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a b s t r a c t

For several 3D data applications such as data-hiding or compression, data ordering is amajor problem.We
need to know how to achieve the same 3D mesh path between the coding and decoding stages. Various
algorithms have been proposed in recent years, but we focus on methods based on Euclidean Minimum
Spanning Trees (EMST). In this paper, we analyse the sensitivity of the EMST structure to obtain a more
robust synchronization. We present a new theoretical analysis and a way to visualize EMST robustness.
Moreover, this analysis can be useful in 3D data-hiding in order to detect fragile area and to predict the
3D object robustness during transmission on a noisy channel.

© 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Internet is very useful for broadcastingmultimedia information.
There are more andmore 3D object exchanges in computer graph-
ics, CAO and video games. Therefore, it is essential to produce ef-
ficient techniques for protecting, visualizing, sharing, printing and
modifying these 3D objects. For these applications, it could be im-
portant to have a single 3D mesh path which orders the vertices.
In this domain, this vertex ordering step is often called the syn-
chronization step. Indeed, contrary to the 2D imaging field, where
there is a trivial path with rows and columns, the case of 3D ob-
jects is more complex, even though the 3D mesh is semi-regular
or regular. For example, in 3D data-hiding, it is essential to locate
where the binary embedded data is distributed. This kind of path is
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used for synchronizationwith the aim of keeping the same order at
inserting and extracting stages. A survey of 3Dwatermarking tech-
niques has been proposed by Wang et al. [1]. Watermarking tech-
niques are interesting to protect the file content and also to embed
meta-data. Data-hiding may be a way to have new functionalities,
i.e. keeping the standard format without increasing the size. An-
other example of the benefits of having a single 3Dmesh path is to
produce a deterministic traversal of the mesh for 3D compression,
as presented in a survey by Peng et al. [2].

The step which gives a mesh order is one of the main difficul-
ties in compression, watermarking or visualization. Furthermore,
in some specialized areas (medicine, industry), the position of ver-
tices and the connectivity between them (in the 3D mesh) should
not be affected by the path building process. Variousmethods have
been proposed, but we are interested by the Euclidean Minimum
Spanning Tree (EMST) method proposed by Amat et al. [3]. The au-
thors proposed a scheme which does not move any mesh vertex.
They used an EMST to be able to scan themesh in a uniquemanner
for data synchronization.

Since the method is fragile, an EMST sensitivity analysis is
necessary to determine the robustness threshold of an EMST-based
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Fig. 1. Scheme of the path used for the data-hiding method proposed by Ohbuchi
et al. [11].

on a 3D mesh. In this paper, we analysed the EMST sensitivity
by computing how a vertex can be moved without changing the
connections in the EMST. Since the problem is very difficult, we
made some assumptions in order to make it tractable. It may also
be interesting to quantify the EMST robustness. A sensitive analysis
can be useful for some applications such as 3D reconstruction [4],
2D object recognition and classification [5], watermarking [3,6],
compression [7] and segmentation [8]. For example, the proposed
analysis could be used to improve the choice of the mark vertex
selecting proposed by Wang et al. [9].

The rest of the paper is organized as follows. In Section 2, we
deal with the 3D path building issue. We present various classes of
techniques, such as the synchronization by data structure (EMST).
In Section 3, we present the problem of EMST sensitivity. Then, in
Section 4, we propose a new approach to this problem by analysing
thedisplacement of the vertex at each step of Prim’s algorithm [10].
We assessed our theory in order to quantify the displacement of
the vertices. The results are given in Section 5 and our approach is
validated. The discussion is concluded in Section 6 and futurework
directions are mentioned.

2. Defining a 3D mesh path

3D processing is a comparatively new multimedia research
field. One of the main problems in these applications is the or-
dering of 3D model data. In this section, we present ordering
techniques based on a single path of 3D model. First, we present
methods which only perform a path on a part of the mesh. Then
we introduce some methods which order the patches created on
the mesh. Finally, we present techniques that define a path along
all vertices of the mesh.

