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Abstract— This paper deals with main apparent motion es-
timation using a fuzzy representation of pixel’s gray level.
Rough histograms and possibility theory are used to pro-
vide an accurate estimation of the motion. The use of these
theories allows us to partly cope with classical motion esti-
mation method limitations. This article explains in details
the estimation process and also presents some illustratives
examples.

I. INTRODUCTION

Signal processing and computer vision have been in full
expansion for the past ten years. Motion estimation from a
video sequence is a key issue in image processing and com-
puter vision. It has many applications in object tracking,
egomotion estimation of a mobile robot, or mosaicing. This
article aims at finding the main apparent motion in a video
sequence. This field has already been thoroughly studied
and many methods have been tested. These methods gather
together correlation, optical flow and feature-based meth-
ods. However, these approaches rely on strong hypothesis
that have to be frequently transgressed - thus limiting their
reliability.

A state of art proves that few works focus on the im-
provement of fuzzy and possibility theories with regard to
motion estimation. This paper offers to use a fuzzy model
of the image to represent data. Moreover, possibility and
rough histograms theories allow to partly cope with inher-
ent problems of classical motion estimation methods.

After this first introductory chapter, the principles of ap-
parent motion are defined in chapter two. Classical meth-
ods and their drawbacks are then briefly presented. The
third chapter introduces a new approach based on a fuzzy
modeling of pixels. The motion estimation method is also
set out. Chapter four unfolds some results. Eventually, the

last chapter concludes on the contribution brought by the

method and raises new perspectives

II. APPARENT MOTION
A. Definitions

In a static scene, the movement of a camera entails an ap-
parent motion on the sequence it acquires. This movement
results in a variation of the environment point’s projection
on the camera’s focal plane. However, phenomena such as
occlusions, moving objects in the static scene, or global illu-
mination variation can be interpreted as apparent motion.
Most classical methods aim at finding the main apparent
motion linked to the camera’s displacement.

In a 3-D environment, the main apparent motion on im-
age space due to the motion of the camera can generally
be modelled according to six parameters (three translations
and three rotations). However, Bouthemy in [1} has shown
that under small displacement assumption, a four param-
eter model is more robust. The pan and tilt rotations of
the camera can be related to translations in the focal plane.
The motion is then characterized by two translations on
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each axes of the image, one rotation around the normal to
the focal plane and a scaling factor.

Classical methods for motion estimation can be divided in
three categories: feature, correlation and optical flow-based
methods.

B. Feature-based methods

It consists in finding specific points (corners, image edges)
with transformation-invariant properties (such as transla-
tions, rotations, change of global brightness, etc.). These
points are called features. Once these features have been
extracted, a matching process finds the shift between the
same feature in two successive images. One of the draw-
back is the arbitrary choice of feature sent to the matching
process. If - due to an occlusion - an interesting point van-
ishes in the second image, the motion estimation may fail
or its robustness decrease.

C. Optical flow-based methods

These methods are among the most studied [2], 3], [4].
Let E(z,y,t) be the irradiance image. Motion estimation
methods based on optical flow computation link the spatio-
temporal gradient of E(z,y,t), using the constraint equa-
tion:

VE@yl , 1+ B =§ (1)

where VE, 4 is the spatial gradient, and E; the temporal

gradient of the irradiance image; (u,v) = (£, %) is the
projection of the 3-D velocity field in the focaf plane, and &
is the global brightness variation.

As this computation is based on brightness continuity,
only small displacements can be estimated. Moreover, this
approach is based on two antagonist assumptions. On the
one hand, the image must be sufficiently textured for the
motion to be visible. (If VE(; ;) and E; are zero, no motion
can be estimated.) On the other hand, the computation of
local gradients VE; ,) and E; is made through a low-pass
filter, which requires a low texture of the image.

Reducing the influence of these constraints is possible.
For example, 'Bouthemy in [1] offers to use robust statis-
tics in order to cope with pixels not fulfilling (1). He also
suggests to use a multi-scale process so as to allow large
displacements estimation.

