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Abstract

Histograms are very useful for summarizing statistical information associated with a set of observed data. They are one of the
most frequently used density estimators due to their ease of implementation and interpretation. However, histograms suffer from
a high sensitivity to the choice of both reference interval and bin width. This paper addresses this difficulty by means of a fuzzy
partition. We propose a new density estimator based on transferring the counts associated with each cell of the fuzzy partition to
any subset of the reference interval. We introduce three different methods of achieving this transfer. The properties of each method
are illustrated with a classic real observation set. The density estimator obtained relates to the Parzen–Rosenblatt kernel density
estimation technique. In this paper, we only consider the monovariate case with precise and imprecise observations.
© 2009 Elsevier B.V. All rights reserved.
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1. Introduction

The histogram is an extremely useful tool for visually summarizing the probability density function (pdf) underlying
a data sample. This underlying pdf is the basis of most statistical tools. So it would be natural to include histograms
in statistical toolboxes. However, the empirical approximation of the pdf provided by a histogram is quite rough and
discontinuous, which can be a major drawback in statistical methods where derivatives of the estimates are required
(e.g. mode estimation). In fact, one of the major shortcomings of histogram-based pdf estimation is its sensitivity to
the choice of both reference interval and cell number (or bin width).
Over the last decade, several authors have proposed to reduce this sensitivity by replacing the crisp partition by a fuzzy

partition. Convergence of such fuzzy-partition-based histograms (fpbh) to the underlying pdf has been proved in mean
squared error [21] and integrated mean square error [47]. The reduced sensitivity to the choice of partition compared
to the crisp case was shown in [20]. As pointed out by Chielewski in [4], there is an obvious analogy between the
weighted voting process performed by an fpbh and the simple low-pass filtering of a conventional crisp-partition-based
histogram (cpbh). This low-pass filtering is the most relevant explanation for this reduced sensitivity to the arbitrariness
of the choice of partition.
Due to this “good” property, some authors have proposed fuzzy histograms as a statistical computation tool. In

[32], Runkler proposes the use of an fpbh to compute a chi-squared test for independence between two data samples.
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Strauss andComby use an fpbh in the computation of the centiles [41] andmodes [5] of the pdf underlying a data sample.
A novel approach to computing conditional probabilities is presented by van den Berg et al. in [44], leading to a firm
theoretical foundation for the competitive exception learning algorithm introduced in [43]. Different applications have
been proposed for enhancement of classical statistical procedures in image processing, e.g. [2], for image thresholding,
and [25], for representing the relative position of objects. One of themain applications of fpbh in image processing is the
so-called fuzzy Hough transform (fht), which enables the robust detection of several classes of shapes [3,4,15,40,42].
As noted byRunkler, andmost other authors, the fpbh approach outperforms its crisp relatives in terms of smoothness,

low complexity, robustness against outliers and low sensitivity to the position of data clusters and to the arbitrariness
of the choice of partition. However, these sensitivities still exist and the search for a putative optimal bin width and
optimal reference interval position is still relevant. Moreover, most of the fpbh methods proposed in the recent literature
do not account for a known defects in the datasets, such as knowledge about their imprecision. Note that the fpbh is
usually referred to as a fuzzy histogram in the literature, which is inaccurate since only the partition is fuzzy while
the accumulator is crisp. The only attempt to define a histogram whose accumulators are fuzzy has been proposed by
Viertl et al. [45]. However, this approach involves fuzzy observations and a crisp partition.
Most statistical tools using fpbh rely on a method that derives a continuous estimate of the underlying pdf from the

discrete estimate performed by the histogram. This method generally consists of convolving kernels of the partition
with another kernel centered on the value on which the underlying pdf has to be estimated. This method implicitly
assumes that accumulations within different bins are independent. This assumption is true when considering a crisp
partition, but false when considering a fuzzy partition, since the accumulators associated with two contiguous cells
are obviously dependent. This former approach is highly linked with the binned kernel density estimator proposed by
Scott and Sheather [35] that mostly relates to kernel density estimation.

In a recent article, Nuñez-Garcia et al. introduced the idea that the construction of a histogram implicitly involves the
generation of a sample of random sets [26]. They propose to solve some inherent flaws in the histogram method, such
as the recurrent problem of the choice of partition resolution, by using a wide range of techniques related to random
sets, including possibility theory and fuzzy measure theory.
In this paper, we propose to solve this recurrent problem in a completely different manner. Rather than trying to find

a method for defining an optimal partition, we propose to use the ability of a histogram based on a fuzzy partition of
R to provide an approximate representation of the imprecise probability density underlying the observations. We then
extend the usual pignistic transfer to propagate the ambiguity induced by the overlapping of contiguous fuzzy cells, in
the weighted voting process, to the estimation of the votes purporting any measurable set of R covered by the partition.
In the same way as Perfilieva [29], we come up with a method that leads to imprecise estimations instead of precise
estimations.
We call this association of fpbh with counting transfer techniques quasi-continuous histograms (QCH) instead of

fuzzy histograms because they aim at handling a continuous representation of underlying pdf by discrete operations.
QCH were first introduced for performing a mode estimation in a computer vision context [5]. This mode estimation
was based on certain conjectural properties concerning accumulation and counting transfer. In this paper, we propose to
systematize some of the notions presented in the former paper and to give certain mathematical proofs of the properties
induced by this technique.Moreover, we consider the accumulation process not onlywith precise but alsowith imprecise
observed data.
The structure of this paper is as follows. Section 2 introduces the summative and non-summative kernel concepts, and

their link with density estimation. In Section 3, the QCH is introduced as a simple extension of the binary histogram to
a fuzzy partition. Section 4 presents the counting transfer as a key feature of the QCH technique. Section 5 is dedicated
to illustrative experiments based on the very classic Old Faithful Geyser data [36].

2. Kernels and density estimation

Kernel functions, also simply called kernels, are essential tools in the context of density estimation. They can be seen
as weighted neighborhoods ensuring smooth interplay between the continuous domain of the density to be estimated
and the discrete domain of the observations. We present, in this section, two kinds of kernel and the way they relate to
kernel density estimation.
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2.1. Summative and maxitive kernels

Defining a kernel is a way of generalizing the concept of a crisp neighborhood. A kernel induces a preference order
for all possible crisp neighborhoods under consideration. A kernel is often considered as a weighted neighborhood,
spreading or collecting information around a given location, called its mode. The mode can be a singleton or a set. The
extent of this neighborhood is bounded by its support. For most applications in which they are involved, kernels are
chosen to be unimodal and symmetric.
A summative kernel [19] is an R+-valued Lebesgue measurable function �, defined on an interval Q ⊆ R, satisfying

the summative normalization condition:∫
�

�(x) dx = 1, (1)

where
∫

�(x) dx designates the Lebesgue integral of � over �.
The mode of this summative kernel is the set of values at which � attains its maximum value. Its support is the set

of strictly positive values. A unimodal kernel is a kernel whose mode is reduced to a single element.
A summative kernel can be seen as a probability distribution inducing a probability measure, denoted P�, and

computed in this way:

∀A ⊆ �, P�(A) =
∫
A

�(x) dx, (2)

where A is a Lebesgue measurable subset of �. P�(A) verifies the Kolmogorov additivity axiom. It can be interpreted
as the degree of probability that the occurrence of an event in the neighborhood defined by � will fall in A.

A maxitive kernel is another way of defining a weighted neighborhood. A maxitive kernel [19] is a normalized fuzzy
subset E , defined on a domain �, satisfying the maxitive normalization condition:

Sup
x∈�

�E (x) = 1. (3)

The mode of this maxitive kernel is the set of x ∈ � values such that �E (x) = 1. Its support is the set of values for
which �E (x) is strictly positive. A unimodal maxitive kernel is also called a fuzzy number [10].