2.1. Band of vertices

One of the first paths for data-hiding watermarking techniques
was proposed by Ohbuchi et al. [11]. The algorithm and synchro-
nization of the embeddedmessage are quite simple. The idea, illus-
trated in Fig. 1, consists of duplicate facets of themesh along a band
that encodes the message. To start the duplication, a starting edge
and an orientation of the trianglesmust be defined. To encode a ‘0’,
from the current edge, they have to duplicate the first edge they
meet during the exploration, and for embedding a ‘1’ they have to
duplicate the second edge. The duplicated edge becomes the cur-
rent one and the algorithm continues until all bits of the message
are embedded.

With this approach, the mark is robust to geometrical modifi-
cations such translation, rotation and scaling. But it is visible and
easily detectable, i.e. the algorithm is not secure.Moreover, vertices
and facets are added and the size of the mesh increases as a func-
tion of the message size. Nevertheless, it is one of the first paths
proposed for 3D blind data-hiding methods.

The idea behind creating a band, or performing a scan on the
mesh to synchronize the hidden message is classic reasoning. For
example, Mao et al. [12] and Cayre et al. [13] proposed almost the
same approach to scan the mesh.
Fig. 2. Scheme of the synchronization method proposed by Mao et al. [12].

Fig. 3. Scheme of a mesh splitting into regions proposed by Luo and Bors [15]:
(a) Geodesic map. (b) Iso-geodesic mesh strip generation. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

In the approach proposed byMao et al., they built a triangle path
in the mesh to synchronize the data to be embedded, as illustrated
in Fig. 2. They selected a starting triangle ∆, an edge e of ∆, and
an orientation of this triangle. At each step, they choose one of
the neighbour triangles as a function of the orientation and the
previous step. From the current edge c , they scan the triangle in
the direction of the orientation and select the last edge e of the
current triangle ∆. Then they select the neighbouring triangle ∆′,
if it exists, such that e is the common edge between ∆ and ∆′.
Then ∆′ becomes the current triangle, and will be scanned in the
opposite direction. The orientation to scan the triangle alternates
as illustrated in Fig. 2. The operation continues untilwe donot need
triangles to embed the hidden message.

In principle, this method does not create geometric error.
However, the watermark can be detectable because it is a high
density area in themesh. Furthermore, suchmethods are obviously
not robust against connectivity attacks.

2.2. Patch ordering

In this section, we present some methods that create patches
on the 3D mesh. This is an interesting approach to deal with
certain constraints in the 3D mesh area such as malicious attacks
or visible deformations induced by watermarking for example. In
segmentation areas, a 3D mesh is partitioned following the model
semantics. For example, Tierny et al. [14] proposed amethod based
on construction of the skeleton of the mesh that produces a small
number of patches. These patches are quite semantically correct,
but there are few of them and they are not ordered. Defining a
path in a mesh requires a higher number of patches and a very
deterministic algorithm.

Luo and Bors [15] proposed an efficient watermarking scheme
based on regions of equal geodesic distance. These distances are
calculated from a chosen vertex (in red in Fig. 3).

Each strip in Fig. 3(b) is used for embedding a single bit, while
the region around the source, which is shown in blue, is trimmed
away. Patches are created thanks to their geodesic distance from a
vertex, so they are ordered by construction.
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Fig. 4. Scheme of the set of patches proposed by Wang et al. [16].

Fig. 5. Scheme of the Edgebreaker [18] synchronization method.

Wang et al. [16] proposed another synchronization for theirwa-
termarkingmethod that is based ongenerating a cylindrical system
patch by discretizing its h and θ domains. Patches are ordered ac-
cording to their spatial locations. In another paper,Wang et al. [17]
proposed to use manifold harmonics and to quantify the ampli-
tudes of some low frequencies coefficients in order to hide a 16-bit
watermark (see Fig. 4).

2.3. Mesh traversal

The Edgebreaker mesh compression algorithm proposed by
Rossignac [18] is a mono-resolution algorithm, i.e. it does not al-
low access before full load. It puts the vertices and facets in order
at the same time without redundancy, as illustrated in Fig. 5. The
scan is also unique, as it depends on the first vertex and the first
triangle chosen.

This technique is based on region growing that incrementally
encodes facets and their relations. Thanks to this algorithm, we
obtain a unique sequence of vertices that totally defines the mesh.