D. Correlation-based methods

These methods split up in two approaches: paramet-
ric and non-parametric statistical-based methods [5]. In
both cases, a pixel to be matched becomes the center of
a small window of pixels in the first image. This window
is compared with similarly sized regions in the second im-
age. Then parametric or non parametric statistical-based
matching metrics are used to provide a numerical measure
of similarity between these two windows.
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Fig. 1. Fuzzy membership function of pixels’ class.

These methods require a motion model. The parametric
space of the motion is discretized, and the couple of param-
eters obtaining the best similarity measure is said to square
with the main motion. However, the precision of the es-
timation is limited by the sampling interval of the motion
parameter’s space. Moreover, correlation-based methods do
not correctly handle motion model containing rotations be-
cause it involves non-integer displacements. Finally, it is
necessary to set an arbitrary threshold to discard meaning-
less estimation. The arbitrary nature of this thresholding
lowers the estimation’s robustness.

III. NEW APPROACH

The approach presented here has certain similarities to
the methods described above. as with correlation-based
methods, a discretization of the parametric space is re-
quired. Moreover, as optical flow-based methods, it links
spatio-temporal variation of the irradiance image.

A. basic concept

The camera displacement entails a movement of the en-
vironment points projections. Feature based-methods as-
sume that the peculiarity of local properties is conserved.
Those based on correlation admit that local patterns are
retained through the image sequence. As for optical flow-
based methods, the assumption is about the local brightness
distribution retaining. The approach presented here is less
restricting because based on a very simple hypothesis. In-
stead of comparing the pixel’s intensities, the process rather
tests if a pixel (i,7) of picture one and a pixel (¢, j') of pic-
ture two belong to the same class.

The hypothesis can then be written as: a white pixel is
unlikely to become a black pixel and vice-versa; but a gray
pixel can become a black or white pixel.

In order to simplify this reasoning scheme, the gray level-
space is split in two dual classes: black and white pixels.
Classes are fuzzified (Fig. 1) to avoid instability around the
classes’ boundaries. These two fuzzy dualistic classes model
minimizes the pixel representation issue apriority. More-
over, the use of classes is known to enhance the robustness
of a process.

Except for the camera’s motion, other causes may induce
a pixel’s intensity change: a global brightness variation, a
moving object in front of the camera, or a change of a sur-
face’s reflective properties due to a variation of orientation.

The issue of global brightness variation is partly settled
with the fuzzy dual model of pixel’s gray level. Indeed, a
small variation of a pixel’s intensity will only slightly change
its membership degrees to black and white class. The two
other problems will be treated later on in this paper.

B. Motion Characterization using the pizel’s fuzzy repre-
sentation

Let’s assume that the model of the motion to be estimated
is a three parameters’ model: two translations (T3, T,) and
a rotation (#) (the zoom factor issue hasn’t been tackled
with yet). In order to compute the motion estimation,
the parametric space is discretized. The estimation pro-
cess amounts to finding the most likely displacement, in the
parametric space defined above.

If a pixel P; located in (¢, 7) on the first image is trans-
formed with a (T, Ty, #) motion, it will be located in (i, j')
on the second image and referred to as P| Fig 2.

The likelihood of a pixel’s displacement is defined as:

Agiom 1: The (Ty,T,,0) displacement that transforms
P, into P is likely if both P, and P] belong to the same
class. That is P; and P| are white pixels, or P, and P| are
black pixels.

Because of the fuzzy modeling of pixels’ classes, a pixel
is characterized by two membership values. The likelihood
of a displacement is then dually evaluated. The eventuality
for a pixel Py of the first image to be transformed in P| in
the second image is represented by:

Votepro(P!; Py) (2)
= max(min(g,, (P1); ,, (P1)); min(py (Py); 15 (P1))),

where p,,(P) (resp. p,(P)) is the pixel P membership de-
gree to the white pixel’s class (resp. black pixel’s class).
The dual quantity, representing the impossibility for a pixel
to move from P, to P], is evaluated by:

Votecon(P!; P1) (3)
= max(min(p,, (P1); #y(P1)); min(y (P ); o, (P1)))-

If the gray level of pixels P; and P| are known precisely,
then:
Votecon = 1 — Votepro- (4)

This method allows to partly cope with the problems
linked to the image’s border. Indeed, if a displacement
(T, Ty, 8) brings the pixel P] out of the second image, then
the gray level of this pixel is unknown. The lack of infor-
mation about P} gray level is taken into account by setting
iy (Py) and py, (PY) to 1.

