, a + b), max(a + b, a + b)]. (5)

The extension of subtraction is simply obtained by: [a] ⊖ [b] = [a] ⊕ (−[b]) and
[a] ⊟ [b] = [a] ⊞ (−[b]), (−[b]) being equal to [−b,−b].
Note that only one of the two equations [x] ⊖ [b] = [a] and [x] ⊖ [a] = [b] has a
solution and that this solution is [x] = [a]⊞ [b]. Moreover, the following inclusion
is always true: ([a] ⊞ [b]) ⊆ ([a] ⊕ [b]).
The extension of these operations to interval valued vectors is straightforward.



Let [A] = [A,A] = ([a1], . . . , [aN ]) and [B] = [B,B] = ([b1], . . . , [bN ]) be two
N-dimension interval valued vectors, the arithmetic operation ◦ of [A] and [B]
is defined by:

[A] ◦ [B] = ([a1] ◦ [b1], . . . , [aN ] ◦ [bN ]), (6)

with ◦ ∈ {⊕,⊖, ⊞, ⊟}.

4 A new projection operator

In a recent paper [5] a new way for modeling the projection operators commonly
used in classical reconstruction algorithms has been proposed. This approach is
based on an attempt to overcome the classical problem of discretizing the con-
tinuous Radon transform by directly using a proper discrete transform called the
Hough transform. Applying the Hough transform formalism to emission tomog-
raphy induces a non-additive confidence measure, instead of the conventional
probabilistic confidence measure, to compute the relation between the activity
of a region of the image and the observed values measured by the tomographic
device. As an important consequence of this replacement, the output of the pro-
jection operator is interval-valued. Moreover, as shown in [5], the length of the
interval valued activity is highly correlated with the level of its random variation.
In the rest of the paper, the interval valued projection operator will be denoted
P :

[S] = P(I), (7)

[S] being the interval valued projection vector and I the activity vector. The
interval valued projection [S] can be thought as the convex set of all the values
that would be obtained by using a coherent family of linear projector P , coherent
meaning that they are based on the same geometrical model. We will denote
F(P) this family: F(P) = {P/∀I ∈ R

N ,P(I) ∈ P(I)}. Since the operator P
preserves the order, this interval valued projector can be easily extended to an
interval valued input: [S] = P([I]) = [S,S], with [I] = [I, I], S being the lower
value of P(I), S being the upper value of P(I). When considering the same
geometrical modeling, an associated interval valued back-projection operator B
can be also easily derived which represents the set of all the back-projection
operators associated to each of the projectors of the family F(P).
The most relevant explanation for the noise quantifying ability of this interval-
based projection operator is the following. F(P) is a coherent subset of linear
projector that should provide the same output when there is no random variation
in the data to be projected. When the data are noisy, then the dispersion of the
different output values given by using each P ∈ F(P) is a marker of the impact
of the noise level on the projection to be performed.

5 A new interval based algebraic reconstruction
technique (NIBART)

The challenge of NIBART is to provide an interval valued reconstructed activity
that keeps the noise quantification ability of the interval valued projection and



back projection operators presented in Section 4. Roughly speaking, NIBART
can be thought as a simple interval-based extension of the SIRT method dis-
played by Eq.(3). In fact, according to Eq.(3), at the ith iteration, the right
additive correction to apply to the guessed image I

i−1, for making an image
I
i whose projection is closer from the measured projection S, is likely to be

D
i = λB∗

(

S − P(Ii−1)
)

. In short, D
i is the expected value of (Ii−1 − I

i).
Now, when considering the interval-valued projector and back-projector and an
interval valued previous guess [Ii−1], the interval valued vector [Di] = λB∗

(

[S] ⊖ P([Ii−1])
)

is the convex subset of all the additive corrections that can be applied to one
I ∈ [Ii−1] when considering one P ∈ F(P) and one B ∈ F(B). The NIBART
challenge is now turned into finding the most specific interval [Ii] that is in
agreement with the equation [Di] = [Ii]⊖ [Ii−1]. As mentioned in Section 3, this
interval is given by:

