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Abstract. Imprecise probability framework is usually dedicated to de-
cision processes. In recent work, we have shown that this framework can
also be used to compute an interval-valued signal containing all outputs
of processes involving a coherent family of conventional linear filters. This
approach is based on a very straightforward extension of the expectation
operator involving appropriate concave capacities.
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1 Introduction

Digital signal processing (DSP) is a significant issue in many applications (au-
tomatic control, image processing, speech recognition, monitoring, radar signal
analyze, etc.). DSP is mainly dedicated to filtering, analyzing, compressing, stor-
ing or transmitting real world analog signals or sampled measurements. When
used to mimic real world signal processing, converting the input signal is required
from an analog to a digital form, i.e. a sequence of numbers. This conversion is
achieved in two steps: sampling and quantization. Sampling consists of estimat-
ing the analog signal value associated with discrete values of the reference space
(time, spatial localization). Quantization means associating an integer value to a
class of real values. For example, in digital image processing, the reference space
is a box in R

2, the sampled space is an interval [1, n] × [1, m] of N
2, the signal

is the projected illumination (or any other activity e.g. radioactivity) and the
integer range value is the interval [0, 255] if the grey level is coded on 8 bits.

Within the classical approach, the digital signal to be processed is assumed
to be composed of precise real valued quantities associated with precisely known
values of the reference domain. Naturally, this is not true. Converting an analog
signal into a digital signal transforms the information contained in the signal to
be processed. Therefore, the classical approach consisting of mimicking analog
signal processing by arithmetical operations leads to unquantified computation
errors.

One of the most natural ways to represent the loss of information due to
quantization is replacing the real precise valued number associated with each
sample by an interval valued number. This representation not only solve the
problem of representation of real numbers on a digital scale but is also a suitable



way for representing the expected fluctuations in the sampled value due to noise
or error in measurement. This approach leads to bounded error estimation [7]
when using interval generalization of the involved arithmetic operations (see also
[1], [2], [5]). Different interpretations are possible for interval valued data, e.g. a
range in which one could have a certain level of confidence of finding the true
value of the observed variable [14], a range of values that the real data can take
when the measurement process involves quantization and/or sampling [7], [8],
or a representation of the known detection limits, sensitivity or resolution of
a sensor [4], etc. Within any interval-based signal processing application, there
is a strong need for a reliable representation of the variability domain of each
involved observation. An important issue is the meaning of the interval and the
consistency of this meaning with respect to the tools used for further analysis
or processing.

There are still three weaknesses in digital signal processing that are difficult
to account for by using classical tools which are: a lack of knowledge of the
sampling process, the use of linear digital equations to approximately model
non-linear continuous processes, an imprecise knowledge of a filtering process.

In recent papers (see e.g. [9], [10], [6], [13]), we have proposed to use the
ability of imprecise probability framework to define family of functions to cope
with these weaknesses. Consider a process based on a function for which you have
partial information. A way to account for this lack of knowledge is to replace
this imprecisely known function by a set of functions that is coherent with your
knowledge on the suitable function to be used. Moreover, such a model leads to
a new interpretation of interval valued data.

2 Linear signal processing and impulse response

In signal processing, filtering consists of modifying a real input signal by block-
ing pre-specified particular components (usually frequency components). Finite
impulse response (FIR) filters are the most popular type of filters. They are
usually defined by their responses to the individual frequency components that
constitute the input signal. In this context, the mathematical manipulation con-
sists of convolving the input samples with a particular digital signal called the
impulse response of the filter. This impulse response is simply the response of
the digital filter to a Kroenecker impulse input.

Let X = (Xn)n=1,...,N be a set of N digital samples of a signal. Let ρ = (ρi)i∈Z

be the impulse response of the considered filter. The computation of Yk, the kth

component of Y the filter output, is given by Yk =
∑N

n=1
ρk−nXn.

When the impulse response is positive and has a unitary gain (∀i ∈ Z,
ρi ≥ 0 and

∑

i∈Z
ρi = 1), it can be considered as a probability distribution

inducing a probability measure P on each subset A of Z by P (A) =
∑

i∈A ρi.
This special case of impulse response is often called summative kernels [10], or
simply kernels, when used to ensure interplay between continuous and discrete
domains. Thus, computing Yk is equivalent to computing a discrete expectation
operator involving a probability measure Pk induced by (ρk−n)n∈Z, the prob-



ability distribution obtained by translating the probability distribution ρ in k:
Yk =

∑N
n=1

ρk−nXn = EPk
(X).

