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Abstract In this paper, we propose an adaptation of the Parzen Rosenblatt cumu-
lative distribution function estimator that uses maxitivekernels. The result of this
estimator, on every point of the domain ofF , the cumulative distribution to be esti-
mated, is interval valued instead of punctual valued. We prove the consistency of our
approach with the classical Parzen Rosenblatt estimator, since, according to consis-
tency conditions between the maxitive kernel involved in the imprecise estimator
and the summative kernel involved in the precise estimator,our imprecise estimate
contains the precise Parzen Rosenblatt estimate.

1 Introduction

The probability density function (pdf)f and the cumulative distribution function
(cdf) F of a random variableX on Ω ⊆ IR are fundamental concepts for describ-
ing and representing real data in statistics. These representations are linked by
∀ω ∈ Ω , F(ω) =

∫ ω
−∞ f (u)du. When they cannot be specified, estimates of these

functions may be performed by using a sample ofn observations independent and
identically distributed(X1, ...,Xn) of X. These observations are summarized by the
empirical distribution defined byen = 1

n ∑n
i=1 δXi , whereδXi is the Dirac distribu-

tion on Xi or by the empirical cumulative distribution function defined on Ω by
En(x) = 1

n ∑n
i=11l[Xi≤x], where 1lA is the characteristic function onA.

Different methods have been proposed in the literature for estimating or manipu-
lating the pdf or the cdf underlying a sample of observations. The Parzen Rosenblatt
method is one of the most efficient non-parametric techniques [10, 11]. It belongs
to the class of functional estimation methods.
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Generally speaking, functional estimation [1] consists ofestimating, for allx ∈
Ω , a functionh : Ω −→ IR from another functiong : Ω −→ IR related toh. The
nature of this relation betweenh andg can take different form:g can be replaced by
a sequence(gn)n>0, such thatgn −→ h, whenn−→ +∞, h can be a modification of
g (or h is a filtered signal obtained from the signalg), or g can be a discretization
of h that has to be recovered by interpolation. So, the estimate of h, at x ∈ Ω , is
function ofg andx, which can be expressed asĥ(x) = ϕ(g,x).

For the Parzen Rosenblatt pdf estimator, the functiong is the empirical distri-
butionen, h is the pdf to be estimatedf . The estimator̂h is defined for allx ∈ Ω ,
by:

ĥ(x) = fnκ∆ (x) =
1
n

n

∑
i=1

κ∆ (x−Xi), (1)

with κ the kernel used to perform this estimate and∆ the bandwidth. Note that
κ∆ (x) = 1

∆ κ( x
∆ ). Wheng is the empirical cumulative distributionEn, the cdfF is

the functionh to be estimated and the estimatorĥ is defined for allx∈ Ω , by:

ĥ(x) = Fnκ∆ (x) =

∫ x

−∞
fnκ∆ (u)du. (2)

In the Parzen Rosenblatt like methods, and more generally inall the functional
estimation methods, the particular role of the kernel is to define a neighborhood that
can be shifted to any location ofΩ . The classical (precise) approach makes use of
summative kernels. A summative kernel can be seen as a probability distribution,
defining a probabilistic neighborhood around each locationx of Ω .

This paper considers a new approach (imprecise) that makes use of maxitive ker-
nels. A maxitive kernel can be seen as a possibility distribution, defining a possibilis-
tic neighborhood around each locationx of Ω . The main consequence of replacing
a summative kernel by a maxitive kernel is that the estimatedvalue is an interval
[h(x),h(x)], instead of a single valuêh(x). We are interested in the relation between
the point estimate obtained with the classical approach andthe interval estimate
obtained with our approach.

The paper is organized as follows. In section 2 we present theclassical func-
tional estimation using a summative kernel. In section 3, functional estimation with
maxitive kernels is exposed. In section 4, the imprecise functional estimation is pre-
sented and mathematically justified. In section 5, we apply our method to the Parzen
Rosenblatt cdf estimator. Before concluding, we discuss insection 6 of the choice
of the involved maxitive kernel. The method is illustrated by an experiment.

2 Functional estimation with summative neighborhoods

In functional estimation, a summative kernel can be considered as a weighted neigh-
borhood of a given location, called its mode, formally similar to a probability distri-
bution.
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Definition 1 Summative kernels areIR+-valued functionsκ defined on a domain
Ω , verifying the summativity property:

∫

Ω κ(x)dx= 1.