The membership function of the maxitive kernel E can be seen as a possibility distribution �E :

∀x ∈ �, �E (x) = �E (x), (4)

inducing a possibility measure [13], denoted �E , and computed in this way:

∀A ⊆ �, �E (A) = Sup
x∈A

�E (x). (5)

The value �E (A) can be interpreted as the degree of possibility that the occurrence of an event in the neighborhood
defined by E will fall in A. A possibility measure does not verify the Kolmogorov additivity axiom. Especially for
�E (Ac) � 1 − �E (A), where Ac is the complementary set of A in �. Therefore the normalized fuzzy subset E also
defines a dual confidence measure, called a necessity measure, denoted NE , and computed in this way:

∀A ⊆ �, NE (A) = 1 − �E (A
c). (6)

When a kernel is involved in an information extraction process, its non-specificity highly influences the perceived
resolution of the phenomenon considered. For a maxitive bounded kernel E , this non-specificity can be simply and
naturally measured by means of the continuous generalization of the cardinality of a fuzzy subset [19]. Due to the
relation between this non-specificity and the granularity of the perception of the phenomenon under consideration, we
improperly call �(E) the granularity of the maxitive kernel E . It is defined by

�(E) =
∫
�

�E (x) dx . (7)
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A summative kernel � is said to be dominated by a maxitive kernel E if the probability measure P� is dominated by
the possibility measure �E [6], i.e.

∀A ⊆ �, P�(A)��E (A). (8)

Note that P�(A)��E (A) entails NE (A)� P�(A).
Thus, a maxitive kernel E can encode a convex family of summative kernels denoted I(E) and defined by

∀A ⊆ �, I(E) = {�|∀A ⊆ �, P�(A)��E (A)}. (9)

Some transformations are available to associate a maxitive kernel with a summative one and vice versa. The first simple
idea consists of dividing the membership function of a maxitive kernel by its granularity to obtain a summative kernel
or to divide the probability function associated with the summative kernel by its maximum value to obtain a maxitive
kernel. However, this construction is rather arbitrary: the obtained summative kernel may not be dominated by the
original maxitive kernel and vice versa. As proposed in [19], the most relevant transformation consists of associating,
with a summative kernel, the most specificmaxitive kernel that dominates it. This possibility/probability transformation
has been proposed by Dubois and Prade [11] and will now be referred to as the Dubois–Prade transformation.
In this context, the triangular symmetric maxitive kernel plays a peculiar role. In fact, as proved by Dubois et al. in

[12], the triangular symmetrical fuzzy number whose mode ism and whose spread is� is the lowest upper bound of the
possibility distribution associated with any symmetric probability distribution of mode m and support [m −�,m +�].
Note that in a recent paper [18] Jaulin proposes a very similar approach to compute the inner and outer approximations of
minimal-volume credible sets, i.e. the set of minimal volume that contains a desired parameter with a given probability
level.
For a more complete introduction to summative and maxitive kernels, see [19].

2.2. Kernel-based density estimation

In statistics, kernel-based density estimation (or the Parzen window method, named after Emanuel Parzen [27]) is
a way of estimating the pdf underlying a finite set of observations of a random variable at any point of a considered
domain �. It has received considerable attention in the literature [16,36,37]. Kernel density estimation can be seen as
an attempt to construct a histogram where every point of � is the center of a sampling interval, so that the histogram
no longer requires a particular choice of cell position. A first approach involves placing a box of width � around each
point whose density has to be estimated. Let Ix be the interval [x − �/2, x + �/2), let (xi )i=1,. . .,n be a finite number
of n observations, then the naive kernel estimate of f (x), i.e. the underlying pdf to be estimated, is defined by

f̂ (x) = 1

n�

b∑
i=1

	Ix (xi ), (10)

where 	Ix is the characteristic function of interval Ix .
The estimated density is still not fully satisfactory in the sense that it is a discontinuous function. The Parzen–

Rosenblatt density estimation consists of generalizing this first approach to overcome its step-wise nature by replacing
interval Ix by a summative kernel.

The density estimate based on the kernel � is then defined by

f̂�(x) = 1

n

n∑
i=1

�(x − xi ). (11)

Usually, though not always, � is chosen in the class of symmetrical positive density functions. The smoothness of the
estimation is controlled by both the shape of � and its bandwidth �. f̂�(X ), the estimation of f (x), will inherit all the
continuity and differentiability properties of �. In particular, since � is usually a smooth differentiable function, f̂�(x)
is a smooth curve having derivatives.

Remark 1. Within expression (10), the interval Ix is a maxitive kernel. Therefore another generalization of this
expression can be obtained by considering Ix as a fuzzy interval and defining � as being the granularity of Ix . This
generalization leads to defining
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f̂�(x) = 1

n�

n∑
i=1

�Ix (xi ), (12)

where �Ix is the membership function of interval Ix . Expressions (11) and (12) are equivalent when considering
�(x − xi ) = �Ix (xi )/�.

Kernel density estimation is one of the most commonly used estimators. Although it has been extensively studied
from the mathematical and practical viewpoints, it still has some minor unsolved drawbacks:

• the choice of kernel and its bandwidth is highly arbitrary, but no method has been proposed to provide a measure of
the consequences of this choice on the estimation of f (x),

• the local convergence of the estimator is linked with local data density. Nearest neighbor methods [31] propose the
adaptation of window size to account for this local density. Since the number of observations is usually low compared
to the convergence condition, an error systematically occurs in the estimation of f (x). To date, it seems that nomethod
has been proposed for the measurement, in the estimation of f (x), of error due to the inappropriateness of the kernel
with respect to the local observation density,

• a known imprecision in the observation cannot be easily exploited in usual density estimators,
• the practical computation of the density by using the kernel method requires estimation of the density on a fixed
partition of the reference interval �, but the imprecision due to sampling is usually ignored.

Generally speaking, kernel estimates do not explicitly reflect known or unknown flaws of the observation sample, nor
the influence of the arbitrary choice of kernel, kernel bandwidth or reference interval sampling.

3. Quasi-continuous histograms (QCH)

The theoretical framework ofQCH is based on fuzzy rough set theory [9]. Themain goal is to provide a framework that
generalizes the histogram concept by dissociating histogram granularity from the precision of the information computed
using this histogram [32,41,44]. QCH are built on a fuzzy partition to reduce the effect of arbitrary partitioning [24,29].
The QCH principle relates to kernel density estimation [27,28,36,37], except that maxitive kernels are considered. The
basic ideas of this approach were first proposed in [5]. We restrict our study to the univariate case.

3.1. Accumulation of precise data in a fpbh

Let (Ck)k=1,. . .,p be a uniform partition of p fuzzy cells of the reference interval � = [xmin, xmax] (Fig. 1). The
mode of each cell Ck is mk . The granularity of each cell is �, since we consider a regular partition. � is then called the
granularity of the partition. The distance between two consecutive modes of the partition equals �. By convention, we
extend the domain � by adding two fake modes m0 = xmin − � and mp+1 = xmax + �. The fuzzy partition is strong
[33] if it fulfills the following conditions:

(1)

∀x ∈ �,

p∑
k=1

�Ck
(x) = 1 (strength condition), (13)

(2) �Ck
(mk) = 1 (unimodality),

(3) �Ck
(x) monotonically increases on [mk−1,mk] and monotonically decreases on [mk,mk+1],

(4) ∀x ∈ �, ∃!k ∈ {1, . . . , p} such that �Ck
(x) � 0 and �Ck+1

(x) � 0,
(5) ∀x ∈ [0, �], �Ck

(mk + x) = �Ck
(mk − x) (symmetry).
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Δ

x

μCk
(x)

mk mk+1mk-1m1 mpm0 mp+1… …

Fig. 1. Fuzzy partition of R.

