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Abstract

In this paper, we propose to investigate and analyze a new method for performing quantified projection and back-projection in
emission tomography. This method is based on using non-summative kernels, capacities and asymmetric Choquet integral to obtain
imprecise projected values (i.e. intervals instead of usual reconstructed pixel values).

Validation studies using numerical and physical single photon computed emission tomography (SPECT) phantoms were used to
demonstrate links between the length of these reconstructed intervals and the stochastic noise level in reconstructed slices.
© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Diagnosis, prognostic assessment and therapeutic monitoring of various cancers, cardiovascular or neurological
diseases require in-vivo evaluation of some biological or metabolic functions in patients. The recent development
of specific radioactive tracers in single photon computed emission tomography (SPECT) or in positron emission to-
mography (PET) have made such measurements possible through tomographic reconstruction of projections acquired
by these imagers. The reconstruction algorithms, along with specific algorithms dedicated to the correction of atten-
uation artefacts or imager responses, which are available in routine clinical settings, provide increasingly accurate
reconstructions.

However, whatever the algorithm used, the ill-posedness of the reconstruction problem leads to unstable solu-
tions and the various regularisation functions suggested in the literature are difficult to adjust in routine clinical
settings. One of the practical challenges, in nuclear tomographic image analysis, is to be able to robustly esti-
mate image reconstruction error induced by discretization and measurement variations due to acquisition Poisson
noise. Robust error estimation enables the physician to objectively compare reconstructed activities within two dif-
ferent regions of interest in a reconstructed slice. The reconstruction error could be estimated by repeating the re-
construction process using a large number of acquisitions. However, experimental constraints limit the number of
experiments, and such a method does not apply in clinical settings. Usual reconstruction methods try to transfer
knowledge on the nature of the noise acquired in projections to the reconstructed voxels. Many of these recon-
struction noise estimation methods usually assume that the reconstructed image is close enough to the real im-
age to use a Jacobian-based variance transfer [22,18,2]. For this method to be efficient, the residual random er-
ror must have suitable statistical properties (i.e. zero-mean, close to normal distribution, etc.) which is somewhat
difficult.

We are currently investigating a completely different approach involving a new formulation of the tomographic
reconstruction problem. We aim at designing reconstruction algorithms in which error estimation will be part of
the estimation process. This paper presents one of the very first steps of this work, i.e. a new projection opera-
tor, based on non-summative kernels and non-additive confidence measures. The Choquet integral [3], which is a
key tool for aggregating values associated with non-additive confidence measure, is used as projection operator. Us-
ing a concave capacity and its conjuguate, we obtain an interval of projected value instead of a single value [10].
We stress that quantitative information associated with the length of this interval value is highly correlated with
the level of the (back-) projected noise. Then we come up with a method for quantifying the noise level that is
simpler than the conventional method using Jacobian-based variance transfer. The concept underlying this work is
as follows: when estimating a piece of information from a set of noisy data with a kernel-based approach, vari-
ations due to measurement error can be estimated by slightly varying the shape (but not the size) of the kernel.
Such a variation can be simply achieved by replacing a conventional summative kernel by a non-summative kernel
approach [13].

The paper is organized as follows: in Section 2, we briefly review the methods for computing operators in the
additive case. In Section 3, we present the framework and notations: the first subsection deals with summative versus
non-summative kernels. The second one presents the Choquet integral according to a capacity and to its conjugate
capacity and their relations. The third one presents the asymmetric Choquet integral as an aggregation operator. Section
4 is dedicated to the presentation of the new projection and backprojection operators and their properties. Section 5
describes how the projection operator can be implemented. Using simulated and physical SPECT phantoms, in Section
6 we show the close correlation between the length of the intervals given by this alternative method and the random
noise in the projections. Even though the results presented in this paper were obtained using emission tomographic data,
the theoretical framework presented here has a wide range of applications and may be used for various tomographic
devices.

