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Abstract

This article proposes a new interval-valued fuzzy transform. Its construction is based on a possibilistic interpretation of the 
partition on which the fuzzy transform is built. The main advantage of this approach is that it provides specific interval valued 
functions whose interpretation is straightforward. This interpretation relates to a traditional sampling/reconstruction framework 
where little is known about the sampling and/or reconstructing kernels. Numerous properties of the proposed approach are proved 
that could be useful for function analysis and comparison. In the experimental section, we illustrate some properties of the proposed 
transform while highlighting interesting features of the obtained framework.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, signal processing is mainly achieved through algorithms on discrete and quantified representations of 
real signals. In this domain, transformations are essential to transpose a signal to another space in order to obtain a 
more compact and meaningful representation of the signal. Transformations are extensively used for analysis, com-
pression, encryption, filtering, inversion, information retrieval, etc. Many transformations have been proposed in the 
relevant literature. Fourier and Laplace transforms are the most widely used, which associate a complex decomposi-
tion with any real signal in the frequency domain. The advent of the fast Fourier transform (FFT) enabled real-time 
computation of the Fourier transform and thus its wide use in many applications. The discrete cosine transform can be 
seen as a simplification of FFT that only keeps the real part of the Fourier transform, thus associating a real decompo-
sition with a real signal. It became popular through its use in the jpeg compression method. The wavelet transform was 
more recently proposed as a better solution for analyzing signals having compact support. In image processing, more 
dedicated transformations have also been proposed. For example, the Hough transform places the image in a paramet-
ric space, thus facilitating the retrieval of specific parametrized features (e.g. lines, curves, etc.). Its close relative, the 
Radon transform, has been proposed to solve the problem of reconstructing an image from its projections. Sampling 
and subsampling can also be seen as transformations. Sampling consists of associating a bounded set of real-valued
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samples with a continuous signal, while subsampling associates a reduced number of representative samples with a 
real high resolution discrete signal. The idea underlying working with a sampled (or subsampled) signal is to use an 
inherent redundancy of the signal, so as to make it possible to work with the original signal by only manipulating a 
reduced set of samples. It is used to solve continuous problems by finite computation or to reduce the computation 
complexity of a signal processing algorithm. Other transforms exist like those of Hilbert, Gabor, Zack, etc. Most of 
those transformations consist of convolving the real signal with an appropriate set of kernels, which is the basis of the 
transform.

The fuzzy transform (or F-transform) recently proposed by Irina Perfilieva [23] belongs to this transform family. It 
consists of associating, with an original continuous or discrete real signal, a reduced set of real samples by projecting 
this signal on a fuzzy partition à la Ruspini [29]. This has drawn a great deal of attention from the scientific com-
munity since it is one of the rare uses of the fuzzy framework to directly handle real functions without any linguistic 
interpretation. It has been used for data analysis [26], compression (see references in [23]), segmentation [17], coding 
[16], solving differential equations, forecasting [18], scheduling [12], trading [33], etc. A special issue of this journal 
was recently dedicated to advances in fuzzy transform theory and applications [27].

The fuzzy transform involves two operations: a direct fuzzy transform (F-transform) which is the decomposition 
itself and an inverse fuzzy transform (IF-transform) that goes from the sampled space to the original space. The word 
“inverse” may seem somewhat inappropriate since applying the IF-transform to the F-transform of a signal leads to 
an estimate that is not equal to the original signal. However, as shown in [23], an appropriate choice of fuzzy partition 
can make the reconstructed signal an approximation of the original signal with any arbitrary precision.

With most transforms, the question arises as to the existence of an inverse transform, i.e. is it possible to reconstruct 
the original signal from its transformation? Except for the wavelet transform, the answers to this question given 
by the authors of most of the aforementioned transforms are highly debatable when applied to numerical signal 
processing. More precisely, if a signal is represented by a reduced number of values, the reconstruction of the original 
signal is risky. For example, the discrete Fourier transform has an inverse, i.e. it is possible to exactly reconstruct 
the original sampled signal from its transformed values. However, manipulations in the transformed space are often 
meaningless in the original space since the Fourier transform of a discrete signal is continuous while the FFT associates 
a discrete representation with a discrete signal. The Radon transform also has an inverse form in the continuous 
domain. However, this inverse form does not exist in the discrete space and a certain number of dedicated tools, 
including regularizations and optimizations, are required to invert a discrete Randon transform.

The inverse transform issue also naturally exists within the F-transform framework. The first proposition of Perfil-
eva was to use the same shape function as that used to generate the partition to achieve both F- and IF-transforms. She 
proved that the obtained reconstruction locally minimizes a L2 distance between the original and the reconstructed 
signal. However, as shown first by Crouzet [2] and then by Patané [21], this local criterion is not very relevant from a 
signal processing standpoint. Thus, in this setting, another basis should be preferred that leads to minimizing a global 
L2 distance. As shown in [3], this leads to the least square interpolation procedure conventionally used in signal 
processing. However, this approach only applies to discrete functions.

Other techniques have been proposed to enhance the ability of the fuzzy transform framework to work with a 
simple representation of a signal. For example, Bede and Rudas [1] question the shape function of the weighting fuzzy 
numbers used to form fuzzy partitions. It appears, from a qualitative comparison, that the optimality of a particular 
shape function highly depends on the function to be represented. The partition can thus be adapted to the signal, as 
shown by Sefanini in [31]. The position of the partition nodes can also be adapted to have a higher concentration 
of atoms where the signal has more variations. However, adapting the partition to signals can require the use of two 
different partitions for two different signals, thus limiting the ability of using fuzzy transforms for combining or 
comparing two signals. For this kind of application, it is more interesting to use a fixed regular partition with a known 
approximation ability.

From a signal processing standpoint, the fuzzy transform framework looks like a sampling/interpolation process, 
classically used to solve continuous problems by discrete computations or to perform computations that are equivalent 
to continuous processes [15,35]. Most results reported in the fuzzy transform literature are classical signal process-
ing results. Thus, how does this fuzzy framework apply in the signal processing context? As base functions? As a 
complementary tool?

A very interesting answer to this question was proposed by Perfileva in [23] whereby new fuzzy transforms based on 
residuated lattice operations were constructed. These new transforms lead to interval-valued direct and inverse fuzzy 
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transforms. In this paper, we try to go further in this interval-valued direction by reinterpreting the fuzzy transform 
framework in the light of non-additive measures theory [6].

The paper is organized as follows. Section 2 presents useful definitions and notations. Section 3 introduces the 
ordinary F-transform as proposed in [23] as well as some new properties. Section 4 is dedicated to our proposition 
of an interval-valued non-additive F-transform. We provide some illustative experimentations in Section 5 and we 
conclude in Section 6 with remarks on the limitations of the current approach and propose some avenues for future 
study.

2. Preliminary considerations, definitions and notations

2.1. Notations

This study is restricted to a one-dimensional case of continuous and discrete real functions. Extending this study 
to more than one dimension is straightforward (see Section 5.1).

Let R be the real line and IR the set of all intervals of R. The continuous functions we consider are defined on 
an interval Ω = [a, b] ⊂ R. We define P(Ω) as the set of all Lebesgue measurable subsets of Ω . Let p be a positive 
integer, then Θp = {0, . . . , p} ⊂ N denotes the set of (p + 1) positive integers and �p = b−a

p
is the sampling step. 

The kth sampling location (ωk)k∈Θp is defined as: ∀k ∈ Θp , ωk = a + k�p . We also define P(Θp) as the set of all 
subsets of Θp .

2.2. Confidence measures and integrals

A capacity, also called confidence measure, can be defined on both continuous and discrete reference sets.

Definition 1. A continuous capacity ν is a set function ν : P(Ω) → [0, 1] such that ν(∅) = 0, ν(Ω) = 1 and ∀A, B ∈
P(Ω), A ⊆ B ⇒ ν(A) ≤ ν(B).

Given a capacity ν, its conjugate νc, is defined as: νc(A) = 1 − ν(Ac), for any subset A ∈P(Ω), with Ac being the 
complementary set of A in Ω . Note that, in this paper, to avoid confusion with other notations the classical ν̄ notation 
will not be used. A capacity ν such that for all A, B in P(Ω), ν(A ∪ B) + ν(A ∩ B) ≤ ν(A) + ν(B) is said to be 
concave (or submodular or 2-alternating). This paper only considers such capacities. The core of a concave capacity ν, 
denoted M(ν), is the set of probability measures P on P(Ω) such that ν(A) ≥ P(A) for all subsets A ∈P(Ω).

Remark 2. If ν is a concave capacity, its conjugate capacity νc is convex, i.e. ∀A, B ∈ P(Ω), νc(A ∪B) +νc(A ∩B) ≥
νc(A) + νc(B). Due to the conjugation relationship between ν and νc, the core of ν can be rewritten:

M(ν) = {
P probability measure on P(Ω), ∀A ∈ P(Ω), νc(A) ≤ P(A) ≤ ν(A)

}
.

Remark 3. A concave capacity that equals its conjugate is a probability measure, i.e. an additive capacity.

Definition 4. Let f : Ω → R
+ be a L1 bounded positive function and let ν be a capacity on P(Ω), the Choquet 

integral of f with respect to ν is the real value Cν(f ) defined by:

Cν(f ) =
∞∫

0

ν
{
x ∈ Ω/f (x) ≤ α

}
dα. (1)

This definition can be easily extended to non-positive functions when considering the so-called asymmetric Cho-
quet integral [6].