To illustrate the need for a well defined order in a 3-D mesh,
we present twowatermarking techniques which are based on pre-
vious synchronizationmethods. The watermarking of Bogomjakov
et al. [19] is based on swapping elements in the file. The synchro-
nization step can be done by any kind of deterministicmesh traver-
sal and they use the traversal performed by the Edgebreaker [18]
algorithm. This example shows that ordering vertices of a 3-Dmesh
in a robust way is a relevant goal to produce more and more appli-
cations in this area. Another method proposed by Wang and Men
illustrates that the synchronization is determined only by the file
ordering [20].

In the method proposed by Amat et al. [3], data embedding in
the mesh is based on modification of the connection between the
vertices in the mesh, without moving the vertices. In order to syn-
chronize themessage, an EMST is computed. Fig. 6(a) illustrates the
EMST of a horse mesh (504 vertices). The EMST is unique, depend-
ing on a seed vertex v0, while the path of vertices is also unique.
a

b

c

Fig. 6. (a) The EMST of the original mesh. (b) The EMST of a noisy mesh with
σ = 10−2 . (c) Comparison between the two EMST with common edges in blue,
original edges in red and noisy edges in green. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

This can be a synchronization tool because we can scan the EMST
with a single path. Amat et al. [3] selected quadruples, a vertex and
its three sons in the EMST to embed one bit per quadruple, if possi-
ble. In order to avoid visual distortion and desynchronization, the
quadruples must verify three conditions: coplanarity, the measure
of the angle formed by the two triangles must be close to 0; con-
vexity, to scan the same geometrical space; and if two quadruples
are neighbours or overlapped, then only one of them is used for the
embedding.

However, this method produces fragile watermarking, i.e. if
the mesh is modified then the watermark is not extractable. The
problem is to know how thismethod is stable. Indeed, if it is fragile
enough to detect any modification. Conversely, we want to know
how the method is robust against vertex displacement in order to
find new tracks for robust watermarking. We focus on this original
method to quantify the fragility of the data synchronization by
studying the robustness of the EMST. Indeed, aswe can see Fig. 6(b)
which is the EMST of the noisy horse mesh with σ = 10−2, the
EMST computed on amesh is very sensitive to vertex displacement.
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Fig. 6(c) illustrates the comparison between the original horse
mesh and the noisy one. The problem is well known in the graph
theory for theminimumspanning tree (MST), but has not been very
well studied in the geometrical case (i.e. EMST). We discuss the
state of the art of the analysis of the MST sensitivity in Section 3.

3. Problemof theEuclideanminimumspanning tree sensitivity

In this section, we present how the problem of EMST sensitivity
may be defined with various approaches.

3.1. Notations and Prim’s algorithm

As per this paper, we have taken a cloud of vertices V and ex-
plored how we can move a vertex in space without changing the
connections E in the Euclideanminimumspanning tree T = (V , E).
Let G = (V , E) be a graph with n nodes and m edges. An EMST
is MST which is based on the Euclidean distance, i.e, a tree T =
(V , ET )which joins all the vertices of a graph G = (V , E) using the
edges ei = {vs, vt} ∈ E, with a weight ω(ei) ∈ R+, that minimizes
the total weight


ei∈ET

ω(ei).
Our approach is based on Prim’s algorithm in order to have

an incremental algorithm. At each step we have a sub-tree Ti =
(Vi, Ei) of the final EMST. The algorithm starts with a seed vertex
v0 ∈ V . We note (Ti)i≤n = ((Vi)i≤n, (Ei)i≤n) the tree sequence rep-
resenting the EMST construction pattern.

With these notations T0 = ({v0},∅). At each step i > 0, the
algorithm adds the closest vertex vi ∈ V i−1 to Vi−1 and to Ei−1 it
adds the connection between vi and the closest vertex of vi in Vi−1
that we call its ‘‘father’’ and denote by f (vi).

Hence, we deduce:

Vi = Vi−1 ∪ {vi}; (1)

Ei = Ei−1 ∪ {vi, f (vi)}. (2)

3.2. MST sensitivity problem

The Minimum Spanning Tree (MST) is a well-known problem
in graph theory. It is a polynomial problem that is solved by two
famous algorithms, i.e Prim’s [10] and Kruskal’s [21]. For a given
MST T , it is interesting to know which connections are fragile,
and which are not. The MST sensitivity problem may answer this
question. MST sensitivity is also a polynomial problem. In this
section, we have presented an approach for solving the problem
and we draw a conclusion for our application.