2. Kernel-based discrete tomography

Since the measured activity in a particular direction (�, �) consists of a stochastic sum of the activity along (or
around) a line, the Radon transform is usually used to model the physical phenomenon [15]. Let I (x, y) be the slice
to be reconstructed, and S(�, �) be the integral of the stochastic activity I (x, y) along a line whose polar coordinate
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is (�, �). The analytical expression of the Radon transform is

S(�, �) =
∫ ∞

−∞

∫ ∞

−∞
I (x, y)�(x cos � + y sin � − �) dx dy,

where � is the Dirac delta distribution. The activity S(�, �), that has been detected, is the signature of a sought after
density (Hounsfield number, radio-activity, etc.). However, the analytical expression of the Radon transform has to be
modified to account for measurement noise, missing data, discretization and quantification. Moreover, the problem of
practical interest is to find an implementation of a discrete reconstruction algorithm.

The so-called discrete Radon transform [11,12] makes use of summative kernels [1,24] for handling the inter-
play between continuous and discrete. A summative (or probabilistic) kernel of Rm is an integrable function � that
satisfies:

∫
w∈Rm �(w) dw. It is usually separable, centered, symmetric, bounded and positive. A summative kernel � is

usually scaled by a bandwidth parameter that determines the local amount of smoothing [24]. The role of the kernel is
to define a weighted neighborhood of each sampled location, thus providing interplay between continuous and discrete.
But it also makes use of a hypothesized ergodicity to reduce the effect of random noise by locally regularizing the
reconstruction process.

Let In be the sought after value of the nth pixel centered on the location (xn, yn) of the digital image to be reconstructed
related by the kernel �(x−xn, y−yn) to the sought after somewhat continuous value I (x, y). Let Sk be the integrated sig-
nal provided by the kth detector (or dexel) centered on the location (�k, �k) and �(�−�k, �−�k) be the kernel modeling
the measurement process. If no noise is assumed in the acquisition process, then the relation between Sk and In is

Sk =
N∑

n=1

Inrk,n with rk,n equal to (1)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

∫ �

−�
�(� − �k, � − �k)�(x − xn, y − yn)�(x cos � + y sin � − �) dx dy d� d�.

The discrete Radon matrix could be considered as a transition matrix whose coefficient rk,n are proportional to
the probability of an activity in the nth pixel to be detected by the kth detector. All reconstruction algorithms make
extensive use of this representation so that they can be viewed as algorithms dedicated to inversion of the relationship
between the {In}n∈{1,...,N} and the {Sk}k∈{1,...,K} given by Eq. (1). Recovery of this probability prompts the need for
post-normalization of expressions 1. The normalized projection operator is

Sk =
N∑

n=1

Inpk,n with pk,n = rk,n∑N
n=1 rk,n

.

The correct convergence of reconstruction algorithms towards the putative real discrete image is closely related to the
suitability of the chosen kernels to provide an appropriate amount of smoothing. Oversmoothing tends to give smooth
but blurred images while undersmoothing tends to amplify the effect of statistical fluctuations of observation and then
to produce artefacts in the reconstructed images.

3. Framework and notations

Statistics applied to signal processing usually concern random observations, i.e. well defined processes leading to
unpredictable outcomes [9]. This unpredictability is commonly assumed to be due to the randomness of the observed
phenomenon and therefore associated with uncertainty. Uncertainty relates to the truth of an observation, understood
as its conformity to reality. Imprecision is related to the content of the observation and therefore to the observation
process itself [7]. For example, in emission tomography, uncertainty is related to random variation in the proportion
of photons detected on a sensor during a finite time (in reference to the mean value of the Poisson process that rules
the radioactive decay), and thus may vary from one experiment to another and depends on the object. The precision
of the sensor is more related to its physical characteristics, such as energy or spatial resolution, and therefore does not
depend on the observed object (for a given imaging device and a given photon energy).
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3.1. Summative and non-summative kernels

One of the most common models of an uncertain observation is a probability density distribution, i.e. a summa-
tive kernel [17]. A summative kernel is a [0,1]-valued function � defined on a domain � verifying the summative
normalization property:

∫
� �(w) dw = 1.

So-called kernel smoothing methods make use of this model to reduce the effect of quantization and noise by defining
a weighted neighborhood of each sample [21]. This weighted neighborhood is then used in an additive aggregation
process in order to provide an estimated value of the signal inside and outside the sampling grid.