Definition 5. Let f : Ω → R be a L1 bounded function and let ν be a capacity on P(Ω), let f + (resp. f −) be 
the function defined by ∀x ∈ Ω , f +(x) = max(f (x), 0) (resp. f −(x) = max(−f (x), 0)), the asymmetric Choquet 
integral of f with respect to ν is the real value Čν(f ) defined by:
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Čν(f ) =Cν

(
f +) −Cν

(
f −)

. (2)

All of those definitions can be easily particularized to the discrete case.

Definition 6. A discrete capacity ν is a set function ν: P(Θp) → [0, 1] such that ν(∅) = 0, ν(Θp) = 1, and ν(A) ≤
ν(B) for all A ⊆ B ⊆ Θp .

The definitions of conjugate capacity, concavity and core of a concave capacity exactly match the continuous case.

Definition 7. Let F : Θp → R
+ be a L1 bounded positive function and let ν be a capacity on P(Θp), the Choquet 

integral of F with respect to ν is the real value Cν(F ) defined by:

Cν(F ) =
∑

n∈Θp

Fσ(n)

(
ν(Aσ(n)) − ν(Aσ(n+1))

)
, (3)

where σ is a permutation of Θp such that Fσ(0) ≤ . . . ≤ Fσ(p), and Aσ(n) is the subset of Θp such that ∀i ∈ Aσ(n), 
Fi ≥ Fσ(n): Aσ(n) = {σ(n), . . . , σ(p)}. By convention Aσ(p+1) =∅.

If F is not positive, then the asymmetric Choquet integral can also be defined in the discrete case.

Definition 8. Let F : Θp → R be a L1 bounded function and let ν be a capacity on P(Θp), let F+ (resp. F−) be the 
function defined by ∀k ∈ Θp , F+

k = max(Fk, 0) (resp. F−
k = max(−Fk, 0)), the asymmetric Choquet integral of F

with respect to ν is the real value Čν(F ) defined by:

Čν(F ) =Cν

(
F+) −Cν

(
F−)

. (4)

2.3. Summative and maxitive kernels

Kernels are used in signal processing to define weighted neighborhoods of real locations.
A continuous summative kernel [13] is a continuous function κ : Ω −→ R

+ such that 
∫
Ω

κ(x)dx = 1. This 
function is formally equivalent to the density of a Lebesgue-measurable probability distribution Pκ defined by: ∀A ∈
P(Ω), Pκ(A) = ∫

A
κ(x)dx. K(Ω) is the set of all summative kernels defined on Ω .

A continuous maxitive kernel [13] is a continuous function π : Ω −→ [0, 1] such that supx∈Ω π(x) = 1. This 
function is equivalent to the density of a possibility distribution, thus defining a possibility measure (Ππ ) and a 
necessity measure (Nπ ) on Ω : Ππ(A) = supx∈A π(x) and Nπ(A) = 1 − supx /∈A π(x). Ππ is a concave capacity and 
Nπ its conjugate (convex) capacity.

Defining a maxitive kernel is equivalent to defining a subset of K(Ω). Let π be a maxitive kernel, then M(π) =
{κ ∈ K(Ω)/∀A ∈ P(Ω), Nπ(A) ≤ Pκ(A) ≤ Ππ(A)} is called the core of π . This definition coincides with that given 
in Section 2.2.

Those concepts can easily be extended to a discrete space [13].
A discrete summative kernel [13] is a discrete function η : Θp −→ [0, 1] such that 

∑
k∈Θp

ηk = 1. This function 
defines a probability measure Pη by: ∀A ∈ P(Θp), Pη(A) = ∑

k∈A ηk . The set of all discrete summative kernels 
defined on Θp is denoted K(Θp).

A discrete maxitive kernel [13] is a discrete function π : Θp −→ [0, 1] such that supk∈Θp
πk = 1. This func-

tion defines two dual confidence measures on Θp called a possibility measure (Ππ ) and a necessity measure (Nπ ): 
Ππ(A) = supk∈A πk and Nπ(A) = 1 − supk /∈A πk .

Similar to the continuous case, a discrete maxitive kernel defines a convex subset of discrete summative kernels, 
denoted M(π) [28].

2.4. Precise and imprecise expectations

Let f : Ω → R be a L1 bounded function and let P be an additive confidence measure (i.e. a probability). The 
precise expectation of f with respect to P is the real value EP (f ) defined by:
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EP (f ) =
∞∫

0

f dP, (5)

with P being additive. As P is fully characterized by its density function κ through the equality: ∀A ∈P(A), P(A) =
Pκ(A) = ∫

A
κ(x)dx, Expression (5) can be rewritten as:

EP (f ) = EPκ (f ) =
∫
Ω

f (x)κ(x)dx. (6)

The expectation concept can easily be extended to concave capacities (see [28]). Let ν be a concave capacity and let 
f : Ω → R be a L1 bounded function. The imprecise expectation of f with respect to ν is the real interval Eν(f )

defined by:

Eν(f ) = [
Eν(f ),Eν(f )

] = [
Čνc (f ), Čν(f )

]
.

Two fundamental properties come from the work of Denneberg [6].

Proposition 9. Let f : Ω → R be a L1 bounded function and let ν be a capacity defined on Ω , ∀P ∈ M(ν), EP (f ) ∈
Eν(f ) and ∀y ∈ Eν(f ), ∃P ∈ M(ν) such that y = EP (f ).

Proposition 10. Let f, g : Ω → R be two L1 bounded functions and let ν be a concave capacity defined on Ω , 
Eν(f + g) ≤ Eν(f ) +Eν(g) and Eν(f + g) ≥ Eν(f ) +Eν(g).

Precise and imprecise expectations coincide when considering a probability measure, i.e. if P is a probability 
measure on P(Ω), then EP (f ) = EP (f ).

In the same way, precise and imprecise expectations can be defined in the discrete space. Let F : Θp → R be a 
bounded function. Let Pη be a discrete probability measure on P(Θp) generated by the discrete summative kernel η. 
The precise expectation of F with respect to Pη is the precise value EPη(F ) defined by:

EPη(F ) =
∑
k∈Θp

Fkηk. (7)

Let ν be a concave capacity on P(Θp). The imprecise expectation of F with respect to ν is the real interval Eν(F )

defined by:

Eν(F ) = [
Eν(F ),Eν(F )

] = [
Čνc (F ), Čν(F )

]
.

Properties 9 and 10 are also true in the discrete space [30].
Finally, expectation operators can be easily extended to interval valued functions. Let f : Ω → IR be an interval 

valued function, i.e. ∀x ∈ Ω , f (x) = [f (x), f (x)], let P be a probability measure, EP (f ) = [EP (f ), EP (f )] =
{EP (g)/g ∈ f } [7]. Let ν be a concave capacity, this extension also applies with the imprecise expectation operator 

Eν : Eν(f ) = [Eν(f ),E(f )] = {EP (g)/g ∈ f and P ∈ M(ν)}. These extensions also apply with discrete functions 
(proofs see [32]).

2.5. Kernel: an instrumental tool in discrete signal processing

In signal processing, kernels are instrumental to obtain discrete operations on discrete signals (or functions) which 
are equivalent to continuous operations on continuous signals (or functions) [35]. Computing the derivative of a 
digital image is a good example of such a process that requires estimating the gradient value (which is a continuous 
concept) at each pixel location of the input image. The sampling process is modeled by associating a summative kernel 
κk ∈ K(Ω) with each sampling location ωk ∈ Ω (k ∈ Θp). The Fk value associated with the kth sampling location is 
computed by Fk = ∫

Ω
f (x)κk(x)dx. In most applications, each summative kernel κk can be deduced from a generic 

kernel κ ∈ K(Ω) by ∀x ∈ Ω , κk(x) = κ(ωk − x) (see Fig. 1). Each sampled value Fk can thus be seen as an average 
value of the original signal in a weighted neighborhood of each sampling location ωk obtained by:
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Fig. 1. Sampling.

Fig. 2. Reconstruction.

∀k ∈ Θp, Fk =
∫
Ω

f (x)κ(ωk − x)dx. (8)

Hereafter, the procedure whereby the value Fk is associated with each sampling location ωk via Expression (8) will 
be referred to as sampling f via κ at the sampling location ωk .

From a signal processing standpoint, the sampling is said to be perfect if Fk = f (ωk). This situation is true for any 
signal f if and only if the sampling kernel is δ, i.e. the fictive function associated with the Dirac distribution. Generally, 
Fk can be seen as the perfect sampling of g, a function obtained by smoothing f with the kernel κ : Fk = g(ωk), with 
g = f ⊗ κ , ⊗ being the convolution operation defined by: ∀x ∈ Ω , (f ⊗ κ)(x) = ∫

R
f (u)κ(x − u)du.