For Gordeev [22,23], theMST sensitivity analysis is an optimiza-
tion problem based on matroids. The aim is to determine the max-
imum intensity of a disruptive vector such that the solution of the
optimization problem remains a solution after the perturbation.
Gordeev considers the following model: let Dm = {T1, . . . , Tq},
with (q > 1) being a system of subsets of E called trajectories;
A = (a1, . . . , am) ⊂ Rm such that ∀i ai = ω(ei), the weight of the
edges of the graph G and ω(TA) a functional called the trajectory
length for A, such that ω(TA) =


ei∈T

ai. Therefore, the combina-
tor problem is defined with the pair (E,Dm), A is the variable to
optimize in order to minimize the functionalω(TA). Gordeev mod-
els the MST problem with Dm, the set of all spanning trees of G in
which the MST is a trajectory that minimizes the functional ω(TA).

Let ψ(A) be the index set i of the optimal trajectories τi of the
problem for a given A, and B ∈ Rm, such that for ϵ ∈ R∗

+
, ∥B∥ <

ϵ is a perturbation vector. Gordeev talks about ϵ-stability when
ψ(A+ B) ⊂ ψ(A). In the MST problem, for a given noise intensity
ϵ, some MST are always solutions of the MST problem after the
perturbation. He deduces a stability radius ρ(A) = sup ϵ, such that
Fig. 7. Example illustrating the EMST sensitivity problem.

A is ϵ-stable for the problem. Its algorithm is polynomial and its
complexity is O(n3m log( n

2

m )) and for a complete graph O(n5).
For Dixon et al. [24] the sensitivity analysis problem is, for a

given graph G = (V , E) and T = (V , ET ) its MST, to know how
each edge value can be modified (for ei ∈ ET and ei ∈ E\ET ) with-
out changing the connections of T . They divide the problem into
two parts. For ∀ei ∉ ET , they compute howmuch they can decrease
ω(ei)without changing the MST and, for all the edges ei ∈ ET , they
compute how much they can raise the weight of ei, ω(ei) without
changing theMST. This step has a linear time complexity as a func-
tion of the number of edges.

The aim of Yaman et al. [25] is to introduce a robust version of
the MST where the edge costs are specified as interval numbers. It
is a spanning tree such that the weight of the tree minimizes the
maximum deviation from the MST. They introduce the notion of a
weak tree, and it is an MST for some scenarios. In other words, for
different edge valuations, theweak tree is not always anMST. Then,
an edge is a weak edge if it lies on someweak tree. On the contrary,
an edge is a strong edge if it lies on anMST for all possible edge eval-
uations. Their goal is to define a robust spanning tree, so they in-
troduce two robustness measures for the MST problem, ‘‘absolute
robustness’’ and ‘‘relative robustness’’. These measures are used to
characterize the worst case scenario, and then they use mixed in-
teger programming to find a robust spanning tree. This method is
very interesting for small graphs but it has huge complexity.

3.3. EMST sensitivity problem

For each step of the Prim’s algorithm, we want to compute the
area in which the vertex vi ∈ Vi can be moved without changing
the connection in the EMST. This area depends on the seed vertex
(denoted v0) and the vertices selected before vi. Fig. 7 illustrates
that the EMST changeswhen a vertexmoves toomuch. Distinguish
EMST between the vertex ordering is necessary to well understand
the analysis. Nevertheless, we point out that the ordering given by
Prim’s algorithm is dramatically dependent of the EMST stability.

To compute this area we make the following simplification
assumptions on the disruption of vertices:

Assumption 3.1. At the step i > 0 of Prim’s algorithm, we will
disturb only the position of the vertex vi, resulting in the disturbed
vertex v∗;

Assumption 3.2. The geometric disruption will be restricted to
only be along the half-line ]f (vi); vi).

After the perturbation, T ∗i = (V ∗i , E
∗

i ) denotes the graph se-
quence with V ∗i = {v

∗

0 , v
∗

1 , . . . , v
∗

i }. Suppose that ∀k; k < i the
EMST at step k is always the same (Tk = T ∗k ). This is an important
hypothesis, and we note that it is not always verified. Indeed, we
simplified the problem by taking into account these assumptions,
in order to compute the intrinsic vertex properties. At the step i,
supposing that T ∗k ≠ Tk, ∀k ≠ i, implies that the radius ri of vi
depends of the previous ones.

