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ABSTRACT

The Hough transform is a popular method for
detecting complex forms in digital images. However, the
technique is not very robust since several parameters that
determine the scope of the detection results, such as
quantization thresholds and intervals, must first be
defined. In the present paper, we propose to enhance
shape detection with the Hough transform through fuzzy
analysis. One chief drawback of the Hough transform,
i.e. the uncertainty / precision duality, is thus reduced.

I. INTRODUCTION

Since the paper by Hough [HOU 62] presenting a
transform that aimed to detect sets of linear points in
noisy binary images, several improvement of the Hough
transform (HT) have been proposed.

The method and its extensions have been reviewed
in detail [MAI 85], [ILL 88] and an exhaustive
bibliography is available [PIC 87]. In particular, many
papers have focused on the effect of errors due to random
noise and data quantization [HUN 90] [STE 91] [PRI 94].

Despite the large number of papers dedicated to the
Hough Transform, relatively little attention has been
paid to what we termed the uncertainty/precision duality.
This duality could be set out as follows: as shape
detection precision increases, the reliability of the
detection decreases. This seems to be due to the binary
aspect of the vote in the classical Hough transform
(CHT).

Han and al. [HAN 93] proposed to use fuzzy subset
theory to deal with the problem of approximate concepts
in HT. They designed a Fuzzy Hough Transform (FHT)
which generalizes the distributed voting principle
described by Thrift and Dunn [THR 83]. However, this
method makes no distinction between data uncertainty
and expected or computationally–induced parameter
uncertainty. In addition, there is no benefit from
assessing the data in terms of confidence.

In this paper we present a new FHT approach that
takes current knowledge on uncertainty into
consideration to improve shape detection.

II. THRESHOLDING

II.1. EFFECT OF THRESHOLD

Because it was designed for binary images, using
HT is not problem-free on grey-level images. Users first

have to face the problem of defining the subset of image
points that supposedly belong to the sought–after
straight lines (generally by thresholding the image). An
image that is either non-uniformly illuminated or ill-
contrasted requires to over- or under-estimate the
threshold. Which induces an uncontrolled bias on the
HT. Statistically finding an “optimal” threshold [JOL 89]
supposes to test each pixel for two hypotheses that are:
“the pixel belongs to one of the sought-after lines” and
“the pixel belongs to none of the sought-after lines”.
Those two hypotheses are used to define two thresholds.
Those two thresholds are used in the FHT to define the
fuzzy subset of the points in the image that are supposed
to belong to one of the searched lines.

II.2. FUZZY THRESHOLDING

Image pixels can generally be separated into two

subsets E and   according to grey
level, gradient and curvature properties. E is the subset
of points belonging to one of the sought–after straight

lines, and its complement   is the
subset of points that belong to no straight line.

Many solutions have been proposed to overcome
this problem, including that of [O’GO 73], whereby
grey–level values are used directly to weight HT votes.

We use a similar technique to define E as a fuzzy
subset of the original image.

When searching for black lines on a white
background, the membership µE(xi,yj) of a pixel (i,j)
with a grey level ng(i,j) to a fuzzy subset E could be
defined from an L function by:

Erreur  !
When Ipq, the crisp subset of I, is denoted by:

Ipq = 




(x,y)∈I / | |x.cos(θq)+y.sin(θq)–ρp  < ∂ρ  



then, in assessing the ΡpΘq cell, the HT is equal to
the fuzzy cardinal of the subset E∩Ipq = Epq.

h(ΡpΘq) = CARD(Epq) =Erreur  !

In practice, when the image grey–level distribution
is unknown, it is better to use a linear function:

L(u) = 1–u  if u∈[0,1]

III. QUANTIZATION

III.1. EFFECT OF QUANTIZATION

In practice, using HT implies subdividing the
parameter space into a certain number of cells. Many
papers have rightly focused on this problem of
quantization. There are two objectives in adjusting
quantization:
— enhanced computation performance (less storage

memory required, reduced computation time),
— enhanced algorithm performance (precision,

confidence).
The first objective reduces the cell number (increased

quantization), while the status of the second is not as
clearcut, and is the focus of the present study.

In order to increase line detection precision,
quantization clearly has to be reduced. This reduction can
also be motivated by a high density of lines in the
image. In addition to a substantial increase in
computation time, there will be a lower accumulator
coefficient, and therefore a larger uncertainty in the
detection of each straight line. When this phenomenon
is exaggerated with an excessive quantization, the
accumulator array will only contain a maximum of one
point per cell.

