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Here we propose an adaption of Wilcoxon’s two-sample rank-sum test to interval data. This 
adaption is interval-valued: it computes the minimum and maximum values of the statistic 
when we rank the set of all feasible samples (all joint samples compatible with the initial 
set-valued information). We prove that these bounds can be explicitly computed using a 
very low computational cost algorithm. Interpreting this generalized test is straightforward: 
if the obtained interval-valued p-value is on one side of the significance level, we will be 
able to make a decision (reject/no reject). Otherwise, we will conclude that our information 
is too vague to lead to a clear decision.
Our method is also applicable to quantized data: in the presence of quantized information, 
the joint sample may contain a high proportion of draws, which can prevent the test from 
drawing a clear conclusion. According to the usual convention, when there are ties, the 
ranks for the observations in a tie are taken to be the average of the ranks for those 
observations. This convention can lead to wrong conclusions. Here, we consider the family 
of all possible rank permutations, such that a sample containing ties will not just be 
associated with a single value, but rather with a collection of values for the Wilcoxon’s 
rank-sum statistic, with each one of them being associated with a different p-value. When 
the impact of quantization is too high to lead to a clear decision, our test provides an 
interval-valued p-value that includes the chosen significance level. It indicates that there is 
no clear conclusion according to this test.
Two different experiments exemplify the properties of the generalized test: the first one 
illustrates its ability to avoid wrong decisions in the presence of quantized data. The second 
one shows the performance of the generalized test when used with interval data.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

The Wilcoxon rank-sum test [17], also know as Mann–Whitney U test, is a non-parametric hypothesis test used to 
check whether or not two independent samples containing n and m elements correspond to the same distribution. It does 
not require the data normality assumption. It can thus be regarded as an alternative to the two-sample t-test when the 
normality of the data clearly cannot be assumed. The Wilcoxon rank-sum statistic W is computed as follows: the n + m
observations of the two independent samples are combined in a single dataset. The elements of this dataset are sorted from 
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smallest to largest. If there are ties, i.e. duplicated values in the combined dataset, the ranks for the observations in a tie 
are taken to be the average of the ranks for those observations.

The Wilcoxon statistic, W , is calculated as the sum of the ranks for the n observations from the first population. If the 
null hypothesis of identical population distributions is true, n ranks from the first population are just a random sample from 
the n + m integers 1, . . . , n + m. Under this null hypothesis, the expectation and variance of W are, respectively:

μ0 = n(n + m + 1)

2
and σ 2

0 = nm(n + m + 1)

12
.

Furthermore, when both sample sizes are sufficiently large (n > 10 and m > 10, by convention), the distribution of the 
statistic T = W −μ0

σ0
is assumed to be Gaussian (with null expectation, and variance equal to 1). Intuitively, if W is much 

smaller (or larger) than μ0, this is evidence that the null hypothesis is false and, in fact, that the considered samples come 
from distinct populations. Under this assumption, the critical value (or p-value) is calculated according to the following 
equality:

p(w) = 2

[
1 − φ

( |w − μ0|
σ0

)]
,

where w denotes the value of the rank-sum statistic in the sample, and φ denotes the cumulative distribution function of 
the standard normal. For a specific significance level α ∈ (0, 1), the null hypothesis will be rejected whenever p(w) < α.

In this paper, we explore an alternative to the convention that assigns an average rank to tied values. If there is a high 
proportion of draws in the sample (which can easily occur in the presence of discrete or quantized data), considering a 
different (but also compatible) sequence of rank assignments can lead to a completely different final decision. Indeed, the 
computed rank-sum statistic w , and therefore the associated p-value, p(w), may vary significantly. In this paper, we consider 
all the possible rank assignments, so that a sample containing ties, will not just be associated with a single value (computed 
by averaging the ranks of the tied elements), but rather to a collection of values for the Wilcoxon rank sum statistic, with 
each one of them being associated with a different p-value. The decision process thus becomes more expressive. If all of the 
computed p-values are below a fixed significance level α, we will reject the null hypothesis. Likewise, if the p-values are all 
above α, then one would conclude that there is little evidence for the alternative hypothesis to be true (we “accept” the null 
hypothesis). There is a now a third possible answer: if the set of p-values and the significance level do overlap, we cannot 
make a decision because our information on the original values that led to that “quantized” data is not sufficiently accurate. 
In other words, quantization hides the information and thus the problem is no longer decidable.

The procedure described in the previous paragraph can be applied, more generally, to situations where, instead of point-
valued sample observations, we are provided with interval-valued sample observations, with each one containing the true 
instance.

Interval-valued observations can account for a known defect in the measurement system (see e.g. [16,18,14] and ref-
erences therein), quantization of data, guaranteed estimation ([9,8,10]) or for imprecision in the model (see e.g. [15,13]). 
We aim to cover the whole collection of samples compatible with our incomplete information in order to calculate the set 
of feasible rank-sum statistics. A p-value corresponds to each of those rank-sum statistics. Thus, our information about the 
critical value associated with the true (imprecisely observed) joint sample will be determined by a subset of [0, 1], where it 
certainly belongs. When the initial information is not very accurate, the set of possible p-values will be larger. The decision 
procedure is similar to the previously presented approach. When the whole set is on one side of the α−level, we will be 
able to make a decision, otherwise we will not. This approach was recently considered by several authors (see, for instance 
[1–5]). Specifically, Denoeux et al. [3] applied this procedure to the Wilcoxon rank-sum test, in the presence of fuzzy data. 
This encompasses, as a particular case, the case of interval-valued data. The same idea of looking for the least and most 
favorable cases within the imprecise dataset can be also found in the recent literature (see [1,6,7,12,11] among others).