Let (xi )i=1,. . .,n be a finite set of n observations and let �Ck
(x) be the membership function of Ck , then the value of

the accumulator ak associated with each cell Ck is given by

ak =
n∑

i=1

�Ck
(xi ). (14)

Each cell Ck can be considered as a maxitive kernel whose membership function is obtained by translating a generic
membership function �E to the mode of a fuzzy cell:

∀x ∈ �, �Ck
(xi ) = �E (xi − mk). (15)

Remark 2. The accumulators associated with the histogram provide a rough representation of the dataset that induces
ambiguities in data position: the information about the real position of each observation xi is lost and replaced by the
imprecise information represented by the cell it belongs to. In fact, each observation votes for two contiguous cells at
most. The ambiguity in position is aggravated compared to the crisp case.

Due to the strength condition, the granularity of each cell of the partition is equal to the granularity of the histogram.
Note that the triangular membership function is a good candidate for defining the partition due to the peculiar role
of triangular numbers in connection with dominated probability functions (see Section 2.1). Moreover, the triangular
partition is the only fuzzy partition based on fuzzy numbers fulfilling conditions (13), whose basic membership function
is a non-summative kernel associated with a summative kernel (uniform density) by the Dubois–Prade transformation
[13] and whose granularity equals the distance between two modes.

Property 1.
p∑

k=1

ak = n.

Proof. This property is a direct consequence of the strength condition (13).

p∑
k=1

ak =
p∑

k=1

(
n∑

i=1

�Ck
(xi )

)
=

n∑
i=1

( p∑
k=1

�Ck
(xi )

)
=

n∑
i=1

1 = n. �

3.2. Accumulation of imprecise data in a fpbh

In many real life situations, observed data cannot be considered as precise. This kind of situation occurs when the
considered data are measurements of continuous quantities, or digitalized (i.e. quantized) observations. An imprecise
observation is usually characterized by a domain that is said to contain the true value of the measure with a prescribed
confidence level. When the measurement process is inaccurate but is not subject to spurious random variations, then
this level equals 1. This is a typical assumption leading to interval-analysis-based guaranteed estimation [17,18]. The
consistency of building a cpbh with imprecise data has been studied by Derzko [1] for data whose imprecision is due
to quantization. One of the main results is that this kind of histogram does not converge to the underlying pdf but to a
smooth estimate of this density involving a sampling function and the quantization step. In [45] Viertl and Trutschnig
consider building a histogram with fuzzy observations; the consistency of extending the concept of relative frequencies
to the case of fuzzy data is proved in [39]. In this article, we consider building an fpbhwith interval-valued observations.
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Let (Xi )i=1,. . .,n be a finite set of n purely imprecise observations. A purely imprecise observation is a domain Xi

(usually an interval) whose characteristic function is 	Xi
. It can be considered as a random set according to Dempster

[7,23]. The value of ak , the accumulator associated with Ck , cannot be computed using expression (14): the concept of
counting the number of xi belonging to Ck should be replaced by the concept of counting the number of Xi compatible
with Ck .
The upper and lower bounds of this compatibility are called, respectively, the possibility and the necessity of Xi

restricted to Ck [10]. Those bounds are computed in this way:

�i (Ck) = Sup
x∈�

{min(�Ck
(x), 	Xi

(x))} = Sup
x∈Xi

{�Ck
(x)} (possibility), (16)

Ni (Ck) = Inf
x∈�

{max(�Ck
(x), 1 − 	Xi

(x))} = Inf
x /∈Xi

{�Ck
(x)} (necessity). (17)

Consequently, the data imprecision leads to an imprecise counting value. The imprecise accumulation is valued by the
interval: Ak = [ak, ak]:

ak =
n∑

k=1

Ni (Ck), ak =
n∑

k=1

�i (Ck). (18)

Remark 3. Expression (18) is a bipolar generalization of expression (14), i.e. if the observations are precise then the
accumulation is precise and hence ak = ak .

Property 2.
p∑

i=1

ak �n�

p∑
i=1

ak .

Proof. Let (xi )i=1,. . .,n be a set of precise values belonging to the imprecise observations, i.e. ∀i, 	Xi
(xi ) = 1. By

definition �i (Ck)� min(�Ck
(xi ), 	Xi

(xi )) = �Ck
(xi ) and Ni (Ck)� max(�Ck

(xi ), 1 − 	Xi
(xi )) = �Ck

(xi ). Thus,
p∑

i=1

ak =
p∑

k=1

n∑
i=1

�i (Ck) =
n∑

i=1

p∑
k=1

�i (Ck)�
n∑

i=1

p∑
k=1

�Ck
(xi ) = n and

p∑
i=1

ak =
p∑

k=1

n∑
i=1

Ni (Ck) =
n∑

i=1

p∑
k=1

Ni (Ck)�
n∑

i=1

p∑
k=1

�Ck
(xi ) = n.

Note that this property is also valid for the accumulation of imprecise data in crisp histograms. �

Remark 4. If the granularity of the histogram is lower than twice the granularity of Xi then ∀k ∈ {1, . . . , p}, Ni (Ck) =
0. Therefore the granularity of the histogram has to be adapted to the granularity of the data to ensure ak � 0.

3.3. Imprecise counting and imprecise probabilities

When associated with a counting transfer method (see Section 4), an fpbh leads to an imprecise estimate of the
number of votes purporting any interval W of the considered reference interval �. Thus, the probability of W may be
thought as imprecise [46].
By conventional statistics, the probability of an event can be estimated by its relative frequency, i.e. the ratio of

observations in favor of this event to the total number of considered observations. Let n be the total number of
observations and nb� (W ) the number of observations purporting W ⊆ �:

P� (W ) = nb� (W )

n
. (19)

When the number of observations purporting W is imprecise, nb� (W ) has to be replaced by the interval Nb
�

(W ) =
[nb(W ), nb(W )].
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In this case, the ratio (19) is imprecise and its upper and lower bounds are [46]

• the upper probability measure of W :

P(W ) = nb(W )

nb(W ) + nb(W c)
, (20)

• the lower probability measure of W :

P(W ) = nb(W )

nb(W ) + nb(W c)
. (21)

By construction, this imprecise probability measure follows the fundamental property:

P(W ) = 1 − P(W c). (22)

When nb(W ) = ∑n
i=1 Ni (W ) and nb(W ) = ∑n

i=1 �i (W ), then nb(W ) + nb(W c) = n and expressions (20) and (21)
coincide with the conventional definition of upper and lower relative frequency (see [39] and references therein). When
the interval Nb

�
(W ) is just an interval that is said to contain the true value of nb� (W ) then expressions (20) and (21) have

to be used to compute the interval of all the values of the ratio (19).

Property 3. Let (Xi )i=1,. . .,n be a finite set of n precise or imprecise observations. Let nb� (W ) be a precise estimate

and Nb
�

(W ) an imprecise estimate of the number of observations purporting any intervalW of the considered reference
interval � such that nb� (W ) ∈ Nb

�
(W ). Let P�(W ) be the precise estimation of the probability of W computed with

nb� (W ) and expression (19). Let P(W ) (rsp. P(W )) be the upper (rsp. lower) estimate of the probability ofW computed
with Nb

�
(W ) and expression (20) (rsp. expression (21)), then P�(W ) ∈ [P(W ), P(W )].