Then, to keep the same connections in the EMST, we need to
verify these two conditions:

1. v∗ = v∗i , v
∗ is selected at the ith step of Prim’s algorithm;

2. f (v∗) = f (v∗i ), the father of v∗ is still the father of vi.
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4. Analysis of the Euclideanminimum spanning tree sensitivity

In this section, we propose to analyse the sensitivity of the
EMST by analysing the vertex displacement. In this paper, we limit
the vertex displacement analysis along the half-line ]f (vi); vi).
To compute the possible displacement of each vertex without
changing the connection in the EMST, we divide the problem into
two parts. In Section 4.1, we present how the vertex vi can come
up to f (vi).We compute aminimumdistance limit ofω({v∗, f (vi)})
denoted by d−i and deduce a displacement radius r−i . In Section 4.2,
we explain how vi can move away from f (vi). We also compute
a maximum distance limit of ω({v∗, f (vi)}) denoted by d+i and
deduce a displacement radius r+i . Then, in Section 4.3we showhow
to keep the EMST stable at the step i+ 1. Finally, in Section 4.4, we
define a global displacement radius denoted by r .

4.1. Minimum distance limit (r−)

In this section,we are interested in the approximation of vi to its
father f (vi). As we know, f (vi) is the closest vertex of vi in Vi−1, as
illustrated in Fig. 8. Obviously, f (vi)was selected before vi in Prim’s
algorithm. Let f (vi) = vk and Vk = {vj : j ≤ k}, then we deal with
the vertices vj ∈ Vi\Vk and the edges ej ∈ Ei−1\Ek to verify the
following properties.

Proposition 4.1. Let Ti = (Vi, Ei) be the state of the EMST at the ith
step of Prim’s algorithm, with the previous notations, if Ei−1\Ek ≠ ∅,
we have:

∀ej ∈ Ei−1\Ek; ω(ej) < ω({f (vi), vi}). (3)

Proposition 4.2. Let d−i be theminimum distance between f (vi) and
v∗, then in order to keep the same connections in the EMST we must
have ω(v∗, f (vi)) > d−i with:

d−i = max{ω(ej) : ej ∈ Ei−1\Ek}. (4)

This proposition guarantees that T ∗k+1 = Tk+1, . . . , T ∗i = Ti, under
Assumption 3.1, i.e. T ∗j = Tj, j ∈ {0, . . . , k}. We deduce the displace-
ment radius:

r−i = ω({f (vi), vi})− d−i . (5)

Proof. Let el = {f (vl), vl} be the edge, if it exists, verifying el =
maxej∈(Ei−1\Ek) ω(ej). If this edge does not exist, d−i = 0, so we can
move the vertex vi as close as we want to f (vi). We suppose that
there is at least one edge el:

d−i = ω(f (vl), vl).

It is important to note that k ≤ l < i, in other words, in the chrono-
logical vertex selection in Prim’s algorithm, vk is selected before
vl, and vl before vi. To demonstrate reductio ad absurdum, Proposi-
tion 4.2 must be verified to keep the same order in the sequence
(V ∗j )j≤i.

Supposing:
ω(f (v∗), v∗) ≤ d−i ⇒ ω(f (v∗), v∗) ≤ ω(f (v∗l ), v

∗

l ). At the
(l − 1)th step of Prim’s algorithm, we know f (v∗i ), f (v

∗

l ) ∈ Vl−1.
According to the hypothesis ω(f (v∗), v∗) ≤ ω(f (v∗l ), v

∗

l ), so v
∗

will be chosen at the (l−1)th step. That is in contradiction with the
EMST stability.

Obviously vi is the closest node of f (vi) in V\Vi, if we move vi
along the half-line ]f (vi); vi) closer to f (vi), then the resulting ver-
tex v∗ ∈ V\Vi is the closest node of f (vi). In conclusion, the father
of vi is also the father of v∗ with this displacement. �

4.2. Maximum distance limit (r+)

Now we are interested in the distance of vi from its father
f (vi). In order to keep the EMST connections up to step i of Prim’s
Fig. 8. Scheme of the minimum limit computing.

algorithm, we divide this problem into two cases. Firstly, we are
looking for the second closest vertex s(vi) to Vi−1 to select vertex
v∗ at the ith step, as illustrated in Fig. 9(a).We consider the distance
ω((f ◦ s)(vi), s(vi)).