When the impulse response is not positive or has not a unitary gain then it
can be expressed as a linear combination of, at most, two summative kernels in
the following way. Let ϕ = (ϕi)i∈Z be the real finite impulse response of a discrete
filter such that

∑

i∈Z
ϕi < ∞. Let ϕ+

i = max(0, ϕi) and ϕ−

i = max(0,−ϕi).

Let A+ =
∑

i∈Z
ϕ+

i and A− =
∑

i∈Z
ϕ−

i . Let ρ+

i =
ϕ

+

i

A+ and ρ−i =
ϕ

−

i

A−
. By

construction, ρ+

i and ρ−i are summative kernels and ϕi = ρ+

i A+ − ρ−i A−.

Thus, any discrete linear filtering operation can be considered as a weighted
sum of, at most, two expectation operations. Let P+

k (rsp.P−

k ) be the probability
measure based on the summative kernel ρ+

k−i (rsp.ρ−k−i ), X an input signal and
Y the corresponding output signal, then Yk = A+EP

+

k

(X) − A−EP
−

k

(X).

The decomposition of ϕ into ρ+ , ρ−, A+ and A− is called its canonical
decomposition and is denoted as {A−, A+, ρ−, ρ+}.

3 Extension of linear filtering via a pair of two conjugate

capacities

Let us consider a pair of capacities ν+ and ν− such that P+ ∈ core(ν+) and
P− ∈ core(ν−). By translating the confidence measures, we also define ν+

k and
ν−

k such that P+

k ∈ core(ν+

k ) and P−

k ∈ core(ν−

k ). It is thus easy to extend
linear filtering to a convex set of impulse responses defined by ν+ and ν− by:
[Yk] = A+Eν

+

k

(X)⊖ A−Eν
−

k

(X), with ⊖ being the Minkowski sum [11], Eν the

extension of expectation to concave capacities [12] and [Yk] the kth component
of the output of the imprecise filter. Due to the domination properties [3] it
verifies: Yk = A+EP

+

k

(X) − A−EP
−

k

(X) ∈ [Yk].

It can also be extended by considering two real intervals [I+] and [I−] and
using ⊗, the extension of the multiplication to interval valued quantities:

[Yk] =
(

[I+] ⊗ Eν
+

k

(X)
)

⊖
(

[I−] ⊗ Eν
−

k

(X)
)

. (1)

Thus every filter with an impulse response ϕ whose canonical decomposition
{A−, A+, ρ−, ρ+} is such that P+ ∈ core(ν+) and P− ∈ core(ν−) and A+ ∈ [I+]
and A− ∈ [I−] has an output that belongs to [Y ] the output of the interval-
valued filter defined by Equation 1.

4 Discussion and conclusion

The new method we propose is an extension of the conventional signal filtering
approach that enables us to handle imperfect knowledge about the impulse re-
sponse of the filter to be used. It mostly consist in replacing the usual single
precise impulse response by a set of impulse responses that is consistent with
the user’s expert knowledge. It can be perceived as a surprising way of using the
imprecise probability framework. It allows a new interpretation and a new way



of computing the imprecision associated with an observed value. According to
this interpretation, the imprecision of an observation can be due to the obser-
vation process but also to poor knowledge on the proper post-processing to be
used to filter the raw measured signal. Defining the pair of convex capacities also
defines the convex set of impulse responses. In our recent papers, we have shown
different approaches to define pair of capacities that able to handle with a lack
of knowledge of the sampling process and an imprecise knowledge of a filtering
process (see e.g. [12]). It also ables the propagation of input random noise level
to the output filtered value [9] and thus use this information for automatically
define thresholds in image analysis processes [6].

Our actual approach only considers a precise signal input. It thus would be
useful extend our work to an imprecise signal input, whose imprecision could
come from a previous imprecise filtering or be due to pre-calibration of the
expected signal error. This could be a way to deal with the measurement uncer-
tainty that is only indirectly taken into account within our approach.
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