Proof. First, let us remark that ∀W ⊆ �, nb� (W ) + nb� (W c) = n, thus

1

P� (W )
= nb� (W ) + nb� (W c)

nb� (W )
= 1 + nb� (W c)

nb� (W )
.

Since nb� (W )�nb(W ) and nb� (W c)�nb(W c),

1

P�(W )
�1 + nb(W c)

nb(W )
= nb(W ) + nb(W c)

nb(W )

therefore

P�(W )�
nb(W )

nb(W ) + nb(W c)
.

In the same manner, since nb� (W c)�nb(W c) and nb� (W )�nb(W ),

1

P�(W )
�1 + nb(W c)

nb(W )
= nb(W ) + nb(W c)

nb(W )

therefore

P�(W )�
nb(W )

nb(W ) + nb(W c)
,

which concludes the proof. �

The interval [P(W ), P(W )] can be seen as an imprecise probability measure of W whose imprecision is induced
either by the imprecision of the observations [39], or by the imprecision of the counting process.
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4. Counting transfer

Counting transfer is one of the key features of the QCH technique. It is the main contribution of this paper. The
underlying idea of this technique can be expressed as follows. Due to real line partitioning in p cells, a granulation
of the number of observations, and therefore of the probability density, occurs. Due to this granulation, one can only
estimate the probability of sets of � ⊆ R, the reference interval, corresponding to a union of elementary cells of the
partition. Counting transfer provides an estimate of the number of votes purporting any subset of the reference interval.

4.1. Principle of counting transfer

In order to simplify the explanation of counting transfer and its alternatives, we propose to introduce this concept by
considering the crisp case.
Let W be a crisp measurable subset (here an interval), (Xi )i=1,. . .,n be n precise or imprecise observations and

(Ck)k=1,. . .,p be a partition of � ⊆ R whose granularity is �. Let Ak be the imprecise accumulator associated with the
kth cell of the partition computed by using expression (18). The information to be estimated is Nb(W ), the number of
votes of the set of observations in favor of W . We aim at computing Nb

�
(W ), an imprecise estimate of Nb(W ), by only

considering the precise or imprecise accumulators (Ak)k=1,. . .,p.
Fig. 2 shows the crisp uniform partition of reference interval � whose counting has to be transferred to W . This

transfer is possible only if W ⊆ ∪kCk , which is the case in this example. The fact that the only information considered
is that of the accumulated values associated with each cell of the partition induces ambiguities in the data [5]. In fact,
the greater the granularity of the histogram, the more imprecise the histogram-based representation of the underlying
pdf. The most favorable case is obtained by fully transferring the count in favor of C2, C3 and C4 onto W . The least
favorable case is obtained by fully transferring the count in favor of C1, C2, C4, C5 and C6 onto W c. A median case is
obtained by hypothesizing a particular local distribution of votes in each cell. Without any additional information, this
distribution is usually supposed to be uniform. In this case, the accumulator value Ak is transferred toW proportionally
to |Ck ∩ W |, i.e. the length (or granularity) of the set |Ck ∩ W |. First, let us consider accumulations obtained by using
precise observations, i.e. the accumulators are precise: Ak = ak .

The first transfer, combining the most favorable and the least favorable cases, is called possibilistic transfer. It
provides upper and lower bounds of the pro-W votes count. The lower and upper bounds are given by

nbN (W ) =
p∑

k=1

ak Nk(W ) (lower), (23)

nb�(W ) =
p∑

k=1

ak�k(W ) (upper), (24)

with �k(W ) = Supx∈Ck
{	W (x)} and Nk(W ) = 1 − �k(W c).

Remark 5. If the granularity of W is less than �, then nbN (W ) equals 0 regardless of the values of (ak)k=1,. . .,p.

The second transfer is called the pignistic transfer. It is based on considering the distribution in each cell as being
uniform. Let fk(x) be the uniform distribution associated with cell Ck :

∀x ∈ Ck, fk(x) = pk = ak
n�

. (25)

C1 C6C5C4C3C2

W

Fig. 2. Binary counting transfer.
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Since the (Ck)k=1,. . .,p is a partition of R, we arrive at the naive estimator defined in [36]

∀x ∈ �, f̂ (x) =
p∑

k=1

fk(x)	Ck
(x). (26)

Therefore, P�(W ), the estimation of the probability of W considering the n observations (xi )i=1,. . .,n , is given by

P�(W )=
∫
W

f̂ (x) dx =
∫
W

p∑
k=1

fk(x)	Ck
(x) dx =

p∑
k=1

∫
W

pk	Ck
(x) dx

=
p∑

k=1

pk

∫
W

	Ck
(x) dx =

p∑
k=1

pk |W ∩ Ck |. (27)

In the same way, nb�(W ), an average estimation of the number of observations purporting the subsetW , can be given by

nb�(W ) = nP�(W ) = n
p∑

k=1

pk |W ∩ Ck | = n
p∑

k=1

ak
n�

|W ∩ Ck | =
p∑

k=1

ak
|W ∩ Ck |

�
(28)

and thus is given by an additive aggregation of the (ak)k=1,. . .,p weighted by |W ∩ Ck |/�.
Now, if the observations are imprecise, then the counting is imprecise. Therefore, the value of ak has to be replaced

by ak in expression (23) and by ak in expression (24). In expression (28), the value of ak has to be replaced alternatively
by ak and ak in order to provide a median lower and a median upper estimate of the votes.

We now present the generalizations of these principles to the fuzzy case (fuzzy partition and imprecise observations).
Within our approach, this generalization is based on the 
-cut decomposition of the cells of the fuzzy partition [30].
We propose to aggregate the results provided by the crisp approach on each 
-level with a Choquet integral.

4.2. Possibilistic counting transfer

Our possibilistic transfer can be seen as a worst-case transfer. This method is a simple generalization of the crisp
method presented in Section 4.1. It involves transferring the accumulator ak to W proportionally to the possibility and
necessity of Ck restricted to W . This transfer gives an upper and a lower bound for putative votes of the observations
in favor of the imprecise event W . This estimate is an interval.

Definition 1. Let (Ck)k=1,. . .,p be a partition of � ⊆ R whose granularity is �. Let Ak = [ak, ak] be the imprecise

accumulator associated with the kth cell of the partition. Nb
�

(W ), an estimate of the votes of the observations in favor
of W by transferring the Ak to W , is given by

Nb
�

(W ) = [nbN (W ), nb�(W )] (29)

with

nbN (W ) =
p∑

k=1

ak Nk(W ) (lower), (30)

nb�(W ) =
p∑

k=1

ak�k(W ) (upper). (31)

Property 4. The new upper and lower estimates (30) and (31) are simple Choquet integrals [22] over the different
level cuts of upper and lower estimates given by expressions (23) and (24).

Proof. Let W 
 = {x, �W (x)�
} be the 
-level cut of W , and C

k be the 
-level cut of Ck . For each level 
,

nb


�(W ) = ∑p

k=1 ak�k(W 
), with �k(W 
) = Supx∈�{min(	C

k
(x), 	W 
 (x))}. The integral of all the nb



�(W ) is
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∫ 1
0

∑p
k=1 ak�k(W 
) d
. Let A
 = {k, �k(W 
) = 1}, since W and Ck are fuzzy subsets, the level subsets are nested,

i.e. for any d
 ∈ [0, 1 − 
], W 
 ⊆ W 
+d
 and C

k ⊆ C
+d


k and therefore A
 ⊆ A
+d
. Let 
k = �k(W ), we
can suppose, without any loss of generality, that the 
k are sorted in increasing order, i.e. 
1�
2� · · · �
p�
p+1,
with 
p+1 = 1 by convention. Then A
k = {1, . . . , k}. Let n(
) be the index such that 
n(
)�
 < 
n(
)+1, thus∑p

k=1 ak�k(W 
) = ∑n(
)
k=1 ak . Therefore, with the 
-levels being discrete, the continuous integral reduces to a discrete

integral:
∫ 1
0

∑p
k=1 ak�k(W 
) d
 = ∑p

i=1

∑n(
i )
k=1 ak(
k+1 − 
k). By definition, n(
i ) = i , then

nb�(W ) =
∫ 1

0

p∑
k=1

ak�k(W

) d
 =

p∑
i=1

i∑
k=1

ak(
k+1 − 
k) =
p∑

i=1

ak
k =
p∑

k=1

ak�(W ).