One of the main pitfalls in this framework is to compute the bounds of the set of feasible p-values. This task can be 
relatively computationally expensive, depending on the test we are generalizing. As Denoeux et al. [3] state, a simplistic ap-
proach used to solve the problem of determining the maximum and minimum values for the statistic and its corresponding 
p-value, in this kind of rank-based tests, might be to generate all rank assignments that are compatible with the available 
incomplete information. However, this approach is intractable, as they point out, due to the potentially exponential number 
of different rankings, which can reach n! in the empty information limit case. Thus, they propose to use a Monte-Carlo 
simulation method to approximate the bounds of the Wilcoxon rank-sum statistic. Such a method would require many it-
erations for large n and m values, but would not provide exact values of the bounds of the set of feasible values for the 
statistic. In this paper, we try to overcome this issue. We present a procedure to calculate exact values for those bounds. 
Furthermore, we show that the complexity of such a procedure is comparable to the calculation of the Wilcoxon rank-sum 
statistic for single-valued data, because each of the bounds just involves calculation of the Wilcoxon rank-sum test for a 
specific extreme sample. We provide two explicit and computationally simple algorithms to compute those bounds.

We propose two experiments to illustrate the properties of this generalization. The first experiment highlights the ability 
of the imprecise test to discard wrong decisions due to quantization in precise data. The second experiment shows the 
behavior of the test when interval-valued data are considered.
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2. Generalization of the Wilcoxon rank-sum test

In this section, we describe the procedure to make decisions on the basis of a Wilcoxon rank-sum test when provided 
with an imprecise sample expressed in terms of interval data. Subsection 2.1 describes an easy method to determine the 
minimum and maximum of the set of feasible values for the rank-sum statistic. Subsection 2.2 deals with calculation of 
bounds for p-values while providing a procedure to make decisions based upon this information.

Let us first outline the nomenclature we will use in the section. X = X1 ×· · ·× Xi ×· · ·× Xn and Y = Y1 ×· · ·×Y j ×· · ·×Ym

denote our incomplete information about ill-known samples x0 = (x0
1 . . . x0

i . . . x0
n) ∈ R

n and y0 = (y0
1 . . . y0

j . . . y0
m), where 

each Xi and each Y j is a closed interval of the form Xi = [xi, xi] and Y j = [y
j
, y j] representing incomplete information about 

the value of each component. x = (x1 . . . xi . . . xn) and x = (x1 . . . xi . . . xn) denotes the pair of samples included in X that are 
formed by the minimum (resp. the maximum) of the interval data. Analogously, we use the notation y = (y

1
. . . y

j
. . . y

m
)

and y = (y1 . . . y j . . . ym). Let xy and XY denote the joint samples associated with samples x and y as well as samples X
and Y, respectively. x ∈ X represents the fact that for any i ∈ {1, . . . , n}, xi ∈ Xi (the same for y ∈ Y and xy ∈ XY).

2.1. Calculation of the bounds of the rank-sum statistic

Consider an arbitrary pair of vectors x = (x1, . . . , xn) ∈ X and y = (y1, . . . , ym) ∈ Y. For every v ∈ {x1, . . . , xn, y1, . . . , ym}, 
rxy(v) and rxy(v) respectively denote the minimum and maximum possible rank values of v ∈ R in the joint sample xy, i.e.

rxy(v) = #
{
k ∈ {1, . . . ,n} : xk < v

} + #
{
l ∈ {1, . . . ,n} : yl < v

} + 1,

and

rxy(v) = #
{
k ∈ {1, . . . ,n} : xk ≤ v

} + #
{
l ∈ {1, . . . ,n} : yl ≤ v

}
.

Rxy(v) denotes the (finite) set of rank values associated with v , i.e.:

Rxy(v) = {
n ∈N : rxy(v) ≤ n ≤ rxy(v)

} ⊆ {1, . . . ,n + m}.
Any bijective mapping sxy : {1, . . . , n + m} → {1, . . . , n + m} (permutation of n + m numbers) satisfying the constraints 

sxy(i) ∈ Rxy(xi), i = 1, . . . , n, sxy( j + n) ∈ Rxy(y j), j = 1, . . . , m, is referred to as a rank assignment.
Readers should note that, for every pair v, v ′ ∈ {x1, . . . , xn, y1, . . . , ym} with v �= v ′ , we have Rxy(v) ∩ Rxy(v ′) = ∅. More-

over, for an arbitrary v , the cardinality of Rxy(v) is equal to the number of elements in the joint sample taking the value v , 
i.e.:

#Rxy(v) = #
{

i ∈ {1, . . . ,n} : xi = v
} + #

{
j ∈ {1, . . . ,m} : y j = v

} = #I(v), (1)

where I(v) = {k ∈ {1, . . . , n + m} : xk = v or yk−n = v} denotes the collection of indices associated with v . Thus, the fami-
lies of sets {Rxy(v) : v ∈ {x1, . . . , xn, y1, . . . , ym}} and {I(v) : v ∈ {x1, . . . , xn, y1, . . . , ym}} constitute two (usually different) 
partitions of the set of indices {1, . . . , n + m}. We can easily check that there is at least one rank assignment sxy satisfying 
the above constraints. For each v ∈ {x1, . . . , xn, y1, . . . , ym}, it assigns a rank value included in Rxy(v) to every element in 
I(v). Σxy denotes the family of all rank assignments associated with the sample xy. Of course, if there are no ties, it will 
be a singleton. The mapping w : ⋃xy∈XY Σxy →N will assign, to each specific rank assignment, the sum of ranks of the first 
n elements, w(sxy) = ∑n

i=1 sxy(i). Finally, Wxy denotes the family of all possible values for the Wilcoxon rank-sum statistic 
associated to the sample xy. Formally:

Wxy = {
w(sxy) : sxy ∈ Σxy

}
.