Sampling is done to preserve the main information contained in the continuous signal in the samples, i.e. the loss 
of information due to sampling is negligible. It is thus possible to obtain a reliable reconstruction of f based on these 
samples. This reconstruction is conditioned by the Nyquist–Shannon sampling theorem: no signal whose frequency is 
higher than 1

2�p
can be reconstructed from a sampled signal whose sampling period is �p. In that case, theoretically, 

the value of signal f , at each x ∈ Ω , can be reconstructed by convoluting Fk with a kernel whose impulse response 
is a sine cardinal function centered on x (see Fig. 2). However, this theoretical reconstruction is usually not possible 
since the signal has a bounded support, while the sine cardinal kernel is adapted to reconstruction of a signal whose 
support is not bounded. As suggested by Unser [35], it is often better and more significant to reconstruct function f
by using a band limited reconstruction kernel ηx that, contrary to the sampling kernel, is not translation invariant, i.e. 
the shape of the reconstruction kernel depends on the position of location x where the signal has to be reconstructed. 
A fitting condition is used to define the reconstruction kernel for the reconstructed signal f̂ to be as close as possible 
to the original signal f . Some computational complexity arguments for or against a particular kernel function can also 
be put forward. This reconstruction step can be written:

∀x ∈ Ω, f̂ (x) =
∑
k∈Θp

Fkη
x
k , (9)

where ηx is the reconstruction kernel defined at position x.
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This reconstruction step is usually called interpolation. Interpolation is a special reconstruction case where the 
reconstructed continuous function has to coincide with the sampled function at the sampling locations, i.e. ∀k ∈
Θp , f̂ (ωk) = Fk . Therefore, an interpolation kernel has to comply with ∀k ∈ Θp , ηωk

k = 1. This entails ∀l �= k ∈
Θp , ηωk

l = 0. However, interpolating the Fk leads to reconstructing g = f ⊗ κ and not f since Fk �= f (ωk). Thus, 
reconstructing f usually requires a high-pass filtering step, that can be combined with the interpolation to generate 
the reconstruction kernel. In that case, the obtained reconstruction kernel is not summative since it is non-positive: 
a positive kernel can only induce low-pass filtering. It however sums to one.

In a pioneer work, Unser [35] proposed B-spline kernels as a tool to represent both sampling and reconstructing 
kernels, thus making a convenient bridge between continuous and discrete domains. The main assets are the compu-
tation simplicity, the reconstruction optimality and the possibility of coupling the sampling and reconstructing kernels 
in a perfect fit scheme. The perfect fit scheme consists of defining a couple of summative kernels (κ , η) which en-
ables us to define discrete operations based on continuous operations (e.g. derivation). This couple is such that, when 
reconstructing a continuous signal f̂ from a sampled signal F by using η and then sampling f̂ via κ , the obtained 
sampled signal F̂ is identical to the original sampled signal F . Defining a perfect fit couple is easy within the B-spline 
framework. Within this approach, the real sampling kernel, i.e. the kernel associated with the imager, is unknown. 
Note that F-transform and perfect fit approaches have different purposes. Where the F-transform tries to simplify the 
processing of a signal by an appropriate sampling-reconstruction scheme, the perfect fit approach aims at processing 
digital signals with operations that have been defined in the continuous domain.

Regardless of the purpose, a sampling/reconstruction couple is a tool that should be able to approximate any 
continuous function f with arbitrary precision. For any arbitrary value ε ∈ R, there is always a triplet (�p, κ , η) that 
makes the distance between f and f̂ lower than ε. Within this framework, summative kernels are mostly used since 
they have easy interpretations in terms of weighted neighborhoods.

However, summative kernels are not the only kernels that can be used to achieve this continuous to discrete inter-
play. In fact, the reconstruction kernel is not positive in the perfect fit approach. It however sums to one. The fact that 
the kernels sum to one is usually justified by some energy conservation arguments.

When the kernels are summative, both sampling and reconstruction can be rewritten by using precise expectation 
operators. Indeed, since κk is the kernel κ translated in ωk , the sample Fk = EP

κk
(f ) = ∫

Ω
f (x)κ(ωk − x)dx. Simi-

larly, when considering the summative kernel ηx defined in Section 2.5, f̂ , the estimation of f based on the samples 
can be written: ∀x ∈ Ω , f̂ (x) = EPηx (F ).

3. Fuzzy transform

The fuzzy transform (or F-transform) was proposed and extensively studied by Irina Perfilieva [23]. This transform 
can be viewed as the decomposition of a continuous (or discrete) function on a fuzzy partition of its domain. We 
present some nice properties of this approach.

3.1. Direct F-transform

Let f : Ω → R be a function. Let {Ck}k∈Θp be the (p + 1) atoms of a fuzzy partition à la Ruspini of Ω [23,29], 
i.e. a set of unimodal symmetrical fuzzy intervals complying with ∀x ∈ Ω :

• ∑
k∈Θp

Ck(x) = 1,
• ∃!k ∈ Θp, Ck(x) > 0, Ck+1(x) ≥ 0,
• ∀k ∈ Θp , Ck is continuous.

The (integral) fuzzy transform of f with respect to the fuzzy partition {Ck}k∈Θp is the (p + 1)-tuple {Fk}k∈Θp

obtained by decomposing (averaging) f on each atom of the partition by:

∀k ∈ Θp, Fk =
∫
Ω

f (x)Ck(x)dx∫
Ω

Ck(x)dx
. (10)

In many applications, the partition upon which the F-transform is built is uniform [23]. A straightforward way to 
build such a uniform partition consists of defining a generic unimodal symmetrical fuzzy subset E of Ω having a 
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bounded support [−�p, �p], with �p = b−a
p

. Each atom Ck of the partition is then deduced from the membership 
function of E by ∀x ∈ Ω , Ck(x) = E(x − ωk), with ωk = a + k�p . For the {Ck}k∈Θp to be a regular fuzzy partition, 

the fuzzy subset E should comply with ∀x ∈ [0, �p

2 ], E(x) = 1 − E(�p − x).
The granularity of the partition [13] is a way to characterize how the transformation approximates the original 

function. It is a measure of the non-specificity of the fuzzy subset E and therefore the roughness of the partition. The 
granularity γ (E) of a fuzzy subset E is defined by: γ (E) = ∫

R
E(x)dx.

Proposition 11. If E is the generic unimodal symmetrical fuzzy subset defining a partition à la Ruspini with a sampling 
step �p then γ (E) = �p .

Proof. Due to the symmetry of the membership function of E, 
∫
R

E(x)dx = ∫ �p

−�p
E(x)dx = 2 

∫ �p

0 E(x)dx. 

Though 
∫ �p

0 E(x)dx = ∫ �p
2

0 E(x)dx + ∫ �p

�p
2

E(x)dx = ∫ �p
2

0 1 − E(�p − x)dx + ∫ �p

�p
2

E(x)dx = ∫ �p

�p
2

1 − E(x)dx +∫ �p

�p
2

E(x)dx = �p

2 . �
Thus, when considering a uniform partition [23], Expression (10) is simplified in:

∀k ∈ Θp, Fk = 1

�p

∫
Ω

f (x)Ck(x)dx. (11)

Note that when considering the support of function f as being unbounded on Ω , F0 and Fp are rather obtained 
by: F0 = 2

�p

∫
Ω

f (x)C0(x)dx and Fp = 2
�p

∫
Ω

f (x)Cp(x)dx.
With the partition being fixed, the F-transform of a function can be considered as a rough representation of this 

function. As noted in [25], the components of an F-transform are average values of the original function. Moreover, 
any sequence {Fk}k∈Θp could be considered as being the F-transform of an unknown function f [23]. In fact, there 
are very close similarities between Eq. (11) and Eq. (8). From a signal processing standpoint, an F-transform is 
simply p samples of a signal (function) based on the sampling kernel κE defined by ∀x ∈ [−�p, �p], κE(x) =
E(−x)/ 

∫ �p

−�p
E(x)dx = E(x)

�p
, since γ (E) = ∫ �p

−�p
E(x)dx = �p . By construction κE is a summative continuous 

kernel since ∀x ∈ R, κE(x) ≥ 0 and 
∫
R

κE(x)dx = 1 [24]. Thus Expression (11) can be rewritten via an expectation 
operation:

∀k ∈ Θp, Fk = EPk
E
(f ), (12)

where P k
E is the probability measure induced by the summative kernel κωk

E defined by: ∀x ∈ Ω , κωk

E (x) = κE(x −ωk).

3.2. Inverse F-transform

The inverse F-transform (IF-transform) aims to reconstruct the original function f from (p + 1) components of 
its F-transform. The exact reconstruction is possible with few very smooth functions since the F-transform, like any 
subsampling method, loses some information. Thus, the IF-transform should be perceived as a method that provides 
an estimate f̂ of the original function f by using the (p + 1) components of F by:

∀x ∈ Ω, f̂ (x) =
∑
k∈Θp

FkCk(x). (13)

This reconstruction can be viewed as an interpolation by simply replacing Ck(x) in Expression (13) by ηx
k in 

Expression (9). By construction, ηx is a discrete summative kernel. Moreover, when considering the fuzzy partition 
defined in Section 3.1, Expression (13) can be easily rewritten as a linear interpolation, for each x ∈ Ω : let k(x) ∈ N

be the integer value such that x − �p < k(x)�p + a ≤ x, thus:

∀x ∈ Ω, f̂ (x) = αxFk(x) + (1 − αx)Fk(x)+1, (14)
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with αx = Ck(x)(x). This interpolation involves the summative kernel ηx completely defined by the value αx , by 
ηx

k(x) = αx , ηx
k(x)+1 = 1 − αx , and ηx

k = 0 for any k ∈ N/{k(x), k(x) + 1}. It is linear in the discrete space Θp , but its 
linearity in the continuous space Ω depends on the linearity of the base membership function E.

Expression (14) can be rewritten as an expectation operation involving the above defined summative kernel ηx:

∀x ∈ Ω, f̂ (x) = EPηx (F ). (15)

As proved in [23] (Theorem 2), the F-transform and IF-transform combination is able to approximate the original 
continuous function f with arbitrary precision: ∀ε > 0, then we have Θp ⊂ N and a fuzzy partition {Ck}k∈Θp of Ω
that leads to a decomposition {Fk}k∈Θp such that ‖f − f̂ ‖ ≤ ε, with f̂ being the IF-transform of {Fk}k∈Θp given by 
Expression (13).