In addition to this modeling, measurement errors can be considered as a feature of single observations due to
systematic inaccuracy in the measurement process. This is a typical physicist’s viewpoint where proper calibration of
the sensor provides an estimate of the error domain (usually intervals) [14,26]. This domain is asked to certainly contain
the measured information. This approach is used to evaluate the image of a function whose arguments are subsets. It
is the most suitable modeling in cases where repeated observations cannot provide any additional information. This
so-called bounded-error approach mainly concerns imprecision [14]. For both practical and theoretical reasons, validity
domains of observations are usually intervals or boxes, i.e. Cartesian products of intervals.

The all-or-nothing nature of interval analysis, in contrast with the probability approach which accepts graduations,
introduces asymmetry between them. The canonical generalization of interval analysis leads to the fuzzy-subset theory
[7]. This fuzzy generalization of a validity domain relates to fuzzy measures [28].

Like a summative kernel, a non-summative kernel is a [0,1]-valued function � defined on a domain � verifying the
maxitive normalization property:

Supw∈��(w) = 1.

� can be seen as a possibility distribution or as the membership function 	F of a normalized fuzzy subset F of � .

3.2. Aggregation with Choquet integrals

Choquet integrals have become a central tool for aggregating values associated with non-additive confidence measures
[16,10,5]. 1 In this section, we will introduce some of the properties of this aggregation operator that will be used in
the sequel.

Let 
 = {P1, . . . , PN } be a finite set of N elements. For all n ∈ {1, . . . , N}, let In be a value associated with each
element Pn. To begin, we suppose that all the values are positive. For the sequel we use the following notations:

Notation 1.

• I : 
 → R+ is the function defined by I (Pn) = In.

• We denote (.) the permutation on {1, . . . , N} that sorts the values In in increasing order: I(1) � · · · �I(N).

• A(n) is the coalition of all elements whose value exceeds I(n): A(n) = {Pi ∈ 
/Ii �I(n)} = {P(n), . . . , P(N)}.

Definition 2.

• A capacity is a set function v : P(
) → [0, 1] such that v(∅) = 0, v(
) = 1, and
∀A, B ∈ P(
) A ⊆ B ⇒ v(A)�v(B).

• v̄ the conjugate capacity of v is defined by ∀A⊆
, v̄(A)=1−v(Ac) where Ac is the complementary set of A.

Definition 3. A capacity v on 
 is

• a convex capacity if ∀(A, B) ∈ P(
), v(A) + v(B)�v(A ∪ B) + v(A ∩ B),
• a concave capacity if ∀(A, B) ∈ P(
), v(A) + v(B)�v(A ∪ B) + v(A ∩ B).

Note that if v is a concave capacity, then v̄ is a convex capacity.

1 Named capacities Vasilesco [25].
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Definition 4. Let 
 = {P1, . . . , PN } be a set of N elements, I : 
 → R+ be a function from 
 to the real positives
and v be a capacity on P(
).

• The Choquet integral of I with respect to the capacity v is:

Cv(I) =
N∑

n=1

I(n)(v(A(n)) − v(A(n+1)))

=
N∑

n=1

(I(n) − I(n−1))v(A(n)) with A(N+1) = ∅ and I(0) = 0.

• A dual Choquet integral can be computed by using the conjugate capacity:

Cv̄(I ) =
N∑

n=1

I(n)(v(Ac
(n+1)) − v(Ac

(n))).

Proposition 5. If v is a concave capacity, then Cv(I)�Cv̄(I ).

Proof. We have Cv(I) − Cv̄(I ) = ∑N
n=1(I(n) − I(n−1))(v(A(n)) − 1 + v(Ac

(n))). Since v is concave, v(A(n)) +
v(Ac

(n))�v(�) + v(∅) = 1 which, when associated with (I(n) − I(n−1))�0, entails Cv(I) − Cv̄(I )�0. �

3.3. Aggregation with the asymmetric Choquet integral

When the range of I is R, then, according to Denneberg [5], aggregation with respect to the capacity should be
performed via the asymmetric Choquet integral.

In this subsection, we consider having a real function I : 
 → R.
We denote as r the index belonging to {1, . . . , N}, such that I(1) � · · · �I(r) < 0�I(r+1) � · · · I(N). Then we define

I− = {−I(1), . . . ,−I(r), 0, . . . , 0} and I+ = {0, . . . , 0, I(r+1), . . . , I(N)}.