Conversely, if we intend to tolerate a poor fit
between the model and reality, then it would be better to
increase quantization. This increases the values of the
accumulators associated with each cell, thus increasing
the confidence that straight lines are present in the
image. However, enhancing the certainty  in the
detection of each line will increase the imprecision of
this detection.

The main reason for this dichotomy between the
expected line detection precision and the certainty that
the line is present on the image is the binary aspect of
the vote in CHT.

Fuzzy voting scheme is a good way of approaching
the quantization difficulties in Hough transform. It
consists of distributing the votes in the parameter space
in an uncertainty zone defined by the fuzzy approach.
This avoids the all-or-none aspect of the usual
incrementation of the accumulator associated with each
cell in parameter space. Then, the quantization no more
affects precision but only the resolving power of the
transform i.e., its ability to create two different peaks for
two different close features.

III.2. DISTRIBUTED VOTE

In a classical Hough transform (CHT) [CHA 91],
each pixel (i,j) is considered as an intersection point of
coordinates (xi,yj) on the image I⊂  R 2. The parameter
space is subdivided into (2.∂ρ,2.∂θ)–sized boxes ΡpΘq
centered on (ρp,θq).

Each pixel (xi,yj) gives rise to a sine curvature in Ω
space. The Hough transform is assessed by
incrementing, for each characteristic point (i.e. (xi,yj) ∈
E), accumulators associated with Ω boxes that intersect
the sine curvature in a non–null manner (FIG. 1).
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FIG 1 : Sine curvature fitted to an image point (xi,yj).

In practice, this means calculating the ρ  values
matching each θq value of θ: ρp=( )xi.cosθq + yj.sinθq  

and incrementing the ΡpΘq cell accumulator, such
that: ρ ∈  [ρp–∂ρ,ρp+∂ρ].

To account for uncertainty in detecting characteristic
points, it is necessary to consider each pixel (i,j) as a
(2.∂x,2.∂y)–sized box XiYj of the image I⊂  R 2
centered on (xi,yj).

A box XiYj of I maps a sine curvature set in
parameter space. It is thus essential to increment
accumulators associated with all boxes that intersect at
least one sine curvature of this set in a non–null
manner. This is termed the distributed vote.
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FIG 2 : Sine curves fitted to an image box XiYj.

A first–order approximation can simplify this
intersection calculation. Hence, for each θq value, we
evaluate the interval [ ]ρ–∆ρ,ρ+∆ρ  , such that:

ρ = ( )xi.cosθq  +   yj.sinθq   

∆ρ = |∂x.cosθq|+|∂y.sinθq|+|(yj.cosθq–xi.sinθq)∂θ|.

The ΡpΘq  cell accumulator is then incremented,
for which :



 [ρ–∆ρ,ρ+∆ρ] ∩ [ρp–∂ρ,ρ    p    +∂ρ] ≠ ∅. (1)

Equation (1) states that (x,y,ρ,θ) ∈ XiYjΡpΘq
exists, such that ρ  =  ( )x.cosθ + y.sinθ  , indicating
that the relation ƒ(x,y,ρ,θ) = 0 is entirely possible  in
this box.

The all–or–none aspect of this incrementation can
be astutely reduced by incrementing the accumulator
associated with the ΡpΘq cell using a proportional
value, whereby the [ρ–∆ρ,ρ+∆ρ] interval overlaps each
Ρp interval. The fuzzy Hough transform formalizes this
heuristic process.

III.3. FUZZY VOTE

Let us consider that each pixel (i,j) is a fuzzy box,
i.e. a product of two fuzzy intervals Xi and Yj. Xi
(rsp.Yj) is a symmetrical fuzzy interval centered on xi
(rsp.yj) with kernel [ ]xi–∂x,xi+∂x  ( )rsp.[yj–∂y,yj+∂y]  

and spread σx (rsp.σy)      (FIG. 3).
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FIG 3 : Fuzzy pixel (fuzzy image box)
Therefore, the sine curve set produced by each pixel

in Ω is an induced fuzzy set (FIG. 4).
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FIG 4 : Fuzzy sine curve set fitted to
a fuzzy image box XiYj.