Note that any given monomodal summative kernelκ , can be the basis for a fam-
ily of summative kernels tuned by a location-scale parameter θ = (u,∆), with u a
translation factor and∆ > 0 its bandwidth. Any element of this family is obtained,
for u∈ Ω and∆ > 0, by

κu
∆ (ω) =

1
∆

κ(
ω −u

∆
), ∀ω ∈ Ω . (3)

When seen as a probability distribution, a summative kernelκ has a relevant mean-
ing in the scope of uncertainty theories. It induces a probability measure given by
Pκ(A) =

∫

A κ(ω)dω , ∀A⊆ Ω . The valuePκ(A) can be interpreted as the degree of
probability for a realization of the underlying uncertain phenomenon to fall inA.

Estimation of a given function ofh : Ω → IR in a summative neighborhoodκx
∆

of a given locationx with bandwidth∆ is given by the expectation of its related
functiong according to the probability measurePκx

∆
:

ĥ(x) = Eκx
∆
(g). (4)

This approach can be found in [1] for functional estimation in statistics. [7] presents
digital signal processing methods that can be reformulatedas functional estimators
(4).

3 Functional estimation with maxitive neighborhoods

A maxitive kernel is also a weighted neighborhood of a given location, called its
mode, formally similar to a possibility distribution or membership function of a
normalized fuzzy subset [3].

Definition 2 A maxitive kernel is a[0,1]-valued functionπ , defined on a domain
Ω , verifying the maxitivity property:supω∈Ω π(ω) = 1.

Note that any given monomodal maxitive kernelπ , defined onΩ , can be the basis
for a family of maxitive kernels tuned by a location-scale parameterθ = (u,∆), with
u a translation factor and∆ its bandwidth. Any element of this family is obtained,
for u∈ Ω and∆ > 0, by

πu
∆ (ω) = π(

ω −u
∆

), ∀ω ∈ Ω . (5)

A possibility distributionπ has a relevant meaning in the scope of uncertainty theo-
ries.π induces a possibility measure given byΠπ(A) = supω∈A π(ω), ∀A⊆ Ω . The
valueΠπ(A) can be interpreted as the degree of possibility for a realization of the
underlying uncertain phenomenon to fall inA.
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Now, when the summative neighborhoodκx
∆ is replaced by a maxitive neighbor-

hoodπx
∆ of a given locationx with bandwidth∆ , the Lebesgue integral in estimator

(4) has to be replaced by the Choquet integral [2, 9] ofg.

4 Imprecise functional estimation

A possibility measure is a special case of concave Choquet capacity ν [15]. The
conjugateνc of such a capacity, defined byνc(A) = 1−ν(Ac),∀A⊆ Ω , is a convex
capacity. A concave capacityν can encode a special family of probability measures,
notedcore(ν) and defined by

core(ν) = {Pκ , | ∀A⊆ Ω ,νc(A) ≤ Pκ(A) ≤ ν(A)}. (6)

David Schmeidler and Dieter Denneberg proved the followingtheorem ([12] propo-
sition 3 and [2] proposition 10.3) for capacities.

Theorem 3.The capacityν is concave if and only if for all g such thatCν (|g|) <

+∞, then∀κ |Pκ ∈ core(ν), Cνc(g) ≤ Eκ(g) ≤ Cν(g).

From Theorem 3, since a maxitive kernel defines a possibilitymeasure, a maxitive
kernel-based estimation ofh, generalizing expression (4) is interval valued. The up-
per and lower bounds are the Choquet integrals ofg computed with respectively
Ππx

∆
andNπx

∆
, which are capacities (or non additive measures) associated to πx

∆ a
maxitive neighborhood ofx, with bandwidth∆ . Nπx

∆
is the conjugate of the possibil-

ity measureΠπx
∆
, called a necessity measure. These remarks leads to the following

corollary of Theorem 3.

Corollary 1. Imprecise functional estimation
Let π be a maxitive kernel, then∀x∈ Ω and∀∆ > 0,

∀κ |Pκ ∈ core(Ππx
∆
), CNπx

∆
(g) ≤ Eκ(g) ≤ CΠπx

∆
(g). (7)

Imprecise estimation of a given function ofh : Ω → IR in a maxitive neighbor-
hoodπx

∆ of a given locationx with bandwidth∆ is given by the Choquet integrals of
its related functiong according to the possibility and necessity measuresΠπx

∆
and

Nπx
∆
:

[h(x),h(x)] = [CNπx
∆
(g),CΠπx

∆
(g)]. (8)

According to Corollary 1, an estimatêh(x) of h obtained with a summative kernel
κ , such thatPκ belongs tocore(Ππx

∆
), belongs to the estimated interval (8). Besides,

the estimation bounds are attained, i.e. there exist two summative kernelsη and
µ , whose associated probability measuresPη andPµ are incore(Ππx

∆
), such that

Eη (g) = CNπx
∆
(g) andEµ(g) = CΠπx

∆
(g).