Definition 6. Let 
 = {P1, . . . , PN } be a set of N elements, I : 
 → R be a real function on 
 and v be a capacity
on P(
).

The asymmetric Choquet integral of I with respect to v is

Čv(I ) = Cv(I
+) − Cv̄(I

−).

Proposition 7. If v is a concave capacity, then Čv(I )�Čv̄(I ).

This proposition is direct from Proposition 5.

4. Imprecise projection

In this section, we propose to show how it is possible to shift from additive summative kernel based to non-additive
non-summative kernel based projection operators. In analogy to the summative approach, we go from a continuous
binary to a weighted discrete projection.

4.1. Continuous case

Let us consider the image as a subset � of R2 where the continuous activity is considered to be binary. Each point
of � is supposed to be active or not and its emission activity during the acquisition is taken as a unit. � is the subset of
all active points of � . The activity outside � is assumed to be unknown. The emission density of each subset A of �
is assumed to be due to the local density of active points in A.

Each detector D is associated with a polar coordinate (�, �) and an infinite projection zone W (see Fig. 1).
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detector DW

Θ

Fig. 1. Binary detected activity.

The activity S measured on detector D is assumed to be proportional to the surface of intersection of W with �. The
scale of the measured activity is assumed to be unknown. If the activity is a random process, then the measured activity
S is also a random process. No additivity is hypothesized on the projection process.

Let S1 be the projected activity on detector D1 and S2 be the projected activity on a disconnected detector D2, the
activity S12 on D1 ∪D2 is not assumed to be equal to S1 +S2. However, since the projection process is a measurement,
the following relation has to be respected: S12 �max(S1, S2).

Definition 8. The surface associated with an object on � is the function |.| defined as follows:

|.| : P(�) → R

A �→
∫

A

dw,

where P(�) denotes the class of subsets of �.

If S behaves like a density, then S is proportional to |W ∩ �|. The basic projection formula in the continuous space
should be S = �W |W ∩ �|, where �W is an unknown normalizing coefficient. Conventionally, we have: if � = � then
S = 1 whatever the detector position, then 1 = �W |W ∩ �| and therefore: S = |W ∩ �|/|W ∩ �|. Note that W is the
(infinite) subset of R2 of any point of space that can project on detector D.

The measurement process consists of K projections Sk associated with K detector positions (or K different detectors)
Dk , called the dexels. Each dexel Dk is associated with a polar coordinate (�k, �k) . Sk is assumed to be the proportion
of photons emitted by the active zone that is collected by a detector associated with the polar coordinate during a time
unit. The number of photons can be computed by multiplying Sk by the spatial interaction between the measurement
and the image, i.e. |Wk ∩ �| which provide the non-normalized projection, that is S is proportional to |W ∩ �|.

4.2. Discretization of the image plane

With the representation of the image, always denoted �, being discrete, the continuous active zone is now imprecisely
known. Fig. 2 shows a sampled version of the binary activity depicted in Fig. 1.

The non-summative kernel technique relies on a set-theoretic based interplay between continuous and discrete
involving the use of tiling and partitioning. In fact, there are three kinds of binary regular discretization that can be
viewed in Fig. 3.

Definition 9. Let {Cn}n∈{1,...,N} be a covering of a plane image �.

• {Cn}n∈{1,...,N} is a partition of � if and only if

N⋃
n=1

Cn = �, (2)

Cn ∩ Cm = ∅ if n = m. (3)
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Fig. 2. Discrete active zone.

Partition of Ω Under-filling tiling of Ω Over-filling tiling of Ω

Cn' Cn''Cn

Fig. 3. Discretization of the plane.

• {Cn}n∈{1,...,N} is an under-filling tiling if it follows property (3) but not property (2).
• {Cn}n∈{1,...,N} is a over-filling tiling if it follows property (2) but not property (3).

Note that the first property seems to be necessary to ensure a continuous to discrete transition without loss and the
second one ensures additivity.