Proposition 4.3. Let Ti be the state of the EMST at the ith step of
Prim’s algorithm, then in order to keep the connection of the EMST
at step i we need to verify this first condition:

ω(f (vi), v∗) < ω((f ◦ s)(vi), s(vi)). (6)

We denote d1i = ω((f ◦ s)(vi), s(vi)).

Secondly, to keep the same father f (vi), we compute the inter-
section x(vk) between the half-line ]f (vi); vi) and the perpendicu-
lar bisector of the segment [f (vi), vk] (vk ∈ Vi−1, vk ≠ f (vi)), as
illustrated in Fig. 9(b).

Proposition 4.4. Let Ti be the state of the EMST at the ith step of
Prim’s algorithm, then in order to keep the connection of the EMST
at step i we need to verify this second condition:

ω(f (vi), v∗) < min{ω(f (vi), x(vk)) : vk ∈ Vi−1, vk ≠ f (vi)}. (7)

We denote d2i = min{ω(f (vi), x(vk)) : vk ∈ Vi−1, vk ≠ f (vi)}.

Proposition 4.5. Let Ti be the state of the EMST at the ith step of
Prim’s algorithm, then in order to keep the connection of the EMST
at step i we need to verify ω(f (vi), v∗) < d+i , with:

d+i = min{d1i , d
2
i }. (8)

Under Assumptions 3.1 and 3.2, i.e. T ∗j = Tj, j ∈ {0, . . . , i − 1}. We
deduce the displacement radius:

r+i = d+i − ω(vi, f (vi)). (9)

Proof. Let us demonstrate reductio ad absurdum that ω(f (v∗), v∗)
< d1i must be verified to keep the same order in the sequence
(V ∗i )0<i<n.

We suppose ω(f (v∗), v∗) ≥ d1i = ω(s(vi), (f ◦ s)(vi)). Accord-
ing to this hypothesis, vi is the closest vertex of Vi−1, and s(vi) the
second one. Then vi is disturbed in v∗ but the other vertices do not
move. Moreover (f ◦ s)(vi), f (v∗) ∈ Vi−1 and s(vi), v∗ ∈ V\Vi−1.
Prim’s algorithm at step i chooses the closest vertex of Vi−1 which
is s(vi). v∗ is too far from f (vi), so to verify the condition of our
EMST stability problem ω(f (v∗), v∗) < d1i . �

Let vk ∈ Vi−1 be a vertex satisfying the relation ω(vk, x(vk)) =
minvj∈Vi−1 ω(vj, x(vj)). Obviously, on the line (f (vi), vi), the ver-
tices {f (vi), vi, x(vk)} are aligned in this order.

Moreover, x(vk) is the equidistant vertex between f (vi) and vk.
It clearly separates the half-line ]vi; x(vk)) into two parts:
• ∀v∗ ∈]vi; x(vk)[, ω(f (vi), v∗) < d(f (vi), x(vk)), v∗ is closer to

f (vi) than vk;
• ∀v∗ ∈]x(vk);∞), ω(f (vi), v∗) > d(f (vi), x(vk)), v∗ is closer to
vk than f (vi).
It proves the proposition. �
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b

Fig. 9. Schemes of the maximum limit computing: (a) The second closest vertex
s(vi) to Vi−1 . (b) Intersection x(vk) between the half-line ]f (vi); vi) and the
perpendicular bisector of the segment [f (vi), vk] (vk ∈ Vi−1).

4.3. vi+1 verification

The stability of the EMST, requires also that the next vertex
is still the same. Suppose that vi is selected at the ith step of
Prim’s algorithm, the next chosen vertex is vi+1, vi+1 = argminvj
{w(vk, vj) : vk ∈ Vi, vj ∈ V\Vi}. We have shown that under
some assumptions vi = v∗i , in the same way, we show that we
can restrict the displacement of vi to have the samenext vertex and
maintain the EMST at the i+1th step of Prim’s algorithm.We divide
this problem in two cases, indeed the next chosen vertex is s(vi),
described in the previous section, or is given by vi+1 = argminvj
{w(v∗i , vj) : vj ∈ V\Vi}. Thus this case, is included in the previous
analysis.