Replacing a summative kernel by a maxitive kernel for estimating a functionh
aims at taking into account the imperfect knowledge of the modeler to choose a
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particularκ . The specificity [16, 8] of the maxitive kernel chosen by the modeler
for performing this imprecise estimation reflects his knowledge. The most specific
is the maxitive neighborhood, the smallest is the encoded set. Indeed, ifπ is more
specific thanπ ′, some summative kernels encoded byπ ′ will not be encoded by
π . The smaller is the encoded set of summative neighborhoods,the closer are the
estimation bounds with this method.

5 Imprecise cumulative distribution function estimation

The Parzen Rosenblatt density estimator (1) can be expressed as the estimation of
the pdf f , with the empirical distributiong = en (summarizing the observations)
according to a summative neighborhoodκx

∆ (see expression (3)):

fnκ∆ (x) = Eκx
∆
(en). (9)

Corollary 1, associated with expression (9) suggests that an imprecise estimation
of the Parzen Rosenblatt pdf estimator should be performed by computing the Cho-
quet integral of the empirical distributionen according to a maxitive kernel (encod-
ing a family of summative kernels). This direct approach is however not applicable
here, since the Choquet integral of the empirical distribution does not exist. Indeed,
the computation of this integral only exists for bounded functions. The empirical
distribution is not bounded. Actually, the Dirac delta functions, formingen, are not
functions but mathematical constructions, called distributions.

Nevertheless, the Parzen Rosenblatt cdf estimator (2) involves the empirical cu-
mulative distributionEn, which is a bounded function. Theorem 4 expresses the
Parzen Rosenblatt cdf estimate at a pointx, as the estimation of the cdfF with the
cumulative empirical distributiong = En according to a summative neighborhood
of x, κx

∆ .

Theorem 4.Let κ be a summative kernel and∆ > 0 and n> 0, then∀x∈ Ω ,

Fnκ∆ (x) = Eκx
∆
(En). (10)

Proof. First, note thatfnκ∆ (x) =
∫

Ω κ∆ (ω)en(x−ω)dω . Indeed,
∫

Ω κ∆ (ω)en(x−
ω)dω = 1

n ∑n
i=1

∫

Ω κ∆ (ω)δXi (x−ω)dω = 1
n ∑n

i=1 κ∆ (x−Xi). Thus,

Fnκ∆ (x) =

∫ x

−∞

(

∫

Ω
κ∆ (ω)en(u−ω)dω

)

du,

=
∫

Ω

(

∫ x

−∞
en(u−ω)du

)

κ∆ (ω)dω ,

En is the cumulative distribution associated to the empiricaldistribution, i.e.En(ω)=
∫ ω
−∞ en(u)du. Then by successive changes of variablev := u−ω andt := x−ω , we

obtain:
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Fnκ∆ (x) =

∫

Ω
En(x−ω)κ∆ (ω)dω ,

=

∫

Ω
En(t)κ∆ (x− t)dt,

= Eκx
∆
(En).

SinceEn is bounded, an imprecise estimation ofF at x can be obtained with a
maxitive kernelπx

∆ .

Theorem 5.Let π be a maxitive kernel, then∀x∈ Ω , ∀n > 0 and∀∆ > 0,

∀κ∆ ′ |Pκ∆ ′ ∈ core(Ππx
∆
), CNπx

∆
(En) ≤ Fnκ∆ ′ (x) ≤ CΠπx

∆
(En). (11)

We now present the computation of the imprecise Parzen Rosenblatt cdf estimate.
First, observe thatEn is a simple function that can be expressed onΩ by En(ω) =

∑n
i=1

i
n1l[X(i),X(i+1)]