Proposition 12. Let E be a fuzzy subset generating a fuzzy partition {Ck}k∈Θp (see Section 3.1). Let F be the 
decomposition of f : Ω → R obtained through Expression (10), then reconstructing f̂ through Expression (13)
can be expressed as convoluting f with the continuous summative kernel ϕx defined on each x ∈ Ω by: ∀u ∈ R, 
ϕx(u) = 1

�p

∑
k∈Θp

Ck(x)Ck(u).

Proof. The ϕx formula comes directly from the composition of Expressions (10) and (13): ∀x ∈ Ω , f̂ (x) =∑
k∈Θp

FkCk(x), yet Fk = 1
�p

∫
Ω

f (u)Ck(u)du, thus f̂ (x) = ∫
Ω

f (u)( 1
�p

∑
k∈Θp

Ck(x)Ck(u))du = ∫
Ω

f (u)ϕx(u)du. 

The kernel ϕx is positive by construction. Now 
∫
Ω

ϕx(u)du = ∫
Ω

( 1
�p

∑
k∈Θp

Ck(x)Ck(u))du = 1
�p

∑
k∈Θp

Ck(x) ×
(
∫
Ω

Ck(u)du). Though, 
∫
Ω

Ck(u)du = ∫
Ω

E(u)du = �p . Thus 
∫
Ω

ϕx(u)du = ∑
k∈Θp

Ck(x) 1
�p

�p = 1. ϕx is a 
summative kernel. �

The approximation of f by f̂ completely depends on the properties of the summative kernel ϕx whose specificity 
depends directly on �p , the granularity of the partition. Note that ϕx is not translation invariant. There is, however, a 
kind of stepwise translation invariance in the sense that ∀u ∈ Ω , ϕx(u) = ϕx+�p(u + �p).

As shown by Perfilieva, the IF-transform provided by Expression (13) is the best local least square approximation 
(see [23] pages 1002–1004). Other reconstructions have been proposed by Crouzet [2] and then Patané [21], leading 
to a global least square approximation. Although this reconstruction also leads to an interpolation-like scheme, the 
interpolation kernel defined in each x ∈ Ω is not summative because it is not positive.

3.3. Discrete F-transform

Since this article is mainly focused on discrete signals, we should mention the discrete F-transform. This discrete 
transform applies when the function to be transformed is only known at some discrete locations x1 . . . xn. Most digital 
signals (including images) are regularly sampled. However, particularly in agricultural applications [20], the case when 
the sampling is not uniform should be considered. The proposition of Perfilieva in [23] is to simply replace the integral 
in Expression (10) by a discrete sum. This definition is a rough approximation of a classical discrete-to-continuous 
approach.

Let f : Ω → R be a function. Let {Ck}k∈Θp be the considered fuzzy partition of Ω . Let x1 . . . xn be n locations 
where function f is known. By using the discrete-to-continuous approach presented in Section 2.5, it is possible to 
reconstruct a continuous function f̃ with an appropriate interpolation kernel ρx defined at each location x where the 
function has to be reconstructed:

∀x ∈ Ω, f̃ (x) =
n∑

i=1

ρx
i f (xi). (16)

Moreover, each kernel ρx can be defined by a generic kernel ρ by ∀u ∈ Ω , ρx(u) = ρ(u − x). Thus, Expression 
(10) can be rewritten as:

∀k ∈ Θp, Fk = βk.

∫
f̃ (x)Ck(x)dx = βk.

n∑
i=1

ηk
i f (xi), (17)
Ω
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with ηk
i = ∫

Ω
ρ(xi −x)Ck(x)dx, and βk being a normalization factor ensuring the energy conservation, i.e. if ∀x ∈ Ω , 

f (x) = 1 then ∀k ∈ Θp , Fk = 1. Writing this condition leads to βk = 1/
∑n

i=1 ηk
i .

In the discrete F-transform proposed by [23], the Dirac impulse is used as an interpolation kernel. But this solution 
is not unique, and any discrete kernel of the form ∀k, i ∈ Θp, ηk

i = ∫
Ω

ρ(xi − x)Ck(x) can be used. This approach can 
be convenient when the translation invariant kernel ρ aims at representing the uncertainty (or imprecision) due to the 
sensor.

A dual approach can be used that consists of defining a weighted neighborhood around each sample xi . It aims to 
account for the sampling. According to the F-transform framework, these weighted neighborhoods can be defined by 
using a non-regular fuzzy partition, i.e. a set of n continuous fuzzy subsets Xi such that ∀x ∈ Ω , 

∑n
i=1 Xi(x) = 1. In 

that case, Expression (17) becomes:

∀k ∈ Θp, Fk =
n∑

i=1

ηk
i f (xi), (18)

with ηk
i = 1

�p

∫
Ω

Xi(x)Ck(x)dx.

ηk is a summative kernel since it is positive by construction and 
∑n

i=1 ηk
i = 1

�p

∑n
i=1

∫
Ω

Xi(x)Ck(x)dx =
1

�p

∫
Ω

(
∑n

i=1 Xi(x))Ck(x)dx = 1
�p

∫
Ω

Ck(x)dx = 1.

3.4. Discussion

As noted by numerous authors (see e.g. [1,18,25,26,31]), the F-transform can be considered as a transform since 
it allows us to work with a simplified representation of a function through a reduced number of samples. Moreover, 
many operations achieved in the transformed space have a relevant meaning in the original space due to the linearity of 
the F-transform. Therefore, the F-transform framework enables some complex combinations or analysis of functions 
with low computational cost due to its linearity: let F and G be the F-transforms of two functions f and g, then 
∀(α, β) ∈ R

2, αF +βG is the F-transform of (αf +βg). In addition, a distance between F and G can be considered as 
a distance between smoothed versions of f and g. However, with this property, the functions have to be decomposed 
on the same partition, which prohibits the use of any method for adapting the partitioning to only one function. 
Moreover, if the partition is adapted to f and g, nothing can be guaranteed about its adaption to (αf + βg).

However, the word transform can be somewhat misleading, and the comparison with other transforms like Laplace, 
Fourier, Radon or wavelet may seem irrelevant. In fact, within the Laplace, Fourier, Radon or wavelet transforms, the 
inverse transform is really the inverse form of the direct transform in the sense that, if F is the direct transform of f , 
then f is the inverse transform of F . Moreover, the aforementioned transforms are not downsampled, i.e. the number 
of elements of the transformed signal is usually equal (or close) to the number of elements of the original signal. 
Thus the F-transform is not a transform like the Laplace, Fourier, Radon or wavelet transforms: the direct transform 
is rather a sampling-like process, and therefore some information about the original function is lost. Working with 
the F-transform is equivalent to working with a smooth downsampled version of the original function. At best, it is 
possible to ensure that the distance between the original function f and its reconstruction f̂ is bounded by controlling 
the number, shape and position of the atoms of the partition. But a partition ensuring a certain bounded error for a 
function cannot ensure the same bound for another function.

From a signal processing standpoint, the F-transform/IF-transform couple is equivalent to defining a couple of 
sampling and interpolating kernels based on the same fuzzy subset E. This seems to be the only obvious differ-
ence between the F-transform framework and classical kernel-based continuous-to-discrete interplay framework. The 
F-transform approach does not fulfill the best fit conditions of Unser (see Section 2.5), except for the linear (and crisp) 
membership function, in the sense that there is no orthogonality between the obtained sampling and the interpolating 
kernels at the sampling locations. All the nice properties of the Unser approach are thus generally lost. Meanwhile, 
because of the definition of the fuzzy partition, by construction there is complete identity between Fk, the kth com-
ponent of the F-transform, and f̂ (ωk), the value of the reconstructed function at the kth sampling location. Moreover, 
defining the reconstruction step as an interpolation process leads to a systematic bias at the sampling locations since, 
by construction, f̂ (ωk) = Fk �= f (ωk). In the sampling-interpolation framework, the sampling kernel has to be as 
specific as possible, while within the F-transform framework the specificity of the kernel is fixed by the granularity 
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of the generic subset E. In fact, the ideal Dirac-sampling does not belong to the F-transform framework. Moreover, 
Property 12 shows that the reconstructed function is simply a smoothed version of the original function. The distance 
between f and f̂ is thus completely defined by the shape of the membership function of subset E which ensures 
the interpolation between two sampling locations. Adapting the partition to the function to be projected reduces the 
possibility of combining or comparing two functions in the transformed space.

Thus a question arises: What is the advantage of defining both sampling and interpolation kernels with a single 
fuzzy subset? More precisely, what does fuzzy subset theory offer in this framework other than constraining the 
specificity of the kernel involved in both sampling and interpolation processes?

In this article, we propose another view of the F-transform framework that justifies the reference to the fuzzy subset 
theory. We construct a new interval valued F-transform based on a possibilistic interpretation of the involved fuzzy 
subsets.

4. Non-additive F-transform

The non-additive F-transform (NF-transform) framework we propose is based on the extension of the convolution 
operation proposed in [11]. Within this framework, the fuzzy subset E that generates the fuzzy partition {Ck}k∈Θp is 
considered as a maxitive kernel [13]. Constructing the NF-transform requires some preliminary properties.

4.1. Preliminary properties

Let us consider some very constructive properties of a partition à la Ruspini.