[Ii] = [Ii−1] ⊞ [Di] = [Ii−1] ⊞ λB∗
(

S⊖ P([Ii−1])
)

. (8)

Note that the precise vector S in expression (8) can be replaced by an interval
valued vector [S] to account for a known error in the measurement (e.g. [S] is
the 99% confidence interval of the measurement vector S). Within the NIBART
method, a certain convergence criterion can be detected since empirical results
show that, after a few iterations, the measured interval [S] intersects the pro-
jected interval P([Ii]). This intersection expresses the fact that there is at least
one value S ∈ [S], one value I ∈ [Ii] and one projector P ∈ F(P) such that
S = P(I). We call it the weak adequacy.
What has been settled in the many experiments we carried out, and that will
be illustrated in the next section, is that, whatever the convergence conditions,
the reconstruction error due to statistical noise in the measurements is highly
correlated with the length of the reconstructed interval valued activity.

6 Experiments

This section aims at illustrating the ability of the NIBART method to provide
a reliable quantification of the reconstruction error induced by the statistical
noise in the measurements, whatever the convergence conditions. To achieve
this experiment, we have simulated 100 noisy projections of a 64 × 64 Zubal
phantom4 displayed in Fig.1(a). These noisy projections have been obtained by
corrupting a noise free projection of the phantom (total count per projection
≈ 10 kcounts) with a Poisson process. The 100 simulated 64 × 64 noisy sino-
grams will be considered as 100 realizations of the same projection. For each
realization, the activity is reconstructed with the NIBART method for different
number of iterations. We account for the knowledge on the noise in the pro-
jections by considering [S] as being the 99% confidence interval under the hy-
pothesis of a Poisson noise. The relaxation parameter has been empirically set

to λ = 0.024 to ensure the convergence of the algorithm. Let [Is,t] = [Is,t, I
s,t

]

4 Available at http://noodle.med.yale.edu/zubal/



(s ∈ {1, . . . , 100}, t ∈ {10, 20, . . . , 400}) be the interval valued NIBART recon-

struction of the sth sinogram realization with t iterations. Let Ĩ
s,t = 1

2
(Is,t +I

s,t
)

be the median of [Is,t]. Let ∆I
s,t = I

s,t
− I

s,t be the spread of [Is,t]. For each

pixel n (n ∈ {1, . . . , N}) we compute δt
n = 1

100

∑100

s=1
∆Is,t

n the mean spread of
the nth pixel’s interval valued activity reconstructed with t iterations, and σt

n

the standard deviation of the median values (Ĩs,t
n )s∈{1,...,100}. This experiment

being simulated, the convergence of the reconstructed image to the original im-
age through the iterations can be easily depicted by computing the Euclidian
distance between those two images. This distance is plotted on Fig.2(a) for one
realization. For all experiments, the smallest Euclidian distance value is obtained
for t ≈ 70. We thus will consider that, after 70 iterations, the algorithm has con-
verged. The weak adequacy occurs after always before the real convergence. In
this experiment, the weak adequacy is obtained as soon as t ≥ 6
Fig.1 presents one of the reconstructed median images for 70 and 400, that is for
convergence and far from convergence. This figure shows that, since the NIBART
algorithm is not regularized, the spurious features increase with the iterations.
We aim at testing wether δt

n∈{1,...,N} can be considered as a measure of the noise
level of the activity reconstructed activity. This is achieved by testing wether the
distributions σt

n∈{1,...,N} and δt
n∈{1,...,N} are correlated whatever the number t

of iterations. Fig.3(a) plots the clouds of σ70

n∈{1,...,N} versus δ70

n∈{1,...,N}. It shows
a high correlation between the statistical reconstruction error and its estima-
tion by using the length of the reconstructed interval in convergence conditions.
Fig.3(b) plots the linear (Pearson) correlation coefficient between σt

n∈{1,...,N} and

δt
n∈{1,...,N} for different values of t. Fig.3(b) highlight the fact that, as soon as the

convergence is obtained (i.e. after 70 iterations), the standard deviation of the
median value is highly correlated with the length of the reconstructed interval.
Moreover, this correlation remains high even when the reconstructed image is
far from convergence. In fact, when the convergence conditions are not fulfilled,
the average length of the interval-valued reconstructed activity tends to increase
(see Fig.2(b)), reflecting the fact that the influence of the noise in the measure-
ment on the reconstructed image increases with the iterations. Note that, when
the weak adequacy occurs, the correlation is already high (here ≥ 0.77).