, where(.) indicates a permutation of the observations such that

X(i) ≤ X(i+1). Thus, the Choquet integral ofEn can be rewritten asCΠπx
∆
(En) =

1
n ∑n

i=1 Ππx
∆
({ω ∈Ω : En(ω)≥ i

n}). It can easily be observed that{ω ∈Ω : En(ω)≥
i
n} = {ω ∈ Ω : ω ≥ X(i)}. Since the summation does not depend on the order of
the summed elements,CΠπx

∆
(En) = 1

n ∑n
i=1 Ππx

∆
({ω ∈ Ω : ω ≥ Xi}). With similar

developments onCNπx
∆
(En), we obtain:

CΠπx
∆
(En) =

1
n

n

∑
i=1

(

1−Nπx
∆
({ω ∈ Ω : ω < Xi})

)

,

CNπx
∆
(En) =

1
n

n

∑
i=1

(

1−Ππx
∆
({ω ∈ Ω : ω < Xi})

)

.

As exposed in [3, 5],Fπx
∆
(u) = Nπx

∆
({ω ∈ Ω : ω < u}) is the lower cdf of the set of

cdf associated to the summative kernels ofcore(Ππx
∆
). It is the lower cdf of a p-box

[6], whose upper cdf is given byFπx
∆
(u) = Ππx

∆
({ω ∈ Ω : ω < u}). As shown in [5],

we have:

Fπx
∆
(u) =

{

0 if u < x,

1−πx
∆(u) otherwise,

andFπx
∆
(u) =

{

πx
∆ (u) if u < x,

1 otherwise.

We thus obtain the imprecise cdf estimate:

CΠπx
∆
(En) =

1
n

n

∑
i=1

(

πx
∆ (Xi)1l[x≤Xi ] +1l[x>Xi ]

)

, (12)

CNπx
∆
(En) =

1
n

n

∑
i=1

(

(1−πx
∆(Xi))1l[x≥Xi ]

)

. (13)
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6 Experiment and choice of a maxitive kernel

As in the case of the summative kernel methods, the problem ofthe choice of a
particular maxitive kernel for performing imprecise functional estimation can be
discussed. The choice of the summative kernel shapeκ is often considered as in-
significant in the non-parametric statistics community. The main argument is that
the asymptotic behavior (whenn→ +∞) of Fnκ∆ and fnκ∆ depend more on∆ than
on the choice ofκ [14, 1]. However, the asymptotic conditions are barely fulfilled. In
non-asymptotic conditions, the shape of the estimate strongly depend on the shape
of κ . Moreover, the knowledge of the modeler is generally insufficient for choos-
ing the appropriate kernel. Instead of choosing one particular summative kernel,
we propose to the modeler to choose a family of summative kernels matching his
knowledge via the choice of a maxitive kernel.

In such kernel methods, where a summative kernel is considered as a neighbor-
hood, it seems sensible to assume that the chosen basic kernel to be shifted and
dilated with expression (3) is centered, even and with a support included in[−1,1].
Therefore, it naturally leads to choose a basic maxitive kernel π encoding these
particular summative kernels. As shown in [4], the triangular maxitive kernelT is
the most specific of such maxitive kernels. The triangular possibility distribution is
defined onΩ by T(ω) = (1− |ω |)1l[|ω|≤1]. We now illustrate Theorem 5 by per-
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Fig. 1 Imprecise cumulative distribution estimate

forming the summative and maxitive estimates of the cdf underlying a set of 107
observations of the duration in minutes of the eruptions of the Old Faithful geyser
in Yellowstone National Park.1 Each precise estimate has been performed by using
four different summative kernelsκ∆ : uniform, Epanechnikov, triweight and cosine

1 This example, taken from [13], is a popular benchmark in nonparametric estimation.
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kernels, with∆ = 0.3. The definitions of the used kernels can be found in [8]. The
imprecise estimate is obtained by using a triangular maxitive kernelT with the same
∆ . As illustrated on Figure 1, every precise estimates of the cumulative distribution
are included in the imprecise estimation interval.

7 Conclusion

In this paper, we proposed an extension of the Parzen Rosenblatt cdf estimate, which
takes into account a possible lack of knowledge of the appropriate summative kernel
to be involved. Compared to the classical method, our methodresults in an interval
estimate instead of a point estimate. The imprecision of theobtained estimate con-
sistently reflects the lack of knowledge of the modeler, quantified by the specificity
of the involved maxitive kernel. We put this sensible imprecise cdf estimation into a
wider framework of imprecise functional estimation. Now, the next significant step,
in soft statistics, is likely to be the imprecise estimationof the pdf.
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