Because of discretization, the only available information about the active zone is a measure of the discrete density
In via an unknown kernel associated with pixel Pn. The notion of continuous zone of binary activity has to be replaced
by a discrete coalition at a given level.

As done in the continuous case, we consider K dexels Dk . For each dexel, we want to model Sk , the detected activity
associated with dexel Dk .

Let 
 = {P1, . . . , PN } 2 be the set of N pixels of the image. Each discrete entity Pn is associated with a subset Cn

of �.
First, we suppose that all In to be non-negative. The intensity is not a binary value so we need to define an intensity

level.

Definition 10. Let � be a real value, �� is the subset of pixels whose intensity exceeds �:

�� = {Pn ∈ 
|In ��}.
Note that �0 = 
.

Now by analogy with the continuous case, we define Wk as the discrete subset of pixels that can potentially cause
the detected density Sk on the kth dexel Dk . This subset of R2 defines a binary possibility distribution associated with
each Dk denoted �(Dk; .), and defined as follows:

∀w ∈ �,

{
�(Dk; w) = 1 if w ∈ Wk,

�(Dk; w) = 0 else.

2 To be clear, we already named 
 as the finite set of elements to define the Choquet integral in Section 3.2.
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This continuous possibility distribution on R2 induces a discrete possibility distribution on 
:

�(Dk; Pn) =
∨

w∈Cn

�(Dk; w).

Consequently, (Dk; Pn) = 1 if there is w ∈ Cn such that �(Dk; w) = 1. In the following (Dk; Pn) is denoted �k,n.
Dually, �k,n defined on 
 a subset Wk = {Pn ∈ 
|(Dk, Pn) = 1}.
To define the capacity used in the following we have to express the function |.| which is the surface according to the

continuous case.

Definition 11. Let � be a plane image, we denote 
 the finite set of pixels and {Cn}n∈{1,...,N} a covering, then

|.| : 
 → R,

A �→ | ∪n/Pn∈A Cn|.

Proposition 12. Sk , the detected density associated with the kth dexel Dk , is the Choquet integral of density
I : 
 → R+ with respect to the capacity vk defined by

∀A ⊆ 
, vk(A) = |Wk ∩ A|
|Wk ∩ 
| . (4)

Proof. For each threshold � ∈ R, a binary detected intensity can be computed using S
�
k = �k|Wk ∩��|. �k is an unknown

normalization factor, and |Wk ∩��| is the surface on the image associated with the subset of pixels Wk ∩��. To be more
precise, we have |Wk ∩ ��| = |⋃n|Pn∈Wk∩��

Cn|.
To obtain Sk , the detected intensity associated with the kth dexel Dk , we aggregate all the S

�
k :

Sk = �k

∫ ∞

0
S

�
k d� = �k

∫ ∞

0
|Wk ∩ ��| d�.

The normalization factor can be obtained by assuming the usual normalization: if ∀n, In = 1, then ∀k, Sk = 1.
So we have Sk = �k

∫∞
0 S

�
k d� = �k|Wk ∩ �0|1 = 1 and therefore �k = 1/|Wk ∩ �0| which entails Sk =∫∞

0 (|Wk ∩ ��|/|Wk ∩ �0|) d�. Since the possible values of � are discrete, the above formula can be computed by

Sk =
N∑

n=1

(I(n) − I(n−1))
|Wk ∩ �I(n)

|
|Wk ∩ �0| ,

where (.) is the permutation which sorts the pixels according to increasing intensity, which concludes the proof. �

Proposition 13. Let {Cn}n∈{1,...,N} be a covering of a plane image �,

• if {Cn}n∈{1,...,N} is a partition or an under-filling tiling then vk is additive and Sk = ∑N
n=1 Invk(Pn),

• if {Cn}n∈{1,...,N} is an over-filling tiling, then vk is concave.

Proof.

• It is trivial to show the first assertion because, if {Cn}n∈{1,...,N} is a partition or an under-filling tiling, then Cn∩Cm = ∅
if n = m, which entails the additivity of the capacity vk .

• For the second assertion, we have to prove that

∀(A, B) ⊆ 
2, vk(A) + vk(B)�vk(A ∪ B) + vk(A ∩ B).
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C1 C2

Fig. 4. Over-filling tiling.