In the second case, to keep the same next vertex vi+1, we com-
pute the intersection x(vk) between the half-line ]f (vi); vi) and
the perpendicular bisector of the segment [vi+1, vk] (vk ∈ V\Vi,
vk ≠ vi+1), as illustrated in Fig. 10.

Proposition 4.6. Let Ti be the state of the EMST at the ith step of
Prim’s algorithm, then in order to keep the connection of the EMST
at step i+ 1, we need to verify:

ω(v∗, vi+1) < min{ω(vi, x(vk)) : vk ∈ V\Vi, vk ≠ vi+1}. (10)

We denote d3i = min{ω(vi, x(vk)) : vk ∈ V\Vi}.

Proposition 4.7. Let Ti be the state of the EMST at the ith step of
Prim’s algorithm, then in order to keep the connection of the EMST at
step i we need to verifyω(v∗, vi+1) < d3i , we deduce the displacement
radius:

r2i = d3i . (11)

4.4. Displacement radius (r)

In Sections 4.1 and 4.2, we defined two radii of displacement
r+ and r−. In order to have a single measure of the possible
vertex displacementwithout changing the EMST, we need to verify
Fig. 10. Scheme of the limit to the next vertex: Intersection x(vk) between the half-
line ]f (vi); vi) and the perpendicular bisector of the segment [vi+1, vk] (vk ∈ V\Vi).

a

b

c

e f

d

Fig. 11. Selection of 3D objects: (a) Blade, (b) Bunny, (c) Hand, (d) Horse, (e) Shoe,
(f) Skeleton.

all the conditions that allow us to compute these parameters
independently of the displacement direction.

Let ri = ri = min{r+i , r
−

i , r
2
i } be the displacement radius of the

vertex vi along the half-line ]f (vi); vi). Then x = 1
∥f (vi).vi∥

(vi−f (vi))
denotes the normalized director vector of the half-line ]f (vi); vi).

Therefore, if v∗ ∈]vi− r · x; vi+ r · x[ the EMSTwill not bemod-
ified at the ith step of Prim’s algorithm. We have defined a scope
where the EMST does not change, in this context the vertex order-
ing done by the Prim algorithm is stable. However, we are aware
that modifying the EMST could change dramatically the order de-
fined, even if the percentage of common edge is high.

5. Experimental results

In this section, we experimentally analysed the minimum and
maximum distance limits r−i and r+i presented in Section 3 for
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Fig. 12. Distribution of the vertices of the mesh Horse as a function of: (a) The Minimum distance limit r+ (sampled with a step of 10−3). (c) The maximum distance limit r−
(sampled with a step of 10−3). (e) The maximum distance limit r2 (sampled with a step of 10−3). (b) Cumulative function of r+ . (d) Cumulative function of r− . (f) Cumulative
function of r2 .
each vertex vi of several 3D objects. In Section 5.1, we describe
the experimental conditions. Then, in Section 5.2 we present a full
example with the 3D object Horse and an analysis of the vertex
displacement to comment the results. We also present the result
of our analysis by viewing the robust areas on the 3D object Horse.
Finally, in Section 5.3we validate the experimental resultswith the
proposed theoretical analysis.

5.1. Experimental conditions

For the experiments, we used a database consisting of more
than 20 3D meshes selected from various sources (Stanford
University Graphics Laboratory,1 MADRAS project,2 Strategies S.A3

and Aimatshape4). Their shapes are very different, as illustrated
in Fig. 11, and they are used for different application fields, such
as CAD, manufacturing, medicine or entertainment. In this section,
we assume that the first vertex is randomly selected. Indeed, if we
change the selection of the first vertex v0 → v′0, the same EMST

1 http://www-graphics.stanford.edu.
2 http://www-rech.telecom-lille1.eu/madras.
3 http://www.cadwin.com.
4 http://www.aimatshape.net.