For an arbitrary sample xy ∈ XY, we can easily find the minimum of Wxy if we consider any permutation assigning the least 
positions in Rxy(v) to the indices in I(v) associated with those instances coming from the first sample, {i ∈ {1, . . . , n} : xi =
v} ⊆ I(v), and the largest ones to those elements coming from the second one. Formally, such a permutation will satisfy 
the following conditions:

sxy(i) < sxy( j), if i ≤ n < j, and xi = y j−n.

Analogously, we can easily find the maximum of Wxy by considering any rank assignment satisfying the constraints:

sxy(i) > sxy( j), if i ≤ n < j, and xi = y j−n.

Next, we prove that, for an arbitrary pair of samples x ∈ X, y ∈ Y, the set of Wilcoxon values, Wxy , assigned to the joint 
sample xy is bounded from below by the minimum of the set of values associated with the sample xy and bounded from 
above by the maximum of the set of values associated with xy. Formally, we state this as follows:
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Theorem 2.1. Let X and Y be two imprecise samples of size n and m, respectively. For any pair of precise samples x ∈ X and y ∈ Y, the 
following inequalities hold:

min Wxy ≤ min Wxy ≤ max Wxy ≤ max Wxy.

Proof. It suffices to check that, for any w ∈ Wxy we have w ′
1 ∈ Wxy and w ′′

1 ∈ Wxy such that w ′
1 ≤ w ≤ w ′′

1 and w ′
2 ∈ Wxy

and w ′′
2 ∈ Wxy such that w ′

2 ≤ w ≤ w ′′
2. We just prove the cases of w ′

1 and w ′
2 to deduce the left inequality of Theorem 2.1. 

The demonstration for the right inequality is similar. The central inequality is obvious.
Let us consider an arbitrary sample xy ∈ XY, and a specific rank assignment sxy , and let w = w(sxy). We just need to 

check that, if we consider a new joint sample x′y, where x′ is defined as follows: x′
k = xk and x′

j = x j , ∀ j �= k then there is a 
rank assignment sx′y such that w(sx′y) ≤ w(sxy) and something similar happens if, for an arbitrary l ∈ {1, . . . , m} we replace 
yl by y′

l = yl .
Let us prove the first part. We assign to x′

k = xk the rank value r = sx′y(k) := rx′y(xk) = #{i ∈ {1, . . . , n} : x′
i < x′

k} + #{r ∈
{1, . . . , m} : yr < x′

k} + 1 (note that, according to this procedure, if x′
k = xk coincides with some other element in the joint 

sample x′y, we are assigning it the smallest possible rank value). We easily observe that sx′y(k) = sxy(k) − s with s ≥ 0
(if x′

k = xk does coincide with some other element in the joint sample x′y). Furthermore, for those indices i ∈ {1, . . . , n} such 
that sxy(i) ∈ {r, . . . , r + s − 1}, we have sx′y(i) = sxy(i) + 1. There are at most s of those indices. Furthermore, for the rest of 
the indices i, we have sx′y(i) = sxy(i). We therefore deduce that w(sx′y) ≤ w(sxy).

The proof of the second part is a bit shorter because, when we replace yl by y′
l = yl , none of the rank values, sxy′ (i)

are higher than the corresponding initial one, sxy(i) and therefore, w(sxy′ ) ≤ w(sxy). Regarding potential draws between 
elements in the sample xy′ , an analogous procedure applies in order to find the sample with the maximum sum of ranks: 
we place y′

l in the highest possible position, i.e., sxy′ (l) = #{i ∈ {1, . . . , n} : xi ≤ y′
l} + #{ j ∈ {1, . . . , m} : y j ≤ y′

l}. �
According to Theorem 2.1, for any joint sample xy compatible with the imprecise information provided by XY, any rank 

summation assigned to it, w(sxy) ∈ Wxy is an integer value bounded by min Wxy and max Wxy . Now we will go further 
and prove that, for any integer r bounded by those two numbers, there is at least one joint sample xy ∈ XY and a rank 
assignment sxy ∈ Σxy such that r = w(sxy). This result will impact calculation of the set of possible p-values derived from 
the (imprecise) information provided by XY, as we will show later.

Theorem 2.2. Let X and Y be two imprecise samples of size n and m. Let WXY = ⋃
xy∈XY Wxy denote the set of all possible values for 

the rank-sum statistic. Then:

WXY = {r ∈N : min Wxy ≤ r ≤ max Wxy}.

Proof. It suffices to check that for every r ∈ N satisfying the conditions 1) min Wxy ≤ r < max Wxy and 2) r ∈ WXY , the value 
r + 1 also belongs to WXY . Let us consider an arbitrary r satisfying these restrictions. According to the second condition, 
there is at least one sample xy ∈ XY and a rank assignment sxy ∈ Σxy such that r = w(sxy). Furthermore, according to 
the first condition, there is at least one pair (i, j) ∈ {1, . . . , n} × {1, . . . , m}, and a rank assignment sxy ∈ Σxy such that 
sxy(i) < sxy( j + n), but sxy(i) > sxy( j + n). We can assume, without loss of generality, that xi < y j (otherwise, we can easily 
select a new rank assignment s′

xy ∈ Σxy such that w(s′
xy) = w(sxy) + 1, just exchanging indices between linked values). 