Deriving expression (30) from expression (23) can be simply achieved by using complementation. First note that
Nk(W ) = 1 − �k(W c) and Nk(W 
) = 1 − �k((W 
)c). Thus∫ 1

0

p∑
k=1

ak Nk(W

) d
 =

∫ 1

0

p∑
k=1

ak(1 − �k(W
c)) d


=
∫ 1

0

p∑
k=1

ak d
 −
∫ 1

0

p∑
k=1

ak�k((W

)c) d


=
p∑

k=1

ak −
p∑

k=1

ak�k(W
c) =

p∑
k=1

ak(1 − �k(W
c)) =

p∑
k=1

ak Nk(W ). �

Property 5. If the observations are precise, then nb�(�) = nbN (�) = n.

Proof. Since ∀k ∈ {l, . . ., p}, �k(�) = Nk(�) = 1, nb�(�) = ∑p
k=1 ak = n and

nbN (�) =
p∑

k=1

ak = n.

Property 6. If the observations are imprecise, then nbN (�)�n�nb�(�).

This property can be trivially proved in the same manner as Property 2.

Remark 6. The lower transfer given by expression (30) vanishes if |W | (the granularity of W ) is lower than � (the
granularity of the histogram) because the transfer is no longer normalized:

p∑
k=1

N (W ;Ck) < 1 if |W | < �. (32)

Remark 7. Compared to the crisp case, the property nbN (W )�nb(W )�nb(W )�nb�(W ) where nb(W )
∑n

i=1 Ni (W )
and nb(W )

∑n
i=1 �i (W ) is generally lost. This is mainly due to the Choquet-based aggregation.

4.3. Precise pignistic counting transfer

The precise pignistic transfer is inspired by the transferable belief model proposed by Smets [38]. It consists of
transferring the value of ak to W proportionally to the coverage of W and Ck . A similar counting transfer has been
used to prove the convergence of fpbh in mean squared error [21] and integrated mean square error [47].

If observations are precise, then accumulators are precise. The Choquet integral of expression (28) gives

nb� (W ) =
∫ 1

0

p∑
k=1

ak
|W 
 ∩ C


k |
�

d
 =
p∑

k=1

ak
�

∫ 1

0
|W 
 ∩ C


k | d
 =
p∑

k=1

ak
|W ∩ Ck |

�
, (33)
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where the intersection of two fuzzy subsets is defined by the T-norm min. In this case, expression (33) is equivalent to
expression (28). This additive way of aggregating the (ak)k=1,. . .,p consists of defining, for each cell Ck , a probability
�w(k) for ak to be a value to consider for an estimation of the votes purporting W :

�w(k) = |W ∩ Ck |
|W | . (34)

When observations are imprecise, then the estimation of the votes purporting W is an interval:

Nb
�

(W ) = [nb� (W ), nb
�

(W )] (35)

with

nb� (W ) = |W |
�

p∑
k=1

�W (k)ak and nb
�

(W ) = |W |
�

p∑
k=1

�W (k)aK . (36)

Two important assumptions were put forward to provide this median transfer. First, the count in each cell is supposed
to be uniform for any 
-level set (which is the principle of the pignistic transfer). Second, the cells are supposed to be
non-interactive fuzzy numbers. In fact, the second hypothesis is violated by construction because the 
-level sets of
two consecutive cells have a non-empty intersection when 
 < 0.5.
In most studies based on an fpbh, a pignistic-like method is used for transferring knowledge about the densities

pk = ak/(n�) associated with each cell Ck onto any values of �. This transfer simply consists of interpolating these
densities with weights �(k) obtained by convolving kernels of the partition with another kernel centered on the value on
which the underlying pdf has to be estimated. The former kernel represents the hypothesized underlying distribution of
votes in each cell. This approach coincides with the pignistic approach ifW is a usual crisp subset and the accumulators
are precise:

nb� (W ) =
p∑

k=1

ak
�

|W ∩ Ck | =
p∑

k=1

ak
�

∫
W

�Ck
(x) dx . (37)

Let �(x) = 	W (x)/|W | be the uniform kernel associated with W , then

�

nb(W ) = �
p∑

k=1

ak
�

�W (k) with �W (k) =
∫
�

�Ck
(x)�(x) dx . (38)

The estimation P�(W ) of the probability W is then given by

P�(W ) = nb� (W )

n
= |W |

p∑
k=1

ak
n�

�W (k), (39)

which is the interpolating method proposed in [20,21,32,35,44].
Note that using the precise pignistic transfer to estimate the votes purporting a crisp subset W of � coincides with

estimating these votes via a Parzen–Rosenblatt kernel density estimation.

Property 7. Let (Ck)k=1,. . .,p be a strong fuzzy partition of � ⊆ R, then there is a summative kernel � such that

nb� (W ) = n
∫
W f̂�(x) dx .

Proof. For each k, ak = ∑n
i=1 �Ck

(xi ). Since (Ck)k=1,. . .,p is a strong partition of �, ∀x ∈ �,
∑p

k=1 �Ck
(x) = 1 and,

due to Property 1, n = ∑p
k=1 ak . Let E be the basic kernel such that ∀x ∈ �, �Ck

(x) = �E (x − mk), then

nb� (W )=
p∑

k=1

ak

(∫
W

�Ck
(x)

�
dx

)
=

p∑
k=1

(
n∑

i=1

�Ck
(xi )

)(∫
W

�Ck
(x)

�
dx

)

=
p∑

k=1

(
n∑

i=1

(∫
W

�Ck
(x)

�
�Ck

(xi ) dx

))
=
∫
W

(
n∑

i=1

( p∑
k=1

(
�Ck

(x)

�
�Ck

(xi )

)))
dx .
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Now let

�i (x − xi ) =
p∑

k=1

(
�Ck

(x)

�
�Ck

(xi )

)
.

�i is a summative kernel since ∀i ∈ {1, · · · , n},∫
�

�i (x − xi ) dx =
∫
�

( p∑
k=1

(
�Ck

(x)

�
�Ck

(xi )

))
dx =

p∑
k=1

∫
�

�E (x − mk)

�
�Ck

(xi ) dx

=
p∑

k=1

�Ck
(xi )

∫
�

�E (x − mk)

�
dx =

p∑
k=1

�Ck
(xi )

1

�

∫
�

�E (x − mk) dx =
p∑

k=1

�Ck
(xi )

1

�
� = 1

then

nb� (W ; (xi )) =
∫
W

(
n∑

i=1

�i (x − xi )

)
dx = n

∫
W

(
1

n

n∑
i=1

�i (x − xi )

)
dx = n

∫
W

f̂�(x) dx,

with

f̂�(x) = 1

n

n∑
i=1

�i (x − xi ). �

4.4. Imprecise pignistic counting transfer

Our second proposition for pignistic transfer aims to account for the interactivity of two consecutive cells in order to
propagate on Nb

�
(W ) the counting imprecision due to granulation. Let us go back to 
-level sets of the fuzzy partition.