Proposition 13. Let {Ck}k∈Θp be a regular fuzzy partition of Ω , as defined in Section 3.1. Let κ ∈ K(Ω) and κx be 
the kernel κ translated on x ∈ Ω: ∀u ∈ Ω , κx(u) = κ(x − u). The function ηx defined on each x ∈ Ω by ∀k ∈ Θp , 
ηx

k = ∫
Ω

κx(u)Ck(u)du is a discrete summative kernel.

Proof. Since ∀u ∈ Ω , Ck(u) ≥ 0 and κ(u) ≥ 0 is positive, then ηx is positive. Thus it is enough to prove that ∑
k∈Θp

ηx
k = 1. 

∑
k∈Θp

ηx
k = ∑

k∈Θp

∫
Ω

κx(u)Ck(u)du = ∫
Ω

κx(u)(
∑

k∈Θp
Ck(u))du = ∫

Ω
κx(u)du = 1. �

Proposition 14. Let {Ck}k∈Θp be a regular fuzzy partition of Ω , as defined in Section 3.1. Let κ and κ ′ be two 
summative kernels of Ω defining two reconstruction kernels ηx and η′x as defined in Proposition 13. ∀x ∈ Ω , ηx = η′x
is equivalent to κ = κ ′.

Proof. It is sufficient to note that ∀x ∈ Ω , ηx = η′x is equivalent to writing ∀k ∈ Θp , 
∫
Ω

(κ(u − x) −
κ ′(u − x))Ck(u)du = 0, i.e. ∀x ∈ Ω , 

∫
Ω

(κ(u) − κ ′(u))E(u + x)du = (h ⊗ g)(x) = 0, with ∀u ∈ Ω , h(u) =
κ(u) − κ ′(u) and g(u) = E(u). By construction, functions h and g have a bounded support and g is positive.
Let F be the Fourier transform. The preceding condition can be rewritten ∀s, F{h}(s)F{g}(s) = 0 (with s being 
the frequency). Since g is bounded and positive, F{g} is null for only sparse values of s. Thus, F{h} can be non-null 
only at these sparse frequency values. Therefore, h cannot have a bounded support, which is a contradiction. Then h
is null and thus κ = κ ′.

The reverse implication is straightforward. �
The summative discrete interpolation kernel used in the ordinary IF-transform is a particular case of the proposed 

construction. In that case, the involved summative kernel is the Dirac impulse δ. Thus ∀x ∈ Ω , ∀k ∈ Θp , ηx
k =∫

Ω
δx(u)Ck(u)du = Ck(x).

Proposition 15. A discrete summative reconstruction kernel obtained by convoluting a partition à la Ruspini with a 
continuous summative kernel is �p translation invariant, i.e. ∀x ∈ Ω , ∀k ∈ Θp η

x+�p

k+1 = ηx
k .

Proof. This property is straightforward since η
x+�p

k+1 = ∫
Ω

κx+�p(u)Ck+1(u)du = ∫
Ω

κ(u − x − �p)E(u −
ωk+1)du = ∫

κ(u − x − �p)E(u − ωk − �p)du = ∫
κ(u − x)E(u − ωk)du = ηx . �
Ω Ω k
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Such kernels can be expressed with the expectation operator defined in Section 2.4. Indeed, ηx
k = ∫

Ω
κx(u) ×

Ck(u)du = EPκx (Ck), which coincides with the extension proposed in [36] for defining a probability measure of 
a fuzzy subset: ηx

k = Pκx (Ck). This summative kernel induces a probability measure Pηx defined by ∀A ⊆ Θp , 
Pηx (A) = ∑

k∈A ηx
k = ∑

k∈A

∫
Ω

κx(u)Ck(u)du = ∫
Ω

κx(u) 
∑

k∈A Ck(u)du = Pκx (
⋃

k∈A Ck), with the union being 
defined using the Łukasievicz T-conorm. Therefore, the reconstruction of the continuous function within the precise 
reconstruction approach can be seen as an additive aggregation of values associated with each atom of the parti-
tion, with the weights being defined by the probability of each atom to belong to the neighborhood defined by the 
summative kernel κx around each location x ∈ Ω .

4.2. Direct non-additive F-transform

Let E be a symmetrical fuzzy subset used to generate a fuzzy partition as defined in Section 3.1: Ck(x) =
E(x − ωk). The direct non-additive F-transform (NF-transform) is defined by:

Fk = [Fk,F k] = EΠ
πk

(f ) = [
EΠ

πk
(f ),EΠ

πk
(f )

] = [
ČN

πk
(f ), ČΠ

πk
(f )

]
, (19)

with ∀u ∈ Ω , π(u) = E(u), πk(u) = Ck(u) and Ππk (rsp. Nπk ) is the possibility (rsp. necessity) measure based on 
the possibility distribution πk .

Proposition 16. Let f : Ω → R be a continuous function, and F its NF-transform (Eq. (19)), then ∀κ ∈ M(π), the 
discrete function F obtained by sampling f via κ (Eq. (8)) is included in F , and ∀k ∈ Θp , ∀y ∈ Fk , ∃κ ∈ M(π) such 
that y = Fk , with F being obtained by sampling f via κ .

Proof. It is sufficient to note that, since κ is a summative kernel, then sampling f via κ at the sampling location ωk can 
be written Fk = EP

κk
(f ), with κk being the summative kernel κ translated in ωk and Pκk being the probability measure 

induced by the summative kernel κk . Due to Property 9, then ∀κ ∈ M(π), EP
κk

(f ) ∈ EΠ
πk

(f ) and ∀y ∈ EΠ
πk

(f ), 
∃κ ∈M(π) such that y = EP

κk
(f ). �

Proposition 17. Let π be a maxitive kernel, let f, g : Ω → R be two continuous functions, and F and G be the two 
interval-valued functions obtained by the NF-transform of f and g based on the maxitive kernel π (Eq. (19)), then 
the Minkowski addition of F and G contains the NF-transform of f + g based on the maxitive kernel π .

This property can be seen as a kind of extension, to the NF-transform, of the linearity of the F-transform.

Proof. Proving Proposition 17 is straightforward. In fact, ∀k ∈ Θp , the Minkowski addition ⊕ is defined by: Fk ⊕
Gk = [Fk + Gk,F k + Gk]. Due to Proposition 10, Fk + Gk = EΠ

πk
(f ) +EΠ

πk
(g) ≤ EΠ

πk
(f + g) and Fk + Gk =

EΠ
πk

(f ) +EΠ
πk

(g) ≥ EΠ
πk

(f + g). �
Remark 18. It has been shown in [13,8] that the triangular maxitive kernel defined on [−�p, �p] is the most specific 
maxitive kernel whose core contains every symmetric unimodal summative kernel whose support is [−d, d] with 
d ≤ �p . This property combined with Proposition 16 implies that a direct NF-transform of a function f : Ω → R on 
the fuzzy partition of Ω generated by a triangular fuzzy subset whose support is [−�p, �p] at each sampling location 
ωk (k ∈ Θp) contains all discrete functions obtained by sampling f on each sampling position ωk (k ∈ Θp) with a 
symmetric sampling kernel whose support is [−d, d] with d ≤ �p . In addition, note that the triangular maxitive kernel 
is also the only non-crisp kernel for which the Unser approach coincides with the FT approach.

Remark 19. A direct consequence of Remark 18 is that any direct F-transform obtained by using Eq. (12) and a 
basic kernel E having [−�p, �p] for support is included in the direct NF-transform obtained by using Eq. (19) and a 
triangular maxitive kernel.
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4.3. Inverse non-additive F-transform

Ideally, this inverse non-additive F-transform (INF-transform) should comply with one of these three possible 
definitions:

1. an interval-valued inverse transform that provides a convex set of all continuous functions whose precise 
F-transform belongs to the interval valued NF-transform, F ,

2. an interval-valued inverse transform that provides a convex set of all continuous functions whose precise 
F-transform is F (knowing the fuzzy partition),

3. an interval-valued inverse transform that provides a convex set of all continuous functions whose sampling is F
(without knowing the sampling kernel).

Unfortunately, finding an inverse form with a non-additive based approach is not easier than finding an inverse 
form with an additive based approach. Moreover, finding an INF-transform complying with definition (2) is quite 
impossible since high frequency information is lost in the precise sampling process that cannot be retrieved from the 
sampled signal. Our current proposition is to build an INF-transform that reconstructs an interval valued continuous 
function that contains a set of precise valued continuous functions obtained by reconstructing the discrete function 
with an appropriate set of kernels.

Let us first introduce, for any subset A ⊆ Θp , the shortcut notation ΥA = ⋃
k∈A Ck , with the union being defined 

using the Łukasievicz T-conorm: ∀u ∈ Ω , ΥA(u) = min(1, 
∑

k∈A Ck(u)) = ∑
k∈A Ck(u) (since {Ck}k∈Θp makes a 

partition à la Ruspini). The following proposition is required to build this INF-transform.

Proposition 20. Let {Ck}k∈Θp be a regular fuzzy partition of Ω and ν be a concave continuous capacity dominating a 
probability measure P , then the discrete capacity υ defined by: ∀A ⊆ Θp , υ(A) = Eν(ΥA) is concave and dominates 
the discrete probability Q measure defined by: ∀A ⊆ Θp , Q(A) = EP (ΥA).