We will also assume, without loss of generality, that sxy(i) = maxk : xk=xi sxy(k) and sxy( j + n) = minl : yl=y j sxy(l + n). Let us 
now select two indices k∗ ∈ {1, . . . , n} and l∗ ∈ {1, . . . , m} satisfying the respective conditions xk∗ = max{xk : xk < y j} and 
yl∗ = min{yl : yl > xi}. We can find at least a pair of indices satisfying those conditions because the above sets of values do 
respectively contain xi and y j . Furthermore, we observe that xk∗ ≥ xi and yl∗ ≤ y j . We will consider three possible cases:

• Case 1, xi ≥ yl∗ . – Let us consider a new sample x′ ∈ X defined as x′
i = yl∗ and x′

k = xk , ∀k �= i. Let us consider the rank 
assignment sx′y ∈ Σx′y determined as follows:

sx′y(t) =

⎧⎪⎨
⎪⎩

sxy(l∗ + n) − 1 if t = l∗ + n,

sxy(l∗ + n) if t = i,
sxy(t) − 1, if t ∈ {1, . . . ,n} \ {i} and xi < xt ≤ y∗

l ,

sxy(t) otherwise.

• Case 2, xi < yl∗ and y
j
≤ xk∗ . – Let us consider a new sample y′ ∈ Y defined as y′

j = xk∗ and y′
l = yl , ∀l �= j. Let us 

consider the rank assignment sxy′ ∈ Σxy′ determined as follows:

sxy′(t) =

⎧⎪⎨
⎪⎩

sxy(k∗) + 1 if t = k∗,
sxy(k∗) if t = j + n,

sxy(t) + 1 if xk∗ ≤ yt−n ≤ y j
sxy(t) otherwise.



112 J. Perolat et al. / International Journal of Approximate Reasoning 56 (2015) 108–121
• Case 3, xi < yl∗ and y
j
> xk∗ . – Let us consider a new joint sample x′y′ ∈ XY defined as x′

i = y
j
= y′

j and x′
k = xk

∀k �= i and y′
l = yl , ∀l �= j. Since we assumed that sxy(i) > sxy( j + n), we deduce that xi ≥ y

j
and therefore xi ≥ x′

i . 
Furthermore, xk∗ ≥ xi by definition, and we also assume that y

j
> xk∗ , so therefore, x′

i = y
j
> xi ≥ xi . We can thus 

guarantee that x′
i belongs to Xi . Let us consider the following rank assignment sx′y′ ∈ Σx′y′ , that assigns the maximum 

possible rank, sx′y′ (i) = maxk∈I(y
j
) sx′y′ (k), to x′

i = y
j
, and the preceding position sx′y′ ( j + n) = maxk∈I(y

j
) sx′y′ (k) − 1

to y′
j = y

j
. Considering that xk∗ < y

j
< yl∗ , there is no element in the initial joint sample v ∈ {x1, . . . , xn, y1, . . . , ym}

satisfying xk∗ < v < y
j
. Thus, the new rank assignment can be defined as follows:

sx′y′(t) =

⎧⎪⎨
⎪⎩

sxy(k∗) + 1 if t = i,
sxy(k∗) if t = j + n,

sxy(t) − 1, if t ∈ {1, . . . ,n} \ {i} and xi < xt ≤ x∗
k ,

sxy(t) + 1, if t ∈ {1 + n, . . . ,m + n} \ { j} and yl∗ < yt−n < y j .

It is easy to check that the value of the Wilcoxon rank-sum statistic associated with the new rank assignment is equal 
to r + 1, under any of the above possible situations. �
2.2. Bounds for the p-value and decision procedure

According to [1–3,5] we should proceed as follows, in order to make a decision from our imprecise dataset, XY. First, 
we need to calculate the set of possible values for the p-value, according to the imprecise information provided by XY:

PXY = {pxy : xy ∈ XY}.
Based on the information provided by the above set, and for a specific significance level, α, when the resulting bounds 
are on one side of α, the decision of the test hypothesis is clear. But when the bounds straddle the threshold, the test 
is inconclusive, since the data imprecision prevents us from making a clear determination. Thus, we will make one of the 
following decisions:

D(XY) =
⎧⎨
⎩

reject, if PXY ⊆ [0,α]
accept, if PXY ⊆ (α,1]
no-decision, if PXY ∩ [0,α] �= ∅ and PXY ∩ (α,1] �= ∅.

(2)

For the particular test considered in this paper, the p-value associated with an arbitrary joint sample xy ∈ XY, and a 
specific rank assignment, sxy ∈ Σxy , is determined as follows:

p(sxy) = 2

[
1 − φ

( |w(sxy) − μ0|
σ0

)]
,

where μ0 and σ0 respectively denote the expectation and standard deviation of the statistic under the null hypothesis. 
According to Theorem 2.1, the minimum and maximum of the set of values {t = w−μ0

σ0
: w ∈ WXY} are respectively t =

min Wxy−μ0

σ0
and t = max Wxy−μ0

σ0
. Furthermore, we can easily check that, for an arbitrary interval [a, b], the set of absolute 

values of the elements of it, {|x| : a ≤ x ≤ b}, coincides with the interval: [max{0, −b, a}, max{b, −a}]. Now, while taking 
into account that the distribution function φ is strictly increasing, we observe that the p-value increases as the absolute 
value of t = w−μ0

σ0
, with w ∈ WXY , decreases. Therefore, the set of possible p-values, PXY is included in the interval [p, p], 

whose extremes are determined as follows:

p = 2
[
1 − φ

(
max{t,−t})]

p = 2
[
1 − φ

(
max{0,−t, t})].