First recall that the function |.| defines the surface associated with an object on �. So as we have vk(A) =
(|Wk ∩ A|/|Wk ∩ 
|) = �k|Wk ∩ A|.

We need to compute |Wk ∩ A| with the over filling tiling {Cn}n∈{1,...,N}. To do this we have to define the
following set:

A =
⋃

{n|Pn∈Wk∩A}
Cn, B =

⋃
{n|Pn∈Wk∩B}

Cn,

AB =
⋃

{n|Pn∈Wk∩(A∩B)}
Cn, A ∪ B =

⋃
{n|Pn∈Wk∩(A∪B)}

Cn.

So we have vk(A) = �k|A|, vk(B) = �k|B|, vk(A∩B) = �k|A∩B|, and vk(A∪B) = �k|A∪B|. As {Cn} is over-filling
tiling, AB ⊆ A∩B and thus |AB|� |A∩B|. Since |A|+|B| = |A∩B|+|A∪B|, vk(A)+vk(B) = �k|A∩B|+�k|A∪B|,
and therefore vk(A) + vk(B)�vk(A ∪ B) + vk(A ∩ B).

Note that, as the previous inequality can be strict, the capacity vk is not additive. To illustrate a strict inequality, let
us consider two contiguous pixels P 1 and P 2 associated with an over-filling tiling {C1, C2} (see Fig. 4).

We have vk(P 1) = |C1] = |C2| = vk(P 2), vk(P 1∩P 2) = vk(∅) = 0 and vk(P 1∪P 2) = |C1∪C2| < |C1]+|C2|
which implies vk(P 1 ∪ P 2) < vk(P 1) + vk(P 2). �

As shown in Section 3.2, with vk being a concave capacity, an upper estimation Sk and a lower estimation Sk can be
defined for each dexel Dk .

Definition 14. Let 
 be the set of pixels, and I be the positive discrete density. For the kth dexel Dk ,

• The upper projection is

Sk =
N∑

n=1

I(n)(vk(A(n)) − vk(A(n+1))) =
N∑

n=1

(I(n) − I(n−1))vk(A(n)). (5)

• The lower projection is

Sk =
N∑

n=1

I(n)(v̄k(A(n)) − v̄k(A(n+1))) =
N∑

n=1

(I(n) − I(n−1))v̄k(A(n)) (6)

with vk(A) = (|Wk ∩ A|/|Wk ∩ 
|) ∀A ⊆ 
 where Wk = {Pn ∈ 
|(Dk, Pn) = 1}.

4.3. Weighted possibility distribution

If the possibility distribution is weighted, in order to provide a good trade-off between enhancing and blurring details
[23], the formula of the lower and upper projection has to be modified. As the difference between the two expressions
is the use of the conjugate capacity, we only give the proof for the upper estimation.
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For any confidence level �, the quantity S�
k can be computed by using Eq. (5) with the capacity defined by v�

k (A(n)) =
�k|W �

k ∩ �I(n)
|. So we have

S�
k = �k

N∑
n=1

(I(n) − I(n−1))|W �
k ∩ �I(n)

|,

where �k is an unknown normalization factor, W �
k is the set of pixels whose interaction with the kth dexel exceeds the

level �: W �
k = {Pn|�k,n �� }.

The aggregation of all projected values S�
k can be obtained by integrating according to the confidence levels with an

a-posteriori normalization:

Sk = �k

∫ 1

0
S�

k d�

= �k

∫ 1

0

(
N∑

n=1

(I(n) − I(n−1))|W �
k ∩ �I(n)

|
)

d�

= �k

N∑
n=1

(
(I(n) − I(n−1))

∫ 1

0
|W �

k ∩ �I(n)
| d�

)
.

Normalization is obtained as usual by assuming Sk = I if: In = I ∀n; therefore

Sk =
N∑

n=1

(I(n) − I(n−1))vk(A(n)) with vk(A) =

∫ 1

0
|W �

k ∩ A| d�∫ 1

0
|W �

k ∩ 
| d�

.

The corresponding lower projection can be obtained by using the conjugate capacity of vk .