Proof. The dominance part of the proposition is easy to prove using the domination Property 9. In fact, since P
is dominated by ν, regardless of the real function f , then EP (f ) ≤ Eν(f ). Now, let A, B be two subsets of Θp . 
With {Ck}k∈Θp being a fuzzy partition à la Ruspini, then ∀u ∈ Ω , ΥA∪B(u) = ΥA(u) + ΥB(u) − ΥA∩B(u). Due to 
Property 10, Eν(ΥA∪B) ≤ Eν(ΥA) +Eν(ΥB) −Eν(ΥA∩B), with ∩ being the Łukasievicz T-norm. Thus, υ(A ∪ B) +
υ(A ∩ B) ≤ υ(A) + υ(B). �

A straightforward consequence of Proposition 20 is that any discrete summative reconstruction kernel constructed 
by convoluting atoms of the partition {Ck}k∈Θp with a continuous summative kernel (see Proposition 13) belonging 
to M(ν), belongs to M(υ). Moreover, due to Proposition 9, any discrete summative reconstruction kernel belonging 
to M(υ) can be obtained by convoluting a continuous summative kernel belonging to M(ν) with the atoms of the 
partition {Ck}k∈Θp .

The INF-transform we propose is based on Proposition 20.
Let F : Θp → R be a discrete bounded function. Let {Ck}k∈Θp be a regular fuzzy partition of Ω , as defined in 

Section 3.1. Let πx be a maxitive continuous kernel defined in each x ∈ Ω . Let υx be the discrete capacity defined 
by:

∀A ⊆ Θp, υx(A) = EΠπx (ΥA). (20)

The INF-transform is defined by:

∀x ∈ Ω, f (x) = Eυx (F ) = [
Č(υx)c (F ), Čυx (F )

]
. (21)

Proposition 21. Let F : Θp → R be a discrete bounded function. Let {Ck}k∈Θp be a regular fuzzy partition of Ω , as 
defined in Section 3.1. Let πx be a maxitive continuous kernel defined in each x ∈ Ω and υx be the discrete capacity 
defined by Expression (20). Let f be the interval-valued function reconstructed according to Eq. (21). Reconstructing 

F with a summative discrete kernel ηx ∈M(υx) by Eq. (13) leads to a reconstructed value f̂ (x) ∈ f (x). In the same 
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way, ∀y ∈ f (x), ∃ηx ∈ M(υx) such that y = f̂ (x), with f̂ (x) being obtained by reconstructing F with ηx according 
to Expression (13).

Proof. Proving Proposition 21 is straightforward. It is sufficient to note that f̂ (x) = Eηx (F ) and f (x) = Eυx (F ) and 
to use Property 9. �

The INF-transform can be easily extended to an interval-valued function F . The INF-transform of F is defined by:

∀x ∈ Ω, f (x) = Eυx (F ) = [
Č(υx)c (F ), Čυx (F )

]
. (22)

Proposition 21 also holds with this last extension for the same reasons. In fact, Eυx (F ) is the set of all values 
that can be reconstructed at location x ∈ Ω from a discrete function G ∈ F with a discrete kernel ηx ∈ M(υx): 
Eυx (F ) = {y = Eηx (G)/G ∈ F, ηx ∈M(υx)}.

The non-additive version of the inverse F-transform is thus instrumental in applications involving guaranteed cal-
culus [10] since it allows reconstruction of a continuous signal with its samples when the appropriate reconstruction 
kernel is imprecisely known. To ensure this, it is sufficient to use a maxitive kernel that defines an appropriate family 
of reconstruction kernels. The domination guarantees the inclusion of the desired function into the interval-valued 
reconstructed function. Note that Proposition 17 can be easily extended to the INF-transform, which can be useful 
when linear operations are involved. Once again, the triangular maxitive kernel should play a particular role in this 
reconstruction scheme.

The usual IF-transform is a special case of the proposed INF-transform when πx is a Krœnecker impulse translated 
in x, i.e. πx(x) = 1 and ∀u ∈ Ω , u �= x, πx(u) = 0.

4.4. Discrete non-additive F-transform

As in Section 3.3, it is possible to account for the fact that the function to be transformed is only known at some 
discrete locations x1 . . . xn. Instead of constructing a function f̃ by interpolating the discrete valued function, this 
framework allows us to account for the fact that the appropriate interpolation function is unknown, and thus leads to 
an interval-valued F-transform that also accounts for this ill-knowledge.

Let f : Ω → R be a function. Let {Ck}k∈Θp be the considered fuzzy partition of Ω . Let Φ = {1, . . . , n}. Let 
X1 . . .Xn be n be the ill known (fuzzy) locations where function f is known such that 

∑
i∈Φ Xi(u) ≥ 1, then the 

interval-valued discrete F-transform is defined by:

∀k ∈ Θp, F k = Eυk (f ) = [
Č(υk)c (f ), Čυk (f )

]
, (23)

with ∀A ⊆ Φ , υk(A) = EΠ
πk

(ΥA), ΥA = ⋃
i∈A Xi (∪ being the Łukasievicz union) and ∀u ∈ Ω , πk(u) = Ck(u).

Proposition 22. ∀k ∈ Θp , the function υk defined by ∀A ∈ Φ , υk(A) = EΠ
πk

(ΥA), ΥA = ⋃
i∈A Xi and ∀u ∈ Ω , 

πk(u) = Ck(u), is a concave capacity.

Proof. The proof is very close to the proof of Property 20.
υk(Φ) = EΠ

πk
(ΥΦ) = EΠ

πk
(1Ω) = 1.

υk(∅) = EΠ
πk

(∅) = 0. ∀u ∈ Ω , ∀A, B ⊆ Φ , min(
∑

i∈A∪B Xi(u), 1) ≤ min(
∑

i∈A Xi(u), 1) +min(
∑

i∈B Xi(u), 1) −
min(

∑
i∈A∩B Xi(u), 1). Thus, ΥA∪B(u) ≤ ΥA(u) + ΥB(u) − ΥA∩B(u). Due to Property 10, EΠ

πk
(ΥA∪B) ≤

EΠ
πk

(ΥA) +EΠ
πk

(ΥB) −EΠ
πk

(ΥA∩B) and thus υk(A ∪ B) + υk(A ∩ B) ≤ υk(A) + υk(B). �
Proposition 23. Let ρ ∈ K(Ω) be a continuous summative kernel used for interpolating a continuous function f̃ , as 
presented in Expression (16). Let {Ck}k∈Θp be a fuzzy partition of Ω . Let F be the discrete F-transform computed 
by using Expression (17). Let π be a continuous maxitive kernel on Ω defining, at each discrete location xi , a fuzzy 
subset Xi by ∀u ∈ Ω , Xi(u) = π(xi − u). Let F be the discrete NF-transform computed by using Expression (23). If 
ρ ∈M(π), then F ∈ F .
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This property is easy to prove by using, once again, the domination Property 9. There are two interesting particular 
cases. First, if ρ is the Dirac impulse, then Expression (17) coincides with Expression (21) of [23]. In this first 
case, any possibility function can be used to ensure Property 23. Second, if ρ = π

Γ (π)
(Γ (π) = ∫

Ω
π(u)du) then, by 

construction, ρ ∈ M(π) (see [4]).
Finally, it is also easy to include the fact that the discrete values of f are quantified in this representation. The 

simplest strategy is to account for this quantification by replacing the precise values f (xi) in Eq. (23) by imprecise 
values.

4.5. Convergence of the non-additive F-transform

As pointed out by Perfilieva and most of the authors [23,21,3,1,31], a function cannot be reconstructed by using 
its F-transform, since transforming consists of sampling, and sampling leads to information loss. However, the re-
constructed function can approximate its original continuous function with an arbitrary precision. The proof of this 
convergence is based on the ordinary proof of convergence of a band limited sampling-reconstruction scheme.

Proposition 24. Let f : Ω → R be a uniformly continuous bounded function. Let E be a symmetric normalized 
fuzzy subset on Ω such that ∀x /∈ [−1, 1], E(x) = 0 and ∀x ∈ [0, 12 ], E(x) = 1 − E( 1

2 − x). For any p ∈ N, let Fp

be the NF-transform of f (Expression (19)), with ∀x ∈ Ω , πk(x) = Ck(x) = E(
x−ωk

�p
), �p = b−a

p
and ∀k ∈ Θp , 

ωk = a + k�p .
Let μ be a symmetric maxitive kernel on Ω such that ∀u /∈ [−1, 1], μ(u) = 0 and μx be the maxitive kernel 

defined for any x ∈ Ω by: ∀u ∈ Ω , μx(u) = μ(u−x
�p

). Let υx be the discrete concave capacity defined by: ∀A ⊆ Θp , 

υx(A) = EΠμx (ΥA). Let f p be the INF-transform of Fp (Expression (22)). Then for any ε > 0, there is pε such that: 
max(|f pε (x) − f (x)|, |f pε (x) − f (x)|) < ε.

Proof. First, let us define the operator τ by: ∀p ∈ N, ∀i ∈ Z, τ(i, p) = max(0, min(i, p)). Now, let us note that, 
due to its construction, the discrete capacity υx dominates any discrete summative kernel obtained by convoluting 
the partition {Ck}k∈Θp with any continuous kernel κ belonging to M(πx). Since the support of πx is bounded, 
any summative kernel dominated by υx is bounded: we have n such that ∀η ∈ M(υx), ∀x ∈ Ω, ∀i /∈ [τ(k(x) −
n, p), τ(k(x) + n, p)], ηi = 0.

Note also that, since E is a normalized fuzzy subset, its membership function can be interpreted as a possibility 
distribution πE inducing a possibility measure on Ω .