We can therefore easily check that the bound p is always attained for at least one of the extreme samples xy and xy. 
Furthermore, when sign(t) = sign(t) (both positive or both negative) the upper bound p is also attained in at least one 
of those extreme samples. The only case where p is not reached is when t < 0 < t and, furthermore, μ0 /∈ WXY . In such 
situations, p = 2[1 −φ(0)] = 1, but max PXY = 2[1 −φ(t∗)], where |t∗| = min{|t| = | w−μ0

σ0
| : w ∈ WXY} > 0. Notwithstanding, 

we can derive from Theorem 2.2 that the distance between two consecutive values of t = w(sxy)−μ0
σ0

, when we rank the 

whole imprecise joint sample, is equal to 1 =
√

12 . Under the conditions considered in this paper (n ≥ 10 and 
σ0 nm(n+m+1)
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m ≥ 10), this value is lower than 0.076. Therefore, we can state that the set WXY contains at least one element w satisfying 
the inequality | w−μ0

σ0
| ≤ 0.076, and so we can state that max PXY ≥ 2[1 − φ(0.076)] ≈ 0.94. This value is higher than any 

significance level used in practice. According to this, replacing the actual set of possible p-values, PXY , by the interval [p, p]
calculated above will not modify our final decision in any practical situations, and will very much simplify the necessary 
calculations.

An alternative version of this test is provided in the literature: Instead of determining the value of Wxy , the difference 
Wxy − Wyx can be calculated. When taking into account the deterministic relation between Wxy and Wyx (Wxy + Wyx =∑n+m

i=1 i = (n+m)(n+m+1)
2 , we easily check that such a difference can be alternatively written as 2Wxy − 2μ0. Under the null 

hypothesis, this new statistic follows normal distribution with mean μ′
0 = 0, and standard deviation σ ′

0 = 2σ0 = nm(n+m+1)
6 . 

According to this new version of the test, the null hypothesis is rejected whenever the absolute value of the above difference 
is sufficiently large. Our algorithm returns the minimum and maximum possible values for Wxy , i.e. min Wxy and max W xy . 
Following a similar procedure, but exchanging the roles of X and Y , we can apply it to calculate the minimum and the 
maximum values for Wyx , that can be denoted by min Wyx and max Wyx , respectively. Note however that there is also a 
deterministic relation between the above statistics. In fact, we can easily check that:

min Wxy + max Wyx = max Wxy + min Wyx = (n + m)(n + m + 1)

2
.

When taking this relation into account, we can easily check that the difference between the above intervals (according to 
set-valued arithmetic) provides the interval of possible values for the statistic Wxy − Wyx = 2Wxy − 2μ0.

The above considerations concern the two-sided Wilcoxon rank sum test. In case of the one-sided variant, calculation of 
the maximum and minimum of the set of possible p-values, PXY is simpler. In fact, if we consider the alternative hypothesis 
which states that x is shifted to the left of y, the p-value would be written as follows:

p(sxy) = φ

(
w(sxy) − μ0

σ0

)
.

Thus, the maximum and minimum possible values of the set PXY , given the information provided by imprecise sample, 
would be:

p = φ(t) and p = φ(t).

Similarly, the maximum and the minimum possible values of the set PXY , when we consider the other one-side test (H1: x
is shifted to the right of y), can be calculated as follows:

p = 1 − φ(t) and p = 1 − φ(t).

We should finally make a decision according to Eq. (2).

3. The test in practice

3.1. Algorithm

Computing the generalized Wilcoxon rank-sum test is really easy and can be done at low computational cost compared 
to the original test that needs to find and process the links. This generalized test just involves two sorts, in case of precise 
data, and four sorts, in case of imprecise data. Since precise data is just a particular case of imprecise data, here we present 
the two algorithms needed to process imprecise data. Algorithm 1 computes min Wxy while Algorithm 2 computes max W xy .

Algorithm 1: Computation of min Wxy .

Input: x, y, n, m,
Output: W = min Wxy
W = 0 ;
set z = [x, y] (concatenation) ;
p = 1 ;
sort z ; sort x ;
for i = 1, . . . , (n + m) do

if z(i) = x(p) then
p = p + 1 ;
W = W + i ;
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Algorithm 2: Computation of max Wxy .

Input: x, y, n, m,

Output: W = max Wxy

W = 0 ;
set z = [x, y] (concatenation) ;
p = 1 ;
sort z ; sort y ;

for i = 1, . . . , (n + m) do
if z(i) = y(p) then

p = p + 1 ;
else

W = W + i ;

3.2. A simple example

To clarify the computation of the generalized Wilcoxon rank-sum test for interval data, we propose, in this Section, a very 
simple example consisting of comparing two interval-valued samples X = ([1, 3], [2, 3], [3, 5]) and Y = ([2, 3], 5). Within this 
example n = 3, m = 2, μ0 = 3(3+2+1)

2 = 9 and σ 2
0 = 3×2(3+2+1)

12 = 3.
Computation of W according to Algorithm 1 requires defining the sorted vectors z = (1, 2, 3, 3, 5) and x = (1, 2, 3). 

It outputs W = 1 + 2 + 3 = 6.
Computation of W according to Algorithm 2 requires defining the sorted vectors z = (2, 3, 3, 5, 5) and y = (2, 5). It out-

puts W = 2 + 3 + 5 = 10.

Then t = W −μ0
σ0

= 6−9√
3

= −√
3 and t = W −μ0

σ0
= 10−9√

3
= 1√

3
. Thus, p = 2(1 − φ(max{ 1√

3
, 
√

3})) = 2(1 − φ(
√

3)) ≈ 2(1 −
0.9584) ≈ 0.083 and p = 2(1 − φ(max{0, − 1√

3
, −√

3})) = 2(1 − φ(0)) = 2(1 − 0.5) = 1.