Fig. 3a shows a crisp interval W and the three cells of the partition interacting with W . When level 
 is lower than
0.5, then the (C


k )k=1,. . .,p have non-empty intersections (C

k is the 
-level set of Ck). Let us consider the two cells C1

and C2. Since C

1 ∩ C


2 � ∅, the counting density in the interval C

1 ∩ C


2 is ill-known (Fig. 3c). The precise pignistic
transfer presented previously assumes that the local counting density in C


1 ∩ C

2 can be obtained by averaging a1

and a2. Imprecise pignistic transfer considers this density as imprecise and proportional to the most specific interval
including a1 and a2, i.e. [min(a1, a2),max(a1, a2)]. Thus the lower contribution of the two cells C1 and C2 to the
pignistic transfer towards W can be obtained by

|W ∩ C

1 ∩ C


2 |min(a1, a2) + |W ∩ B

1 |a1 + |W ∩ B


2 |a2,
while the upper contribution is given by

|W ∩ C

1 ∩ C


2 |max(a1, a2) + |W ∩ B

1 |a1 + |W ∩ B


2 |a2,
where B


1 = C

1\(C


1 ∩C

2 ) and B


2 = C

2\(C


1 ∩C

2 ). This kind of transfer therefore impacts the ambiguity in counting

due to fuzzy partitioning on the estimated transferred value. When level 
 is greater than 0.5, then the (C

k )k=1,. . .,p

have empty intersections and the pignistic transfer is precise.
The imprecise pignistic transfer gives an imprecise estimate of nb(W ) regardless of the precision of the data. It is

computed by a discrete Choquet integral [14] and requires a complete sorting of the (ak)k=1,. . .,p and the (ak)k=1,. . .,p.

Definition 2. Let (Ck)k=1,. . .,p be a partition of R whose granularity is �. Let Ak = [ak, ak] be the imprecise accumu-

lator associated with the kth cell of the partition. nb
�

(W ), an upper estimate of the votes of the observations in favor of
W by transferring the Ak to W is given by

nb
�

(W ) = |W |
�

p∑
k=1

a(k)(W (S(k)) − W (S(k+1))), (40)
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Fig. 3. 
-Level sets for imprecise pignistic transfer.

where (·) indicates a permutation sorting the upper accumulators such that a(1)�a(2)� · · · �a(p), S(k) is a coalition
(group of cells) defined by

S(k) = {(k), . . . , (p)} and S(p+1) = ∅ (41)

and W (S(k)) is a confidence measure on this coalition defined by

W (S) = �W |ES ∩ W |, (42)

with ES = ⋃
i∈S Ci and �W a normalization factor:

�W = 1

|(C1 ∪ · · · ∪ Cp) ∩ W | , (43)

the intersection being defined by the T-norm min and the union by the T-conorm max.

Definition 3. Let (Ck)k=1,. . .,p be a partition of � ⊆ R whose granularity is �. Let Ak = [ak, ak] be the imprecise

accumulator associated with the kth cell of the partition. nb� (W ), a lower estimate of the votes of the observations in
favor of W by transferring the Ak to W is given by

nb� (W ) = |W |
�

p∑
k=0

a(k)(W (T(k)) − W (T(k+1))), (44)

where (·) indicates a permutation sorting the lower accumulators such that: a(1)�a(2)� · · · �a(p), T(k) is also a coalition
but based on sorting of the ak in decreasing order:

T(k) = {(k), . . . , (p)} and T(p+1) = ∅. (45)

Property 8. Let (Ck)k=1,. . .,p be a strong partition of � ⊆ R, the confidence measure vW is submodular (concave):

∀(S, T ) ⊆ {1, . . . , p}2, W (S) + W (T )�W (S ∪ T ) + W (S ∩ T ).

Proof. Let S and T be two subsets of {1, . . . , p}. First, note that ES∩T ⊆ ES ∩ ET : if k ∈ S ∩ T then k ∈ S and
k ∈ T therefore Ck ⊆ ES and Ck ⊆ ET thus Ck ⊆ ES ∩ ET and therefore ES∩T ⊆ ES ∩ ET . The converse inclusion
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is false. A counter example is given by considering S = {k} and T = {k + 1}. Since two contiguous cells intersect
ES∩ET = Ck ∩Ck+1 � ∅ but ES∩T = E∅ = ∅. Secondly, note that ES∪T = ES∪ET : ∀k ∈ S∪T then k ∈ S or k ∈ T
therefore Ck ⊆ ES or Ck ⊆ ET thus Ck ⊆ ES ∪ ET and therefore ES∪T ⊆ ES ∪ ET . Conversely, ES ∪ ET /⊂ ES∪T
means that ∃k ∈ {1, . . . , p} such that Ck ⊆ ES ∪ ET and k /∈ S and k /∈ T , which is in complete contradiction with
the fact that (Ck)k=1,. . .,p is a strong fuzzy partition (expression (13)). Thus ES∪T ⊆ ES ∪ ET and ES ∪ ET ⊆ ES∪T
therefore ES∪T = ES ∪ET . Since |ES|+|ET | = |ES ∪ET |+|ES ∩ET |with ES∪T = ES ∪ET and ES∩T ⊆ ES ∩ET

then |ES∪ET | = |ES∪T | and |ES∩ET |� |ES∩T | and therefore |ES|+|ET |� |ES∪T |+|ES∩T |. Since ∀S ⊆ {1, . . . , p},
W (S) = �W |ES ∩W |, thus |ES∪T | + |ES∩T |� |ES| + |ET | implies W (S ∪ T )+ W (S ∩ T )�W (S)+ W (T ) which
completes the proof. �

Since the confidence measure W is concave, it defines a set of probabilities denoted I(W ) called the core of W
[8], satisfying

∀P ∈ I(W ), ∀S ⊆ {1, . . . , p}, cW (S)� P(S)�W (S). (46)

P is said to be dominated by w. A useful property from the work of Dennenberg [8] and Schmeidler [34] is related
to the consequences of the domination of concave capacities: the interval provided by aggregating the (Ak)k=1,. . .,p
with the submodular capacity W is the smallest interval that encloses any precise estimation obtained by aggregating
the (Ak)k=1,. . .,p with any probability dominated by W . Therefore, the length of this interval evaluates the extent of
variability of all usual precise interpolations performed with any set of probabilistic weights induced by a probability
dominated by W .

Remark 8. If (Ck)k=1,. . .,p is a crisp partition, then W is additive and thus the imprecise pignistic transfer becomes a
precise pignistic transfer.

We conjecture the two following properties:

Conjecture 1. When associating an fpbh with imprecise counting transfer, the interval-valued probability estimation
given by expressions (20) and (21) is a good measure of the variability induced by using different summative kernel
shapes whose bandwidths have been adapted to the granularity of the histogram (see [19,36] for bandwidth adaptation).

Conjecture 2. Let (Ck)k=1,. . .,p be a strong fuzzy partition of� andW be a subset of�, the imprecise transfer capacity

W dominates the precise transfer probability induced by �W , i.e., ∀S ⊆ {1, . . . , p},

W (S)� PW (S) =
∑
k∈S

�W (k).

This conjecture is easy to prove on singletons.

Property 9. ∀k ∈ {1, . . . , p}, W ({k})��W (k).