C. Link with the motion model

The motion estimation process has to take into account
the imprecision of all the computation process.

Image 1

Image 2

Fig. 2. Pixel’s displacement under (T:z,Ty,8#) movement.
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Fig. 3. Fuzzy representation of a pixel.

A pixel has to be considered as an imprecise quantity
because of the picture digitalization. Its representation is
then at least a crisp box or a fuzzy box, resulting from the
cartesian product of two crisps or fuzzy intervals in 2-D.
Hereinafter, the fuzzy representation of pixels will be used.
The pixel’s membership function’s variation will be linear,
S0 as to remain as neutral as possible - no assumption on
data distribution in the interval (Fig. 3).

The parametric space discretization also brings impreci-
sion on the parameters of the motion model. This impreci-
sion is modelized by a fuzzy representation of the parametric
space partition. A cell of this partition is then characterized
by its kernel - value used in classical partition - and its sup-
port - linked to the sampling interval. The transformation
that brings P, from the first image to P from the second
one can be re-written as:

Pl=RxP +T, (5)

where R is the ensemblist transformation corresponding to
an imprecise rotation of angle 6, with a support defined by
[fo — A8,600 + Af), and T is the ensemblist transformation
corresponding to a [T;o, Tyo] translation, with supports de-
fined by [Tz0 — ATy, Tpo + AT;] and [Tyo — ATy, Tyo + ATY).
Af, AT, and AT, are linked to the parametric space dis-
cretization.

As P{ results from the ensemblist transformation of P,
it is also an imprecise quantity. Its representation covers
many pixels P, of the second image Fig. 4.

The focus is now put on how a pixel P| will vote for a
displacement (7%, Ty,6). With a possibilistic reasoning, the
compatibility between the two imprecise quantities involves
an average over all pixels covered by P{. The fuzzy approach
‘involves two computations: the worst case, where all pixels
partially or totally covered by P| are taken into account;
and the best case, where only totally covered pixels are
taken into account.

If the possibility theory’s terminology is used, then the
following claims can be written:

P1’(il,51)

Image 2

Fig. 4. P{ covering many pixels Py from picture 2

Aziom 2: Pixel P, will vote in a possible way for
(T:,T,,0) if, 3P, satisfying P, N P{ #0 and gray level of
P, and P, belong to the same class.

Agziom 3: Pixel P; will necessary vote for (T%,Ty,0) if,
VP, C Py, gray level of P, and P; do not belong to different
classes.

To estimate the compatibility between quantities P{ and
P, in terms of their degree of inclusion and intersection, the
possibility and necessity measures defined in [6] are used:

Possible Vote = IL(P{;P2), . (6)

Necessary Vote = N(P|;P),
where II(P;; P,) (resp.N(P;; P2)) is the conditional possi-
bility measure (resp. necessity measure) of P| given Ps.

The sup — min composition rule [7] is then used to merge
(2), (3) and (6), which gives:

Votesup(Ty, Ty, 6) (7
Py

Sup min(II(P{; P,); Votepro(Pr; P2)),
Py€lmage 2

Voterns(Tz, Ty, 6) 8)
P,

Il

1 — Sup min(N(P}; P»); Votecon (Py; P2)).

Py€Elmage 2

These votes are performed for each pixel and each com-
bination of the parametric space. Then, they are collected
in two accumulators associated to the fuzzy partition of
the parametric space. These accumulators are respectively
called lower accumulator (polling the Voterns) and upper
accumulator (polling the Votes,,). These accumulators, as-
sociated with the fuzzy partition, define a rough histogram.
This concept is fully presented in (8].

Once the rough histogram has been computed, it defines
a framing of the apparent motion’s density of probability.
The next step aims at finding the main mode of this rough
histogram, which is associated to the main apparent motion.

D. Motion estimation

Finding the main mode in a classical histogram consists
in finding the cell whose accumulator is maximal. How-
ever, the localization’s precision of this mode depends on
the width of the histogram’s bins. Using rough histograms
entails a kind of natural interpolation between the discrete
values of the partition [9], thus improving the localization’s
precision.