In that case, we obtain an imprecise p-value which is highly imprecise. However, even if this interval is very wide, it 
completely falls in the acceptance region if we consider the usual 0.05-significance level test.

3.3. Power and type I error

This simulated experiment aims at comparing the proposed generalization of the Wilcoxon test with the precise original 
test in terms of power. The proposed experiment is based on considering a sample of n elements (x1, . . . , xn) taken from 
a uniform distribution on the interval [−2, 2] and a sample of m elements (y1, . . . , ym) from another uniform distribution 
U (μ − 2, μ + 2), for a fixed μ in the interval [−0.5, 0.5]. The respective sample sizes satisfy the constraints n + m = 1000
and 400 ≤ n ≤ 600.

We repeated this experiment 1000 times, and we determined the rejection rates in the precise Wilcoxon test, in order 
to obtain an estimation of the power of the Wilcoxon rank-sum classical test, pow(μ), for each particular value of μ �= 0, 
as well as the type I error for μ = 0. Fig. 2 shows these rates in blue for different values of α (in particular, we have consid-
ered the significance levels α = 0.01, α = 0.05, and α = 0.1 – plotted from top to bottom). We determined those rates for 
every μ = −0.5 + i

100 , i = 0, 1, . . . , 100 (values of μ are displayed on the x-axis on every graph). We have added impreci-
sion to those samples according to the following procedure. For each particular level of imprecision � > 0, and each sample 
value xi , we constructed an interval [xi, xi] of length � centered on xi . The same level of imprecision, � was considered on 
the values of the second sample. The process has been repeated for the values � = 0.2, � = 0.1 and � = 0.05 (from left to 
right in the figures). Fig. 1 shows the rejection, “acceptance” and “no-decision” rates, according to the generalized imprecise 
test. We observed that the rejection rate was an increasing function with respect to the absolute value of μ, while the 
acceptance rate decreased with respect to it. The “no-decision” rate was low when the absolute value of μ was very high 
(and thus the rejection rate was high) or very close to 0 (where the acceptance rate was high). We compared the different 
plots from the right to the left and observed that the no-decision rate increased with �. We compared the different plots 
from top to bottom and observed that the rejection rate increased while the acceptance rate decreased with α. Fig. 2 com-
pares the rejection rates and the rates of “no acceptance” (rejection or no-decision) of the generalized test to the respective 
rejection rates of the classical test. For each particular value of μ, � and α, each pair of rates provides a pair of estimations 
of the upper and the lower bounds of the “power” of the test, based on the respective imprecise datasets. According to 
Fig. 2, the distance between the rejection rate (in red) and the non-acceptance rate (in black) increased with respect to �, 
i.e. the degree of imprecision. We also observed that both rates increased with respect to α (the greater the significance 
level, the lower the acceptance rate).

Let us take into account that in our simulated dataset, the “true” precise values coincide with the center of the intervals 
in the imprecise dataset. Similar plots can be obtained under the less restrictive situation where the center of the intervals 
does not necessarily coincide with those “true” precise values, but rather with their expectations. If, on the contrary, our 
imprecise data are biased to the left or to the right, the upper and lower rejection rates would change (depending on the 
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Fig. 1. “Rejection”, “no-decision” and “acceptance” rates wrt generalized Wilcoxon imprecise test. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.)

different values of μ). Notwithstanding, something that would not change is that the difference between both rates would 
still increase with respect to the imprecision degree, �.

3.4. Experiments

A major issue concerning statistical tests is their robustness with respect to the data model. The Wilcoxon rank-sum 
test was designed to compare samples taken from pairs of continuous distributions, but it is frequently applied to pairs of 
samples taken from discrete distributions. In particular, it is often used to deal with quantized information, which involves 
comparing pairs of integer vectors.

For example, pixel values of a 512 × 512 gray-level image are quantized on 8 bits, i.e. on 256 values. On average, 1024
pixels would thus have the same value. Using a Wilcoxon rank-sum test and ignoring the quantization effect could lead to 
arbitrary results, and thus wrong decisions: the value of the statistic calculated from quantized data could differ markedly 
from a calculation based on original (non-quantized) data.

In some applications, e.g. image based medical diagnosis, inferential statistics are often used to compare pairs of regions 
in the same image or in two different images, and determine whether they are similar or not. Early diagnosis is vital in 
the treatment of some diseases, which means that we need to detect differences at an early stage. In such cases, accepting 
the equality hypothesis when it is false must be avoided as much as possible. On the contrary rejecting this hypothesis 
when it is true may sometimes lead to an unnecessary harmful treatment choice. In fact, physicians would usually try to 
avoid a wrong decision, and prefer to acquire additional data when the actual data are not fully reliable. Thus, knowing that 
no-decision can be taken based on the current set of data is a valuable piece of information.

Finally, when the degree of sensor imprecision is known, it can also be valuable to be able to use this information in the 
test.

We propose two illustrative experiments that highlight the ability of the generalized Wilcoxon rank-sum test to avoid 
wrong decisions. Those experiments are based on images acquired by a gamma camera (nuclear medicine images). They aim 
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Fig. 2. Comparison between generalized imprecise Wilcoxon test and the classical one. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)

Fig. 3. 6 acquisitions of the Hoffman 2-D brain phantom.

at mimicking real medical situations where the nuclear physician has to compare the distribution of values in two regions 
of interest in order to decide whether or not a patient has a specific disease.