7 Conclusion

In this paper, we have presented an interval based algebraic method for pre-
dicting the noise in emission tomography reconstructed images. This method is
based on extending the SIRT method to account for the new modeling of the
projection performed by the tomographic device presented in [5]. The main char-
acteristic of our approach is that the reconstructed activity is interval valued.
As highlighted in the simulated experiment we report here, the length of the
interval associated to each pixel of the reconstructed image is highly correlated
with the statistical variance of its reconstructed value. Such a noise prediction
can be necessary for making reliable the comparison between the reconstructed



(a) Zubal phantom (b) 70 iterations (c) 400 iterations

Fig. 1. (a) The Zubal phantom and two reconstructed median images for 70 iterations
(b) and 400 iterations (c).
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Fig. 2. (a) Distance between the simulated activity and a reconstructed median image,
(b) Evolution of the mean length of the global interval valued activity through the
iterations.

activity in two regions of interest, this comparison being the ground of nuclear
imaging diagnosis. In future work, we will consider extending this method to
other iterative reconstruction techniques like EM algorithm [12]. We will carry
out experiments with real data obtained with a physical phantom. We will also
compare our approach to the method proposed by Stayman and Fessler [2] on
both simulated and real data.

References

1. Barret, H., Wilson, D., Tsui, B.: Noise properties of the EM algorithm. I: theory.
Phys. Med. Bio. 39 (1994) 833–846



Standard deviation

M
e

a
n

 le
n

g
th

 o
f 

th
e

 r
e

co
n

st
ru

ct
e

d
  i

n
te

rv
a

l 

(a)

Number of iterations

P
e

a
rs

o
n

 c
o

rr
e

la
ti

o
n

 c
o

e
ff

ic
ie

n
t

(b)

Fig. 3. (a) The standard deviation of the reconstructed activity versus its estimation
by using the length of the reconstructed intervals for the 70th iterations, (b) Evolution
of the correlation coefficient through the iterations.

2. Stayman, J., Fessler, J.: Efficient calculation of resolution and covariance for
penalized-likelihood reconstruction in fully-3D SPECT. IEEE Trans. on Image
Processing 23 (2004) 1543–1556

3. Qi, J., Leahy, R.M.: A theoretical study of the contrast recovery and varaince
of MAP reconstructions from PET data. IEEE Trans. Med. Imag. 18(4) (1999)
293–305

4. Budinger, T., Derenzo, S., Greenberg, W., Gullberg, G., Huesman, R.: Quantitative
potentials of dynamic emission computed tomography. J. Nucl. Med. 19 (1978)
309–315

5. Rico, A., Strauss, O., Mariano-Goulart, D.: Choquet integrals as projection op-
erators for quantified tomographic reconstruction. Fuzzy Sets and Systems 160

(2009) 198–211
6. Gordon, R., Bender, R., Herman, G.: Algebraic reconstruction techniques (ART)

for three dimensional electron microscopy and x-ray photography. J. Theor. Bio.
36 (1970) 105 – 117

7. Dempster, A., Laird, N., Rubin, D.: Maximum likelihood from incomplete data
via the EM algorithm. J. Royal Stat. Soc. 39 (1977) 1–38

8. Hudson, H., Larkin, R.: Accelerated image reconstruction using ordered subsets
of projection data. IEEE Trans. Med. Imag. 13 (1994) 601–609

9. Lakshminarayanan, A., Lent, A.: Methods of least squares and SIRT in recon-
struction. J. Theor. Bio. 76 (1979) 267 – 295
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