The full main mode estimation method is presented in
[8], and only the basis are explained here. Searching the
main mode in a rough histogram amounts to searching the
position of a crisp or fuzzy interval ¢ of precision I, polling a
locally or globally maximum of votes. The number of votes
purporting to this interval ¢ has then to be estimated.

This estimation is achieved by transposing the imprecise
number of votes towards the interval ¢. This belief transfer
uses the pignistic probability defined in [10] and [11]. Then,
an upper bound (resp. lower bound) of the number of votes

embodied in ¢ called Nb(®) (resp. Nb(®)) is computed

with the upper accumulator (resp. lower accumulator) of
the rough histogram.
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Fig. 5. Images number 1 (a), 35 (b) and 54 (c) from the 120-images
sequence of the wall. The image (d) represents the resulting mo-
saic.

Up to now, the main mode is searched as the position of
¢ maximizing Nb(®)+Nb(®) (kind of average probability).
Other formulas, derived from statistical reasonning with im-
precise probabilities defined in [12], have been successfully
tested. This part is still being improved today.

As for the problems linked to an occlusion or a change of
a surface’s reflective properties due to a variation of orienta-
tion, if the pixels altered by their effects are in the minority,
the main mode estimation will not be affected. Thus, the
estimation of the main apparent motion partly copes with
such problems.

IV. RESULTS

The mosaic presented in Fig.5 has been run out on a 120-
images sequence of a stone wall. The motion of the camera
was mainly composed of a horizontal translation. Mean-
while, the motion also includes small rotations around the

‘normal to the focal plane and vertical translations. The
mosaic is created by estimating the motion (T:,Ty,0) be-
tween two consecutive images and by superposing them on
the resulting picture.

The mosaic image emphasizes the estimation accuracy
since no visible disruptions occur on the surface wall.

The three parameters model used for the estimation pro-
cess (T, Ty, 8) is an approximation of the real motion. Ac-
tually, it also includes zoom and other rotations - considered
as parasite motions. The motion estimation process does
not appear to be disturbed by this approximation, thus,
as far as the model is concerned, the motion estimation is
robust.

However, the fact that the camera was not moving in a
plane parallel to the wall brings small distortions on the
resulting mosaic.

During the sequence acquisition, the operator kept vary-
ing the lens aperture so as to produce variations in the
global brightness. As such, the gray level of the projec-
tion of a 3-D environment specific point can be different
between two consecutive images. This does not interfere
with the motion estimation process. Thus, as far as data

contamination is concerned, the estimation is also shown to
be robust.

V. CONCLUSION

A new method of motion estimation has been presented in
this paper. This estimation is based on a fuzzy modelling of
pixel’s gray level and uses both rough histograms and pos-
sibility theories. This method allows to partially cope with
classical issues in motion estimation process, such as small
displacement assumption and texture-linked constraints. A
motion model and a discretization of the motion parameters
space is needed. However, using rough histograms involves
a somewhat natural interpolation, and leads to an estima-
tion less sensitive to the parameters space discretization.

Moreover, as far as data contamination is concerned, us-
ing a fuzzy model of pixel’s gray level appears to be robust.
Actually, a variation of global illumination does not cause
the estimation process failure.

Another positive point is that the method gives an es-
timation of the motion as well as a confidence measure of
this estimation. Indeed, the gap between the lower and up-
per accumulators is linked to this confidence measure. The
more the accumulators remain apart from each other, the
less significant the estimation is. Unlike correlation-based
methods, the thresholding for keeping the estimation rele-
vant, is set by data.

However, this motion estimation process has drawbacks.
First, the computing time is quite long since loops are inter-
twined in the algorithm, but improvements are in progress.

Then, the overlapping rate between two images has to
be at least of 75 per cent, for fear of not guaranteeing the
”main motion” estimation’s success. Eventually, defining an
arbitrary research area for the motion model parameters is
necessary and entails a limitation of the estimated motion.

The next step of the motion estimation process will con-
sist in improving the motion model with the incorporation
of a scaling factor. The estimation process will also be
tested on image stabilization issues.
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