3.4.1. Material
A Hoffman 2-D brain phantom (Data Spectrum Corporation) was filled with a 99m technetium solution (148 MBq/L) and 

placed on one of the detectors of a dual-head gamma camera using a low-energy high-resolution parallel-hole collimator 
(INFINIA, General Electric Healthcare). A dynamic study was carried out to obtain 1000 planar acquisitions (acquisition 
time: 1 second; average count per image 1.5 kcounts, 128 × 128 images to satisfy the Shannon condition), representing 
1000 measures of a random 2-D image (see Fig. 3). The Hoffman phantom is designed to simulate, by a partial volume 
effect, the emissivity ratio between brain gray matter and white matter. A gamma camera counts the number of photons 
that have been emitted in a particular direction. Thus, pixel values in a nuclear image are counts and therefore can be 
assumed to be contaminated by Poisson distributed noise.

As the acquisition time was very short, the images were very noisy, i.e. the signal to noise ratio was very low. More 
precisely, the average pixel value in the brain corresponded to a 69% coefficient of variation in the Poisson noise. More-
over, due to this short time acquisition, the number of different possible values to be assigned to a pixel was low 
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Fig. 4. 6 images obtained by summing up 10 raw acquisitions of the Hoffman 2-D brain phantom.

Fig. 5. Classical Wilcoxon rank-sum test obtained by comparing 1000 pairs of raw acquisitions of the Hoffman 2-D brain phantom.

and thus, within those images, the quantization impact was high. For example, in raw images, the pixel values were 
{0, 256, 512, 768, 1024, 1280, 1536, 1792, 2048}. This quantization was induced by the gamma-camera technology, but could 
also be considered as a quantized values of a Poisson-ruled process associated with each pixel.

To obtain less noisy and less quantized images, we summed the raw images (see e.g. Fig. 4). The higher the number of 
summed images, the higher the average pixel value, and thus the higher the signal to noise ratio. When summing the 1000
raw images, we obtained the high dynamic resolution and high signal to noise ratio image depicted in Fig. 10a.

3.4.2. The generalized test accounts for quantization
Due to the short acquisition time, the raw images were quantized on nine levels: 0,256,512,768,1024,1280,1536,

1792,2048. The impact of quantization was therefore substantial. To highlight the effect of quantization on the Wilcoxon 
rank-sum test, we considered 1000 acquisitions of the same image. We formed 1000 pairs, each of them containing each 
of the 1000 images and another image taken at random from the remaining 999 images. We compared the pixel value 
distributions in every pair of those raw images. More precisely, we compared the vector of the non-null pixels of the 
upper half of the first image to the vector of the non-null pixels of the lower half of the second image. We compared 
both distributions, without considering the pixel locations. Of course, other kinds of image comparisons could be done, but 
this is beyond the scope of this illustrative example. The number of non-null pixels differed between images and therefore 
the sample sizes n and m did not generally coincide but were always greater than 20. In this experiment, the data were 
considered as precise. The distributions in the upper and lower parts were almost identical and in fact were identical 
when considering the high dynamic image depicted in Fig. 10a. The test results should thus not lead us to reject the null 
hypothesis that states that both distributions are identical. In fact, the proportion of times that the p-value is below a 
pre-defined threshold α is expected to be around α. Figs. 5 and 6 plot the p-values respectively obtained using the classical 
and generalized Wilcoxon rank-sum test. The usual threshold value of α = 0.05 was superimposed on each figure (in black). 
The p-values displayed in Fig. 5 should have corresponded to a sample of size 1000 taken from a uniform distribution on 
the unit interval. Thus, only 5% of those values (around 50 times out of 1000) would be expected to be lower than α = 0.05. 
However, they were below this threshold 253 times out of 1000 (> 25%), leading to a wrong decision (type I error). This 
paradoxical result (the wrong decision ratio should be under 0.05), was due to the fact that the calculation of the Wilcoxon 
rank-sum test critical values was based on quantized data rather than continuous data.

Conversely, the p-value provided by the generalized Wilcoxon rank-sum test was very imprecise: the upper p-value, 
(p) equaled 1 while the lower p-value, (p), equaled 0 for any instance of the test. It shows that, according to this test, 
no-decision could be made with these data, since there were too many repeated values in the quantized sample. In a 
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Fig. 6. Generalized Wilcoxon rank-sum test obtained by comparing 1000 pairs of raw acquisitions of the Hoffman 2-D brain phantom.

practical case, this situation would indicate to the physician that a new data acquisition would be required with a higher 
acquisition time.

3.4.3. The generalized test accounts for imprecision
In this second experiment, we considered images with a higher signal to noise ratio obtained by summing the pixel 

values, pixel by pixel, after taking a fixed number k acquisitions of the same image. We thus obtained 500 images when 
summing pairs of raw images, 333 images when summing triplets of images, etc. When the signal to noise ratio increased, 
the data were quantized on a higher number of values and thus the noise and quantization effects decreased. For example, 
summing up two raw images led to an image quantized on 14 levels: 0, 256, 512, 768, 1024, 1280, 1536, 1792, 2048, 2304, 
2560, 2816, 3072 (values 3584 and 4096 could appear in theory, but not in practice).

For each signal to noise ratio (i.e. for each value of k), we achieved 100 comparisons between the distribution of 
(summed) pixel values in the lower part of one image and the distribution of the (summed) pixel values in the upper 
part of another image. We then counted the number of times where the test led to a wrong decision (i.e. times where 
it led us to conclude that both distributions were different). For the classical Wilcoxon rank-sum test, it corresponded to 
the number of times where the p-value went under 0.05. For the generalized Wilcoxon rank-sum test, it corresponded to 
the number of times when the upper p-value went under 0.05. We also counted, in this last case, the number of times 
where the generalized test was inconclusive, because the bounds of the p-value straddled the threshold (i.e. p < 0.05 < p). 
We then focused on the ratios (i.e. number of counts over the total number of considered pairs of images). Fig. 7 plots those 
ratios versus the number of summed images (k).