Since f is uniformly continuous on Ω , then for any ε > 0, there is δ > 0 such that ∀u, v ∈ Ω , |u − v| < δ

implies |f (u) − f (v)| < ε. Let us choose a value of p inducing regularly spaced values (ωk)k∈Θp such that ∀k ∈ Θp , 
∀u, v ∈ [ωτ(k−n,p), ωτ(k+n,p)], |f (u) − f (v)| < ε.

Thus, ∀x ∈ Ω , ∀i ∈ {τ(k(x) − n, p), . . . , τ(k(x) + n, p)}, ∀κ ∈ M(πE) |f (x) − F
p
i | = |f (x) − ∫

Ω
1

�p
f (ω)κ ×

(
ω−ωi

�p
)dω| ≤ ∫

Ω
1

�p
|f (x) − f (ω)|κ(

ω−ωi

�p
)dω ≤ ε. Due to Propositions 9 and 10, ∃κ1, κ2 ∈ M(πE) such that 

F
p
i = ∫

Ω
1

�p
f (ω)κ1(

ω−ωi

�p
)dω and Fp

i = ∫
Ω

1
�p

f (ω)κ2(
ω−ωi

�p
)dω. Therefore |f (x) − F

p
i | < ε and |f (x) − F

p
i | < ε.

Now, ∀x ∈ Ω , due to Propositions 9 and 10, ∃η ∈ M(υx) such that f p(x) = ∑i=p

i=0 F
p
i ηi , thus |f p(x) − f (x)| =

| ∑p

i=0 F
p
k ηi − ∑p

i=0 f (x)ηi | ≤ ∑p

i=0 |Fp
i − f (x)|ηi . Since ηi = 0 if i /∈ [τ(k(x) − n, p), τ(k(x) + n, p)], |f p(x) −

f (x)| ≤ ∑τ(k(x)+n,p)

i=τ(k(x)−n,p) |Fp
i −f (x)|ηi ≤ ε

∑τ(k(x)+n,p)

i=τ(k(x)−n,p) ηi = ε. The same scheme can be used to prove that |f (x) −
f (x)| ≤ ε. �
4.6. A simple example with crisp partitioning

A very easy way to understand the proposed interval-valued transform is to consider a crisp partition, i.e. a partition 
generated by the crisp subset E = [−�p

2 , �p

2 ]. In that case, Eq. (19) simply leads to computing the upper and lower 
values of f within the crisp subset Ck : Fk = [Fk,F k] = [infu∈Ck

f (u), supu∈Ck
f (u)]. Note that the F-transform 

based on the residuated lattice proposed by Perfilieva gives exactly the same interval in that binary case. When using 
a smoother maxitive kernel, the interval-valued F-transform is more specific in both cases.
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Such a decomposition on a crisp partition can also be seen as a granulation process, related to the Pawlak rough set 
framework [22] where the sets of the partition create an equivalence relation on Ω . Thus, replacing the crisp partition 
by a fuzzy partition leads to considering a weighted granulation as proposed in [5]. Each atom of the partition can be 
thought of as a granule on which the value of function f is imprecisely known.

In the same way, Eq. (21) leads to computing, at each x ∈ Ω , the upper and lower values of F in a discrete 
neighborhood equal to {k(x), k(x) + 1}, where k(x) ∈ N is the integer value such that x − �p < k(x)�p + a ≤ x. 
Therefore, in that case, since ∀x ∈ Ω , f (x) ∈ Fn(x) (with n(x) being the integer value such that x ∈ Cn(x)), f (x) also 
belongs to [infk∈{k(x),k(x)+1}, supk∈{k(x),k(x)+1}] since either n(x) = k(x) or n(x) = k(x) + 1. Naturally, the inverse 
transform would have been more precise if the interval {k(x), k(x) + 1} had been replaced by the singleton n(x). 
This situation corresponds to using a possibility density πx as the Krœnecker impulse translated in x, i.e. using, 
as an inverse transform, the usual inverse F-transform. When using a smoother maxitive kernel, the interval-valued 
F-transform is smoother within the NF-transform framework.

5. Experiments

This experimental section aims to illustrate some properties of the NF-transform and show what this approach 
brings to the classical approach. The experiments are carried out on digital images, i.e. bidimensional discrete signals. 
We thus need to define how to extend both the F-transform and NF-transform in two dimensions.

5.1. Bidimensional extension

Extending the F-transform in two dimensions is rather straightforward. In fact, since F-transforming a unidimen-
sional signal consists of convoluting this signal with a unidimensional summative kernel, F-transforming a bidimen-
sional signal consists of convoluting this signal with a bidimensional summative kernel.

Let Ω = [a, b] × [c, d] be a box of R2. Let I : (x, y) ∈ Ω → I (x, y) ∈ R be an image on Ω . Let px, py ∈ N

be two positive intergers. Let �x = b−a
px

and �y = d−c
py

. Let E be a fuzzy subset of Ω complying with ∀x, y ∈
[0, �x

2 ] × [0, �y

2 ], E(x, y) = 1 − E(�x − x, �y − y), and 0 elsewhere. Let Θ = [0, px] × [0, py] be a box of N2. 
Let {Ckx,ky }(kx ,ky)∈Θ be (px + 1).(py + 1) fuzzy subsets of Ω defined by ∀(x, y) ∈ Ω , Ckx,ky (x, y) = E(x − a −
kx.�x, y − c − ky.�y). By construction, the {Ckx,ky }(kx ,ky)∈Θ form a partition à la Ruspini of Ω .

Then, Expression (10) becomes:

∀(kx, ky) ∈ Θ, Fkx,ky =
∫
Ω

I (x, y)Ckx,ky (x, y)dxdy∫
Ω

Ckx,ky (x, y)dxdy
. (24)

In the same way, Expression (13) becomes:

∀(x, y) ∈ Ω, Î (x, y) =
∑

(kx ,ky)∈Θ

Fkx,ky Ckx,ky (x, y). (25)

Extending the NF-transform in two dimensions is as straightforward as extending the F-transform in two dimen-
sions. It follows the same process and involves bidimensional maxitive kernels.

Expression (19) becomes:

∀(kx, ky) ∈ Θ, Fkx,ky = EΠ
π

kx ,ky
(f ) = [

EΠ
π

kx ,ky
(f ),EΠ

π
kx ,ky

(f )
]

(26)

with ∀(x, y) ∈ Ω , π(x, y) = E(x, y), πkx,ky (x, y) = Ckx,ky (x, y) and Ππkx,ky (rsp. Nπkx ,ky ) is the possibility (rsp. 
necessity) measure based on the possibility distribution πkx,ky .

In the same way, Expression (21) becomes:

∀(x, y) ∈ Ω, I(x, y) = Eυx,y (F ) = [
Č(υx,y)c (F ), Čυx,y (F )

]
, (27)

υx,y being the discrete capacity defined by: ∀A ⊆ Θ, υx,y(A) = EΠπx,y (ΥA), with ΥA being the continuous fuzzy 
subset defined by ∀(x, y) ∈ Ω , ΥA(x, y) = ∑

(k ,k )∈A Ckx,ky (x, y).

x y
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Fig. 3. 1560 × 2435 image of the painting Nascita di Venere by Sandro Botticelli.

Fig. 4. Lower (a) and upper (b) images obtained by downsampling the original image using the NF-transform.

Extending the discrete transforms proceeds in the same way. The granularity of the partition can be seen either as 
the couple (�x, �y) or as the value �x ∗ �y = ∫

Ω
E(x, y)dxdy.

Image processing generally considers separable kernels. Expressions (24), (25), (26) and (27) can be highly sim-
plified by considering E as separable. E is said to be separable if ∀(x, y) ∈ Ω , E(x, y) = Ex(x).Ey(y). In that case, 
computing a bidimensional transform turns into computing two consecutive unidimensional transforms. The same 
applies for inverse transforms.

In the rest of the experimental section, we consider centered linear symmetric kernels (i.e. triangular kernels).

5.2. Illustrating the dominations

In this section, we propose to illustrate different behaviors and properties of the NF-transform, e.g. Properties 16
and 21. This illustration is based on the high resolution discrete image depicted in Fig. 3. The experiment consists of 
downsampling then upsampling this image with a linear (pyramidal) fuzzy partition (see Remark 18) whose granu-
larity equals � = 16 (4 × 4) and with different sampling and reconstruction kernels complying with the domination 
property (i.e. sampling (reconstruction) kernels belonging to the core of the sampling (reconstruction) capacity gen-
erated by the partition).

Fig. 4 shows the lower (a) and upper (b) downsampled image obtained using the NF-transform. Fig. 5(a) shows the 
downsampled image obtained using the F-transform while Fig. 5(b) shows the median of the interval-valued image 
obtained using the NF-transform. Fig. 6(a) shows the image obtained by reconstructing the downsampled image (5(a) 
using the IF-transform while Fig. 6(b)) shows the median of the interval-valued downsampled image whose median 
is drawn in Fig. 5(b) reconstructed using the INF-transform.

As a first remark, the image sampled using the F-transform (Fig. 5(a)) and the median of the image sampled 
using the NF-transform (Fig. 5(b)) seem to be very close. The same applies for the reconstructed images (Figs. 6(a) 
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Fig. 5. Downsampled image obtained using the F-transform (a) and median of the interval-valued downsampled image obtained using the NF-
transform (b).

Fig. 6. Reconstruction of image 5(a) using the IF-transform (a) and median of the interval-valued reconstruction of the interval-valued image whose 
median is plotted in Fig. 5(b) using the INF-transform (b).

and 6(b)). In fact, the L2 distance between the image reconstructed using the F-transform approach (Fig. 6(a)) and the 
original image equals 0.15 while the L2 distance between the median image reconstructed using the NF-transform 
approach (Fig. 6(b)) and the original image equals 0.17.