 Each Ω cell is stated in the same manner as the
Cartesian (fuzzy) product of two fuzzy intervals Ρp and
Θq. Ρ p (rsp.Θq) is the fuzzy interval with a kernel
[ρp–∂ρ,ρp+∂ρ] (rsp. [θq–∂θ, θq+∂θ]), and spread σρ
(rsp.σθ).

We find that, for each XiY   j    box of E, the relation
ƒ(x,y,ρ ,θ )=0 is possible for Ρ pΘq cells with
incremented accumulators. This potential is shown by
the fact that the value 0 belongs to the variation domain
of φ=ƒ(x,y,ρ,θ) when variables x,y,ρ and θ are restricted
by their variation domain.

Variation domains in the FHT are fuzzy. Hence,
when (x,y,ρ,θ) belongs to XiYjΡpΘq, the range of
the variable  φ  is the fuzzy variation domain Φijpq.
According to the extension principle, when µΦijpq

  is

the membership function of Φijpq, we can state:

µΦijpq
(φ) =SUP,

x∈Xi y∈Yi,
ρ∈Ρp θ ∈Θq







MIN( )µ

Xi
(x),µ

Yj
(y),µ

Ρp
(ρ),µ

Θq
(θ)

 / ƒ(x,y,ρ ,θ) = φ
 

The possibility of membership of a pixel (i,j) to the
fuzzy line represented by the cell (p,q) is clearly
membership of the value 0 to the fuzzy set Φijpq:

π(i,j,p,q) = µΦijpq
(0) 

FHT assessment of the fuzzy cell ΡpΘq is then
defined, for all fuzzy pixels of E, as the sum of this
occurrence possibility π(i,j,p,q). Replacing the fuzzy
boxes by crisp boxes will clearly lead to a classical HT.

Now, to evaluate µΦijpq
(φ ) , we will use the

properties of fuzzy intervals in an LR representation.
The fuzzy intervals used here are for obvious reasons
considered to be symmetrical. According to the
properties of fuzzy intervals, the fuzzy interval Φijpq
can be defined by:

Φijpq = Ρp – Xi.cos(Θq) – Yj.sin(Θq).

In consideration of a few restrictions specific to
limited developments, Φijpq can be mapped with an
LR–type interval, as defined by its center φ ijpq, the
half–width of its kernel ∂φ ijpq and its spread σ
Erreur  ! ).
Erreur  ! ;≈ ;σρ+|cosθq|.σx+|sinθq|.σy+Erreur  ! .σθ)

The FHT assesses the cell {p,q} as follows:

h(ΡpΘq) =Erreur  ! µErreur  ! = Erreur  ! π(i,j,p,q)

The latter equation still has to be corrected to
account for the fact that E is a fuzzy set of I with a
membership function µE(XiYj):

h(ΡpΘq) =Erreur  !

IV. DEFFUZZIFICATION

Defuzzification of the HT involves retrieving the
distributed vote for a line of a cell from the neighboring
cells by calculating the barycenter of the concerned fuzzy
subsets [FOU 92]. This last procedure improves the
accuracy. This accuracy is no more linked to the
quantization in parameter space. Certainty is related to
the relative height of the peaks.

V. EXPERIMENTS

We run the experiments on a simple image in order
to highlight the different specificity of the FHT versus
the CHT. This image has been chosen because it
presents most of the flaw the FHT is coping with:



grainy and non-uniform background, poor contrasts,
fuzzy unclear lines, ….

FIG. 5 : Original image of three cables.
The combined effect of fuzzy thresholding and fuzzy

voting reduce the problems of false peaks due to noise in
the image (FIG. 6). There are very few noise peaks on
the accumulator array for the FHT, in contrast to that of
the CHT. This could be explained by joint effects of a
distributed vote and fuzzy weighting, thus “smoothing”
the transform.

CHT  FHT

FIG. 6 Accumulator arrays
for the CHT and the FHT.
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FIG. 7 Detected straight lines superimposed on the
original image
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FIG. 8 : Poor quantization of the parameter space

  
CHT FHT

FIG. 9 : Poor gray level threshold

V. CONCLUSION

Overall, the results of several tests showed that
when the analyzed image is crisp, well contrasted, with
little noise and quantization is adequate, then there is no
visible improvement in the quality of straight line
detection in the image when using the FHT. However,
in the absence of any of these characteristics, there is a
clear detection degradation with the CHT but not with
the FHT. The FHT is therefore more robust than the
CHT.
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