Proof. Since (Ck)k=1,. . .,p is a strong fuzzy partition of �, Sup
k∈{1,. . .,p}�Ck

(x)�1 = ∑p
k=1 �Ck

(x). Therefore |(C1 ∪
· · · ∪ Cp) ∩ W | = ∫

W Sup
k∈{1,. . .,p}�Ck

(x) dx�
∫
W

∑p
k=1 �Ck

(x) dx = ∑p
k=1 |Ck ∩ W |. Thus

W ({k}) = |Ck ∩ W |
|(C1 ∪ · · · ∪ Cp) ∩ W | �

|Ck ∩ W |∑p
k=1 |Ck ∩ W | = �W (k). �

If Conjecture 1 is proved, then the interval-valued relative frequency provided by an imprecise counting transfer
will have the special meaning of the set of all relative frequencies that would have been obtained by a kernel-density
estimation with a class of adapted kernels with various shapes. The proof of Conjecture 2 would enable us to consider
imprecise pignistic transfer as a way of propagating the imprecision induced by the partition to the imprecision of the
computed relative frequencies, i.e. to the estimate of the probability of a measurable set W of � ⊆ R.
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Property 10. If the intersection and the union in expressions (42) and (43) are defined by the Lukasiewicz operators,
then the imprecise pignistic transfer defined by (40) and (44) is equivalent to the precise pignistic transfer defined by
(33), the intersection being defined by the T-norm min.

Proof. Let S ⊆ {1, . . . , p}. Let us remark that, considering the Lukasiewicz operators, �ES∩W (x) = max(0, 	W (x) +
�ES

(x) − 1) with �ES
(x) = max(1,

∑
i∈S �Ci

(x)) = ∑
i∈S �Ci

(x). Therefore, if x ∈ W , �ES∩W (x) = ∑
i∈S �Ci

(x),
else �ES∩W (x) = 0. Thus ∀x ∈ �, �C1∪···∪Cp

(x) = max(1,
∑p

k=1 �Ck
(x)) = 1 and therefore �W = 1/|W |. Now, let k ∈

{1, . . . , p} and S(k) and S(k+1) be two subsets defined by expression (41): S(k) = S(k+1) ∪ {(k)}. Thus∑i∈S(k) �Ci
(x) =

(
∑

i∈S(k+1)
�Ci

(x))+�C(k)
(x) and therefore W (S(k))−W (S(k+1)) = (1/|W |) ∫W �C(k)

(x). Since
∫
W �C(k)

(x) = |C(k)∩W |
then |W |/�∑p

k=1 a(k)(W (S(k)) − W (S(k+1))) = ∑p
k=1 a(k)(|C(k) ∩ W |/�), which completes the proof. �

5. Counting transfer experiments

In this section, we propose some experiments to illustrate the different properties of counting transfer. We will
consider the classic Old Faithful Geyser dataset that has been extensively used by Silverman [36]. It involves 107
observations of the duration of eruptions of the Old Faithful Geyser in Yellowstone National Park. The underlying
density is bimodal. The precision of the observed data is unknown. However, for our experiments, we will suppose that
the observation’s precision is identically distributed and that it can be estimated by the median of the least absolute
time between two different observations. This value equals 0.025min.
To perform the experiments, we divided the reference interval � = [0, 6]min into 1000 equally spaced samples

(�i )i=1,. . .,1000. At each location �i , an interval Wi has been defined. All intervals have the same granularity equal to
twice the granularity of the histogram (to avoid a weak possibilistic lower transfer). The experiments involve comparing
different ways of estimating P(Wi )i=1,. . .,1000 based on the observations of eruption duration.

5.1. Counting transfer and density estimation

This section aims at comparing the Parzen–Rosenblatt kernel-based density estimation method with the QCH-based
density estimation method. To achieve this comparison, we perform a kernel density estimation at each location �i by
using the nine different bounded and non-bounded kernels whose basic functions are given in Table 1. From Table 1,
we can retrieve a kernel �∇ with bandwidth ∇ by �∇ (x) = (1/∇)�(x/∇) · 	[−1,1] is the characteristic function of the

interval [−1, 1]. Let �∇ be the considered kernel, the P�∇ (Wi ) value is obtained by discrete integration of f̂�∇ (�i ):
P(Wi ) ≈ ∑1000

j=1 f̂�∇ (� j )	Wi
(� j ).

For the QCH part of the experiment, the fpbh is built on a triangular partition with granularity � of the reference
interval�. Then we estimate the number of observations purporting each crisp intervalWi by different transfer methods
(see Section 4). This estimation is then normalized by using expressions (20) and (21). In this experiment, the different
summative kernels were adapted to the partition granularity [19].
Figs. 4–6 show the estimates of P(Wi ) by transferring, on eachWi , the accumulated values of an fpbhwith granularity

� = 0.3 min. Fig. 4 shows the precise pignistic transfer, Fig. 5 shows the imprecise pignistic transfer, Fig. 6 shows
the possibilistic transfer. In each of these figures, the density estimates given by using the nine unimodal bounded and
non-bounded summative kernels are plotted in cyan, while the QCH estimate is plotted in black for median, blue for
upper, and red for lower estimates.
Note, in Fig. 5, that the interval provided by the imprecise pignistic transfer seems to be representative of variations

in density estimation when the kernel varies in the class of positive summative unimodal kernels whose granularity
is equal to �. This is Conjecture 1. In the same way, the pessimistic estimate provided by the possibilistic transfer
bounds the whole set of estimates provided by this class of kernels (Fig. 6), except for areas where the local observation
density is too low to ensure convergence of any kernel estimation towards the underlying density estimate. Finally, Fig.
4 illustrates Property 7, i.e. the density estimate provided by the pignistic transfer is equivalent to a Parzen–Rozenblatt
density estimation with an adapted granularity.
A relevant observation can be made by simply comparing Figs. 5 and 6: both possibilistic and imprecise pignistic

transfer seem to partially include the variability in density estimation due to variation in kernel shapes, but in a more
specific way for imprecise pignistic transfer. This is mostly due to the fact that the chosen bandwidth is wide enough
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Table 1
Nine basic summative kernels.

Kernel name Kernel expression Kernel shape

Epanechnikov �(u) = 3
4 (1 − u2)	[−1,1](u)

Triangular �(u) = (1 − |u|)	[−1,1](u)

Triweight �(u) = 35
32 (1 − u2)3	[−1,1](u)

Cosine �(u) = �
4

cos

(
�
2
u

)
	[−1,1](u)

Uniform �(u) = 1
2	[−1,1](u)

Ratio �(u) = 1
�
2

− ln(2)

(
1 − |u|
1 + u2

)
	[−1,1](u)

Smooth �(u) = 0.44 exp

(
1

u2 − 1

)
	[−1,1](u)

 

Gaussian �(u) = 1√
2�

exp

(
−u2

2

)

Exponential �(u) = 1
2 exp(−|u|)

to ensure appropriate smoothing. When the bandwidth is too narrow, the imprecise pignistic transfer does not provide
a good bracketing of the density estimation variability while the possibilistic transfer still does. Fig. 7 illustrates this
bad bracketing. The granularity of the kernels is reduced to 0.006min. In Fig. 7a the nine classic density estimates are
outside the bounds of the imprecise density estimates, while in Fig. 7b, the possibilistic-based approach still brackets
the nine density estimates.

5.2. Counting transfer and fast computation

Computation of the density estimate provided by QCH is faster than conventional density estimation. This fact is
due to the pre-classification performed by the histogram [41]. Let us define, as a time unit, the computation time of
the interaction between a kernel and an observation (computation of �∇ (x)). Let n be the number of observations, q
be the number of points on the real line on which the density estimate has to be computed and p the number of QCH
cells. Kernel density estimation requires q · n elementary operations while only p · n elementary operations are needed
to compute the histogram and p · q elementary operations are needed to compute the density estimate, i.e. p(q + n)
elementary operations. Since usually p>q and p>n then p(q + n)>q · n, i.e. the computation time is reduced. To
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Fig. 4. Comparison of the QCH estimation using precise pignistic transfer (in black) with nine classic density estimates with the same granularity
(in light blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Comparison of the QCH estimation using imprecise pignistic transfer (blue—upper, red—lower) with nine classic density estimates with the
same granularity (cyan). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

illustrate this property, we plotted in Fig. 8 the ratio of the computation time of the classic density estimate against the
computation time of the density estimate with QCH. The histogram is made of p = 30 cells, the density is estimated
on q = 1000 points and the number of observations is increased (artificially by bootstrapping) from 100 to 10000. In
both cases, a triangular kernel has been chosen. The plot in Fig. 8 has the expected shape (with a 10th supplementary
factor in favor of the QCH method).