4.4. Properties of upper and lower projections

In most reconstruction algorithms, projection operators are iteratively used to project and back-project the recon-
struction error until convergence. Thus, the value to be projected is generally not a non-negative value and therefore
the usual Choquet integral has to be replaced by an asymmetric Choquet integral, as presented in Section 3.3, for upper
and lower projection computations.

Definition 15. Let 
 be the set of pixels, and I be the discrete density. For the kth dexel Dk ,

• The upper projection is: Sk = Čvk
(I ),

• The lower projection is: Sk = Čv̄k
(I ).

The upper and lower projection properties are directly inherited from the properties of Choquet integrals and the
most interesting property is derived from the work of Schmeidler [19] and concerns the core of the convex capacities.

Definition 16. For all convex capacities we can define the core of the capacity as follows:

core(v) = {p probalility such that v(A)�p(A), ∀A}.

Note that, if p belongs to core(v), then ∀A ∈ �, v(A)�p(A)� v̄(A).

We have the following results due to Schmeidler and Dellacherie [19,8,4].
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Proposition 17. Let 
 be a finite set, I : 
 → R be a function and v be a convex capacity on 
. Then,

Čv(I ) = Inf p∈core(v)

∫
I dp,

Čv̄(I ) = Supp∈core(v)

∫
I dp.

When I is a discret function which the values are denoted I1, . . . , IN , for any probability p,
∫

I dp = ∑N
i=1 I (n)p(Pn).

Our capacity vk defined by Eq. (4) is concave, so the above result leads us to the final property.

Proposition 18.

Sk = Supp∈core(v̄k)

N∑
n=1

p(Pn)In

Sk = Inf p∈core(v̄k)

N∑
n=1

p(Pn)In.

Since usual Radon matrices are defined by summative kernels, Sk (rsp. Sk ) is an upper (rsp. lower) bound of any
conventional projection obtained with a Radon matrix whose coefficients can be derived from a probability function
which belongs to the core of v̄k . Therefore, the distance between the non-additive aggregated values obtained by using
vk and v̄k reflects the lack of stability of a conventional aggregation process when there is variation in the hypothesized
confidence distribution. Since this stability depends on the robustness of the hypothesized model and the local noise
level, it can be used as a measure of aggregation error.

5. Numerical implementation

The only difficulty in computing upper and lower projections concerns the computation of the capacity vk defined by
(4). The general computation of the Choquet integral involves an iterative estimation of capacities of nested sets. The
easiest way to perform this iterative estimation is first to invert the sum in expression: Sk = ∑N

n=1(I(n)−I(n−1))vk(A(n)).

As we have A(n) = A(n+1)∪P(n), the value vk(A(n)) can be deduced from the value of vk(A(n+1)) by using a map-based
algorithm. This decomposition requires a non-summative sampling kernel. As shown in [6], any summative kernel with
support [−�, �] × [−�, �] is dominated by the binary kernel with support [−�, �] × [−�, �]; and more specifically by
the fuzzy kernel with support [−�, �] × [−�, �] with a pyramidal membership function.

We first present this algorithm when the partition {Cn}n∈{1,...,N} is binary. Next we present it when the partition
{Cn}n∈{1,...,N} is fuzzy.

(1) Binary kernel: the general shape of Cn is depicted in Fig. 5.

Level 0

Volume C(N) associated
with pixel P(N)

Volume C(N-1) associated
 with pixel P(N-1)

Volume C(N)∪C(N-1) associated
with the set A(N-1)={P(N),P(N-1)}

Level πk,(N) Level πk,(N-1)

Fig. 5. Iterative computation of the capacity.
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Let Nl be the number of lines and Nr be the number of rows in the image. The algorithm needs a matrix T (l, r)

whose size is (Nl + 1) × (Nr + 1). Let (l{n}, r{n}) be the image coordinate of pixel Pn. The iterative computation
of the vk(A(n)) works with algorithm 1:

Data: matrix T
Result: the capacity vk

Begin
Initialization of T as a null matrix. for n = N down to 1 do

for u = l(n) to l(n) + 1 do
for v = R(n) to R(n) + 1 do

t(u,v)= MAX(t(u,v), k,n)

vk(A(n)) = �2
∑
u,v

T (u, v)

End

Algorithm 1: Binary kernel.