Naturally, as proved by Perfilieva [23], if a signal has been downsampled using the F-transform on a partition 
whose granularity is �, the best � bounded reconstructing kernel (in L2 distance) is the sampling kernel itself. Thus 
the median reconstructed image has no reason to be L2-closer to the original image. This result was confirmed by 
Unser concerning the crisp partition (spline 0) and the triangular partition (spline 1). The question of how close the 
reconstructed images are to the original image will be discussed in the next section.

From an image processing standpoint, the lower and upper images presented in Fig. 4 look like eroded and dilated 
images. In fact, maxitive-based image processing is a kind of intermediate approach between conventional linear 
image processing and mathematical morphology [11].

In this experiment, 95% of the original image is included in the imprecise valued reconstructed image. This per-
centage is quite representative of what happens generally (see next section). Using a crisp partition would have ensured 
complete inclusion (see Section 4.6). However, the quality of the image obtained with a crisp partition is very poor 
compared to using a fuzzy partition, as illustrated by the detailed images in Fig. 11. The L2 distance between the 
original image and the median of the obtained reconstructed image is 0.25. This highlights the advantage of using a 
fuzzy partition instead of a crisp partition in this framework.

The last part of this experiment aims at illustrating Properties 16 and 21. We considered 1000 different randomly 
selected sampling kernels and 1000 different randomly selected reconstruction kernels. Every sampled image is in-
cluded in the NF-transformed image. Every reconstructed image is included in the INF-transformed image. Fig. 7
plots the 32nd line of the sampled images while Fig. 9 plots the 128th line of the reconstructed images, superimposed 
with the 128th line of the original image.

The kernels were chosen in the class of symmetric centered kernels that comply with the domination property, 
i.e. each sampling (reconstruction) kernel is included in the core of the sampling (reconstruction) capacity induced 
by the fuzzy partition. As can be seen in Figs. 8 and 10, the precise sampled and reconstructed images are not 
uniformly spread in the interval-valued image. This is the main reason why the median cannot be considered as 
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Fig. 7. Lower (in red) and upper (in blue) 32nd line of the NF-transformed image superimposed with the 32nd line of 1000 sampled images (in 
cyan). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. Detailed part of Fig. 7.

Fig. 9. Lower (in red) and upper (in blue) 128th line of the interval valued reconstructed image superimposed with the 128th line of 1000 recon-
structed images (in cyan) and the 128th line of the original image (black dotted line). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

the best representative image. Fig. 10 illustrates the fact that the original image is not completely included in the 
interval-valued reconstructed image. Note, however, that in some regions where the original signal goes out of the 
bounds of the imprecise valued reconstructed image, images reconstructed using the traditional approach are very far 
from the original signal.
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Fig. 10. Detailed part of Fig. 9.

Fig. 11. Details of the original image (a), the image reconstructed with the F-transform approach (with a triangular kernel) (b), median of the image 
reconstructed with the NF-transform approach with a triangular kernel (c) and with a rectangular (crisp) kernel (d).

5.3. Statistical properties

As shown in [14], one interesting property of a maxitive kernel-based approach is its ability to quantify the vari-
ability in the processed signal. In this experiment, we will show that the imprecision of an image reconstructed by an 
INF-transform is a marker of the roughness of the obtained reconstruction. To carry out this experiment, we consider 
the set of 10,000 images derived from the BOWS2-Original image processing database [9].

For each image I , we compute its F-transform F and NF-transform F . We then reconstruct Î , a precise estimate 
of the original image, by IF-transforming F and I = [I , I ], an imprecise estimate of the original image, by INF-
transforming F . We compute �I = 1

2 (I − I ), the imprecision of I and Ĩ = 1
2 (I + I ) its median. We finally compute 

�I = |I − Ĩ |. The median is chosen as an objective representative of the interval-valued image since it is the image 
that is the closest, in L1 distance, to the set of images included in the interval-valued image.

Fig. 12 plots the signal-to-noise ratio (SNR) of each reconstructed image. This SNR is computed as

10. log10(
Σ2(I )

Σ2(�I )
) for the interval-valued INF-transformed image and as 10. log10(

Σ2(I )

Σ2(I−Î )
) for the F-transformed 

image, where Σ2(I ) is the sum of the squared values of the image I . The higher the SNR, the closer the reconstructed 
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Fig. 12. The SNR of the F-transform-based method versus the SNR of the median of the NF-transform-based method.

image is to the original image. As expected, the SNR is always better for the precise image than for the median of 
the imprecise image. However, as illustrated in Fig. 12, the SNR are very close. Moreover, Properties 16 and 21
ensure that the “best” image obtained using the F-transform and the IF-transform is included in the interval-valued 
reconstructed image obtained using the NF-transform and the INF-transform (see also Remark 19).

Generating an image that is closer to the original image is not the main purpose of the NF-transform approach. In 
fact, as shown by Unser [34], the appropriate kernel to reconstruct an image that has been sampled by a bounded pos-
itive kernel is not positive (and often not bounded). This idea corresponds to the least square reconstruction approach 
[2]. What makes the NF-transform approach new and interesting is that the imprecision of the obtained interval-valued 
reconstructed image encodes the loss of information induced by the sampling/reconstruction process. To illustrate this 
property, in Fig. 13, we have plotted the cloud of the mean of �I versus the mean of �I . The correlation between 
those two values is obvious. The Pearson correlation coefficient is 0.983.

As we mentioned previously, even if the inclusion of the original image in the interval-valued reconstructed image 
cannot be guaranteed, the inclusion rate is generally higher than 90%. This property is illustrated in Fig. 14. To further 
illustrate this, we artificially constructed, for each precise reconstructed image (using the F-transform), an interval 
valued image having a constant imprecision equal to the mean imprecision of the corresponding interval valued re-
constructed image (NF-transform). Fig. 14 plots the inclusion rate of the original image within each interval-valued 
image. It can be seen that, even when using the best reconstructed image as the median image, the inclusion rate is 
much higher in the non-additive than in the additive approach. This confirms that the imprecision really quantifies the 
roughness of the approximation induced by both direct and inverse transformations. This quantification property can 
also be seen in Fig. 10.

The distance between those interval-valued reconstructions and the original image can also be questioned. We thus 
compute the Hausdorff generalization of the L1 distance ([19]) defined by:

L1
([a, b], c) =

{
(a − c), if c < a

(c − b), if c > b

0, else
.

Fig. 15 plots this distance for the two interval-valued images. The distance is much lower for the non-additive than for 
the additive approach.
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Fig. 13. Correlation of the mean error and the imprecision of the NF-transform-based reconstruction.

Fig. 14. Inclusion of the original image in the interval-valued images based on the F-transform and on the NF-transform.

6. Concluding remarks

In this article, we have proposed a new F-transform based on a possibilistic interpretation of the fuzzy subsets 
involved in the partition. One of the main original features of this framework is that it provides interval-valued 
transformed signals instead of precise-valued signals. We have defined direct and inverse transforms that are easy 
interpreted within the signal processing framework: NF-transforming a signal provides the interval of all sampled sig-
nals that would have been obtained by using a conventional approach with a kernel belonging to a convenient convex 
set of kernels. Transforming a discrete signal with an INF-transform provides the interval of all reconstructed signals 
that would have been obtained by using a conventional approach with a kernel belonging to a relevant convex set of 
kernels. Numerous properties of this new transform have been mathematically proved that can be useful for guaran-
teed analysis or comparison of functions. For example, this framework can be used to decide whether or not a digital 
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Fig. 15. L1 distance between the original image and the F-transform and median of the NF-transform-based reconstructions.

signal can be considered as a sampled version of a continuous (or a high resolution) original signal. It can also be used 
to compare two digital signals that are not sampled at the same sampling locations, with the same sampling step, or 
with the same sensor – with the point spread function being ill-known. It can also be helpful to obtain a guaranteed 
calculus on sub-sampled signals when the complete signal cannot be processed for computational complexity or lim-
ited memory reasons. Within this kind of application, interval-valued downsampling keeps track of the roughness of 
the approximation throughout the processing.

The ideal NF-transform/INF-transform couple should provide a convex envelope that contains the original signal. 
Within the actual framework, this guarantee cannot be ensured. However, the inclusion of an original signal in the re-
constructed interval-valued signal generally exceeds 90%. Moreover, as shown in the experimental part of this article, 
the imprecision of the reconstructed signal can be seen as a local marker of the roughness of the approximation. The 
convergence of sampling and reconstructing with the current NF-transform/INF-transform couple has been proved.

A convenient framework should comply with at least one of the properties listed in Section 4.3. One possibility 
is to define a capacity-based set of non-positive kernels. Another possibility is to enlarge the proposed approach to 
mimic the least square reconstruction proposed by Crouzet and Patané.

As a future work, we also plan to more thoroughly analyze analogies between the F-transform framework and the 
best fit approach to see if we could define a coupling between the kernel used in the partition and the reconstruc-
tion kernel (since the triangular kernel is a B-spline). Perhaps the F-transform or NF-transform framework could be 
instrumental for defining continuous-based discrete operators.

Some other partitions should also be envisaged, e.g. partitions such that ∀u ∈ Ω , supk Ck(u) = 1. It would also 
be relevant to try and bridge the gap between the non-additive F-transform approach and the F-transform based on 
residuated lattices. This could lead to a better reconstruction of the transformed function.
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