5.3. Counting transfer and histogram granularity

This experiment aims at illustrating the ability of imprecise pignistic transfer to impact the ambiguities in data due
to the (fuzzy) partitioning of � to the estimated pdf. Fig. 9 plots the density estimate obtained by precise (black) and
imprecise (red—lower, blue—upper) pignistic transfer for different partition granularities. Clearly the interval-valued
estimated density collapses with the partition granularity. The interval provided by the imprecise pignistic transfer is
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Fig. 6. Comparison of the QCH estimation using the possibilistic transfer (blue—upper, red—lower) with nine classic density estimates with the
same granularity (cyan). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. Comparison of the QCH estimation using imprecise pignistic (a) and possibilistic (b) transfer superimposed on nine classic density estimates
with the same granularity with � = 0.06 min.

a signature of the granulation induced by the partition. Moreover, this experiment illustrates Conjecture 2 since the
precise estimated density is always included in the interval-valued imprecise estimated density.
Although using a QCH lowers the influence of partitioning on the reconstructed density, this influence still exists.

In fact, when considering the proof of Property 7, this dependence clearly appears since the shape of the equivalent
kernel depends on the relative position of the observation to modes of the partition. We illustrate this dependence by
translating the positions of histogram partitions, and estimating the density at the same locations. Fig. 10a plots the
precise estimations of density for five different positions, superimposed on one imprecise estimation of the density
for the first position. Every precise estimation is included in the interval-valued imprecise estimation. Therefore, the
imprecision of the interval-valued imprecise estimation seems to be a good measure of the partitioning influence on the
estimated density. Fig. 10b plots the imprecise estimation of density for five different partition positions. This experiment
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Fig. 8. Ratio of the computation time of the kernel density estimate to the computation time of the QCH density estimate.

illustrates the robustness of imprecise transfer for translation of the partition: all the interval-valued estimations have
a non-empty intersection.

5.4. Counting transfer and data precision

When the observation precision is known, this information can be easily propagated on the estimated density. To
illustrate this principle, we will assume that the precision of all observed eruption durations is equal to 0.025min.
Figs. 11–13 show estimates of duration distribution with kernels whose granularity equals 0.3min. The QHC estimate
is plotted in blue and red while usual kernel estimation (using the nine kernels defined previously) are plotted in
cyan. Figs. 11a, 12a and 13a show the density estimate when the data are supposed to be precise, while Figs. 11b,
12b and 13b show the same experiment while accounting for imprecision. The imprecision of the estimated density
increases when accounting for imprecision in observation. Thus, a known imprecision clearly impacts the precision of
the density estimate. Moreover, when accounting for imprecision, the interval-valued estimation involving imprecise
pignistic transfer is less specific. Therefore, as can be noted by comparing Figs. 12a and b, bracketing variations in
conventional density estimation due to variation in the shapes of the involved summative kernels is better than in the
precise case.

6. Conclusion

The technique we have presented in this paper consists of constructing a histogram of a set of observations on a
fuzzy partition of the real line. Such histograms are able to account for precise and imprecise observations: a known
imprecision in observation can easily be transferred to the histogram, which becomes bipolar, i.e. the counting is
imprecise. Since the histogram is constructed on a fuzzy partition, it is possible to transfer the votes polling each cell
of the partition to any bounded subset intersecting the partition, regardless of the sampled nature of the histogram. This
counting transfer combined with the distributed vote is called the quasi-continuous histogram (QCH) technique. The
ratio of the estimated number of observations purporting a given subset of the real line to the number of observations
can be used to compute an objective confidence level associated with this subset.
We have proposed three kinds of counting transfer to perform this estimation. Precise pignistic transfer assumes

that the density in each cell is uniform and that the cells are non-interactive. When accounting for cell interactivity,
we shift to imprecise pignistic counting transfer. Then we shift to possibilistic transfer by freeing the transfer from
any hypothesis on the distribution of votes on each cell. Imprecise pignistic transfer and possibilistic transfer partially
propagate the ambiguity, induced by the distributed vote on the partition, on the inaccuracy of the counts transferred.
Except when precise pignistic transfer with precise observation is used, the confidence level associated with a given
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Fig. 9. Precise (black) and imprecise (blue—upper, red—lower) pignistic density estimation with different granularities (a−� = 0.60, b−� = 0.30,
c − � = 0.15, d − � = 0.10). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.).

subset is not a usual (additive) probability measure but rather an imprecise probability measure. Therefore, tools using
this confidence measure to perform a given estimation may be adapted to account for this non-additivity.
The main advantage of using QCH is the possibility of obtaining a functional expression for precise or imprecise

density probability estimation at a given location (for a given granularity). These functional expressions then allow
the computation of statistical estimates based on the underlying putative density with algorithms whose computational
complexity is proportional to the number of cells in the histogram. Such computations have been proposed in the
past [2,5,25,32,41,44]. All of them involve what we have called pignistic counting transfers, except [41] for centile
estimation. The validity of most of these tools still need to be mathematically proved. Compared to classic density
estimation, QCH-based density estimation is fast, accounts for a known degree of precision in observation, and gives
an estimate of the impact of the partitioning on the estimated density. The choice of kernel shape and bandwidth is still
arbitrary, but this arbitrariness is propagated on the imprecision of the density estimation, when an imprecise counting
transfer is chosen. We think, however, that the best choice for partitioning the fpbh is the triangular kernel. This opinion
is partly, but not solely, motivated by the specific role of this kernel in the possibilistic measure context. In fact, due
to Property 7, the QCH-based density estimation (with precise pignistic transfer) is equivalent to a Parzen Rosenblatt
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Fig. 10. Translation of the fuzzy partition, (a) five superimposed precise estimations with one imprecise estimation, (b) five superimposed imprecise
estimations.
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Fig. 11. Precise pignistic transfer with precise (a) and imprecise (b) observations.

density estimation based on a kernel whose shape is given by convolving the basic kernel of the partition with itself.
Convolving two triangular kernels provides an Epanechnikov kernel, which is usually considered to be the optimal
choice in a density estimation context, since it minimizes the asymptotic mean integrated square error performance
criterion. Moreover, the use of a triangular kernel-based partition leads to very simple computation.
The counting transfers we have proposed are based on generalizing crisp counting transfer principles by using a

Choquet integral. This generalization aims at providing simple expressions for computing interval-valued densities.
Other generalizations can be obtained for example by considering the Sugeno integral or by constructing a fuzzy valued
density as in [45,39]. Such a construction could be envisaged by transferring the counts to a fuzzy subset instead of a
crisp subset of �. Moreover, different ways of constructing histograms could be considered involving voting not only
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Fig. 12. Imprecise pignistic transfer with precise (a) and imprecise (b) observations.
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Fig. 13. Possibilistic transfer with precise (a) and imprecise (b) observations.

for each cell of the partition but also for any union of cells in a more random-set way. This kind of voting would be
more likely to properly handle imprecise observations by avoiding the risk of weak accumulations.
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