(2) Fuzzy kernel: Matrix T requires a third coordinate: T (l, r, s), where s ∈ {1, 2, 3, 4}. Each coordinate corresponds
to a truncated quarter of pyramid, as depicted in Fig. 6.

Level T(l,r,s)

s=1

s=2

Fig. 6. Elementary truncated quarter of a pyramid.

The iterative computation works with algorithm 2:

Data: matrix T
Result: the capacity vk

begin
Initialization of T as a null matrix. for n = N down to 1 do

s=1 for u = l(n) to l(n) + 1 do
for v = R(n) to R(n) + 1 do

t(u,v,s)= MAX(t(u,v,s), k,n) s = s + 1

vk(A(n)) = �2
∑
u,v,s

T (u, v, s)

end

Algorithm 2: Fuzzy kernel.

Computation of vk(A(n)) involves the geometrical computation of a union of four truncated quarters of pyramids
that can be easily achieved but whose algorithm is too long to present in this paper.

6. Experimentations: ability to estimate projected noise

In this section, we illustrate the ability of the upper and lower projection operators to estimate the local noise.
For the experiment, SPECT projections of an uniform cylinder and from a Jaszczak resolution phantom (JRP) were

acquired after filling these phantoms with 740 MBq (20 mCi) of a technetium 99 m solution. On average, 507 and
381 kcounts were acquired for each line of the sinogram used for the cylinder and the JRP, respectively. One hundred
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Fig. 7. Resolution phantom.
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Fig. 8. Uniform cylindrical distribution.

and twenty-eight projections over a 360◦ arc were recorded. Twenty-five acquisitions of the cylindrical phantom were
used to record projections from a uniform cylindrical radioactivity distribution and 25 acquisitions of the JRP were
used as a resolution phantom. Each of the 25 acquisitions for the two phantoms is supposed to be a repetition of the
same event. For each one of the phantoms, 25 slices were computed using the usual back-projection procedure with the
probability coefficient associated with a uniform kernel. Concurrently, lower and upper backprojections were computed
as described above.

For a given backprojected pixel Pn, a variance vn was computed using it within each of the 25 backprojections.
Then, for the same pixel Pn, a length lsn of the confidence interval was computed for each of the backprojected slices
s ∈ {1, . . . , 25}. To be more precise, for each s and each n, lsn is the difference between the upper and the lower
back-projections.

We will now test whether the distribution of the estimated variances {vn}n∈{1,...,N} is correlated or not with the
25 distributions of the length {lsn}n∈{1,...,N}, i.e. if this length can be regarded as a spread factor measuring the local
noise level. In order to perform a distribution free-comparison, we use the Kendall correlation coefficient, since it is
known to be one of the most powerful and intuitively simple measurement of the strength of relationship between two
variables [20].

We compute, for two experiments and for each of the 25 acquisitions, the values of the Kendall correlation coefficient
between the distribution of the length versus the estimated variance for each backprojected slice. These values are shown
in Figs. 7 and 8.

For both experiments, the correlation coefficient values are such that the independence between predicted spread
and variance has to be rejected (all the p-values are lower than 10−8 for the first experiment and lower than 10−3 for
the second experiment).
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7. Conclusion

Here, we have proposed a new operator to perform discrete Radon-like projections (and back-projections) in emission
tomography. These operators are based on non-additive aggregation methods using non-summative kernel-based Radon
matrices. A consequence of using such a method is that the projected (or backprojected) values are imprecise, i.e.
known as an interval. The length of this interval varies according to the spread of all values obtained using conventional
approaches with different conventional Radon matrices. We have carried out theoretical and experimental studies to
highlight the properties of the interval provided by this new operator and particularly the correlation of its length with
the random variation of the image under reconstruction.

In the experiment, we have shown that the difference between the upper and lower back-projection of a sinogram is
highly correlated with the variance of the distribution of its conventional back-projections.

In a future study, we would like to utilize the potential of this new operator to project the error and propose new
reconstruction methods to obtain a reconstructed image whose confidence interval is known. Other studies must be
carried out to design proper statistical tools to handle these intervals. Such methods are highly connected to imprecise
probability approach [27]. This will be done prior to clinical validation studies.
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