Note that the ratio of wrong decisions when considering the generalized test was lower than the ratio of wrong decisions 
when considering the classical test. The proportion of times that the generalized test was inconclusive was also very high. 
As expected, every ratio converged at 0.05 when k (and thus the signal to noise ratio) increased. We also noted a very 
paradoxical phenomenon: when k increased from 2 to 20, the number of wrong decisions increased in both cases. This was 
due to the combined effect of random noise, quantization and the fact that non-null pixel values increased with summation, 
leading to a decision that the two distributions differed even though they did not.

Although the wrong decision ratio was low when using the generalized test, it was still non-null, and therefore did not 
fully reflect the ability of this test to avoid wrong decisions.

In a second stage, we considered each pixel value to be Poisson distributed, with mean λ (with λ depending on the pixel 
location). We thus artificially made the data imprecise by replacing each value x by a confidence interval for λ centered on 
this single observation x. We opted for the confidence levels 1 −α = 0.95 and 1 −α = 0.68, often used in statistics, because 
of their relation with the 1σ and 2σ intervals for Gaussian distributions. Each confidence interval Iα(x) was computed 
according to the classical formula Iα(x) = [F −1( α

2 , x, 1), F −1(1 − α
2 , x + 1, 1)], where F −1(·, n, 1) is the quantile function of 

the gamma distribution with a shape parameter n and scale parameter 1. The result is plotted in Fig. 8 for 1 −α = 0.95 and 
Fig. 9 for 1 − α = 0.68.

When considering imprecise data, the wrong decision ratio was lower, but the no-decision ratio increased, compared to 
the result when considering precise data. Moreover, as noted in Section 3.3, the higher the data imprecision, the higher the 
no-decision ratio (the no-decision ratio increases with the confidence level of the intervals). This experiment highlighted the 
ability of this new test to account for known imprecision in the data and to transform it into imprecision in the decision. 
This test could allow physicians to calibrate the acquisition time needed to avoid making a wrong decision.
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Fig. 7. Test with precise data: wrong decision ratio with the classical test (black) and with the generalized test (red), superimposed with the proportion 
of times it was inconclusive (green). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)

Fig. 8. Test with imprecise data (95% confidence intervals): wrong decision ratio with the classical test (black) and with the generalized test (red), superim-
posed with the proportion of times it was inconclusive (green). (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Remark. The generalized test with imprecise data does not always lead to imprecise decisions.

To illustrate this, we asked the nuclear medicine physician to manually select, on the high dynamic image obtained 
by summing the 1000 raw images (Fig. 10a), the pixels that trustfully belonged to brain white matter (Fig. 10b) and gray
matter (Fig. 10c). Instead of comparing the upper and lower non-null regions in pairs of images, we compared the gray
matter pixels of an image with the white matter pixels of the other image. The distributions of pixel values differed in 
those cases, so therefore a type II error would occur if the null hypothesis is not rejected.

We achieved this comparison in 200 pairs of images and counted the number of times the white matter distribution in 
an image seemed to match the gray matter distribution in the other image (wrong decisions), both for the classical test and 
generalized test. For the generalized test, we also counted the number of times that it was inconclusive for different signal 
to noise ratios. For the lowest signal to noise ratio (k = 1), the classical test provided 1.5% of wrong decisions, while the 
generalized test was conclusive 33.5% times, and among those times, it always made the right decision (rejecting the null 
hypothesis). As soon as k > 1, the classical test provided no wrong decisions and the generalized test was always conclusive, 
and it made the right decision in every instance. In other words, both tests concluded that both distributions differed, 
in every instance. The results are the same when considering imprecise or precise valued data.
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Fig. 9. Test with imprecise data (68% confidence intervals): wrong decision ratio with the classical test (black) and with the generalized test (red), superim-
posed with the proportion of times it was inconclusive (green). (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.)

Fig. 10. Reference image obtained by summing the 1000 raw images (a), pixels belonging to the white matter (b) and to the gray matter (c).

4. Conclusion

The Wilcoxon rank-sum test was designed to check whether two independent real valued samples correspond to the 
same distribution or not. This test must be adjusted to deal with quantized or imprecise data. In this paper, we proposed 
such an adaption by generalizing the classical test. One of the main features of this new test is that it provides a pair of 
bounds, p and p, for the p-value (instead of a precise number) leading to a bipolar decision: the answer to such a test 
can be yes, no or unknown. We proved that the interval [p, p] we computed contains all p-values that should have been 
obtained by using the conventional test with precise valued data belonging to the set of interval-valued data. This new 
test also deals with the quantization in a new way. Quantization is perceived as a non-linear modification of the supposed 
existing true real samples that disturb the test. When the disturbance is too marked, the test is inconclusive. If the test 
leads to a decision, the test level can be guaranteed.

As a future work, we consider extending this test to fuzzy interval-valued data which would lead to a fuzzy interval 
of p-values. A very straightforward and exact solution may be obtained by using Algorithms 1 and 2 for each level-cut 
of the fuzzy interval-valued data, and building the level cut of the p-value fuzzy interval. This solution is tractable only 
if the membership values are quantized (i.e. can take only a finite number of values). Otherwise, it would lead to a too 
computationally expensive algorithm. Finding a low computational cost algorithm for extending the generalized Wilcoxon 
rank-sum test remains an open problem.
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