http://www-graphics.stanford.edu
http://www-rech.telecom-lille1.eu/madras
http://www.cadwin.com
http://www.aimatshape.net
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Fig. 13. Distributions of the vertices for seven 3D objects of our database: (a) As a function of r+ for the normalization (1). (b) As a function of r− for the normalization (1).
(c) As a function of r+ for the normalization (2). (d) As a function of r− for the normalization (2).
Fig. 14. Distributions of r , r+ and r− for the 3D mesh Horse.

is generated (T = T ′). In this case the vertex ordering will be
different, so ri ≠ r ′i , i ∈ [1, n− 1] in general. But the distribution
of the most robust vertices does not change. We choose the first
vertex as a parameter, it could be used to define a different order
on the EMST. Moreover, we have defined a scope where the EMST
does not change, in this context the vertex ordering done by the
Prim algorithm is stable. However, we are aware that modifying
the EMST could change dramatically the order defined, even if the
percentage of common edge is high.

In order to reduce the complexity and to compare thesemeshes,
we sub-sampled them to have approximately 1000 vertices for
each 3D mesh. Indeed, for larger 3D objects, we assumed that is
always possible to sub-sample them to keep the most interesting
vertices. This can be done by a simple decimation, or on a sub-
resolution or a clustering method. In fact the complexity of the
analysis of EMST algorithm is in O(n3). Indeed, as presented in
Algorithm 1, the complexity of computing Prim’s algorithm is in
O(n3) since for computing the second closest vertexwe should cal-
culate all the distances between the vertices vj in Vi−1, vj ≠ f (vi)
and the vertices in V\Vi. Moreover, our radius (given by multiple
calculations) can be computed at each step without increasing the
upper bound of the complexity, but we add a great factor in each
main loop.

Algorithm 1 Prim’s algorithm with our computations O(n3)

Require: G = (V , E), v0
1: VT ← v0
2: ET ← ∅
3: EMST = (VT , ET )
4: while |ET | < |V | − 1 do \\ O(n)
5: find e{u, v}, e2 be the two different minimum weighted

edges between the sets VT and V \ VT ,
u ∈ VT , v ∈ V \ VT compute d1i with e2 \\ O(n2)

6: VT = VT ∪ {v}, ET = ET ∪ {e}
7: compute d2i and d−i : loop on VT \\ O(n)
8: compute d3i : loop on V \\ O(n)
9: compute ri: min{r+i , r

−

i , r
2
i }

10: end while
11: return EMST

Moreover, in order to be able to compare their disruptions, we
normalized these objects and then k ∈ R denotes the scaling factor
of the normalization. For these experiments we normalized the
object in two different manners:
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Fig. 15. Displays of the more robust areas on the 3D object Horse: (a)–(c) Original mesh. (b)–(d) The robust areas are shown with light colours.
1. As a function of the size of the bounding box (normalization
(1)):

k = max{xmax − xmin; ymax − ymin; zmax − zmin}.

2. As a function of the average distance between two vertices in
the mesh (normalization (2)):

k =
1
m


vi,vj∈V

ω(vi, vj).

5.2. Quantification of the vertex displacement

The results of our analysis are presented for themeshHorsenor-
malized by the normalization (1) illustrated in Fig. 11(d). Fig. 12(a)
and (b) respectively present the distributions of the vertices as a
function of the radius values. The values are sampled with a step
of 10−3.

Note that there are many vertices that cannot be moved in one
direction, e.g. r− ≃ 0 or r+ ≃ 0. In the case of the 3D object Horse,
we havemore than 20% for the radius r− which is close to zero and
around 30% of the radius r+ are close to zero. As the radius value of
a vertex becomes more significant, this vertex can be moved more
and ultimately be more robust. However, the results illustrated in
Fig. 12(a) and (c) show that a significant part of the vertices can be
moved, but this also reveals the fragility of EMST structures.

For the radius r+, the occurrences decrease very fast as the
radius value increases. We observed that the maximum value for
r+ is around 1.8 × 10−2 (Fig. 12(a)) whereas as for r− (Fig. 12(c))
the maximum value is around 4× 10−2. We can thus deduce from
this experiment that it is easier to move a vertex vi towards its
father f (vi) than to take it away. Then, for radius r− (Fig. 12(c))
we note an interesting peak between 1.5 × 10−2 and 2 × 10−2.
With this observation, we can consider two kinds of vertices: those
which cannot bemoved closer to their father and those that can be
moved closer to the closest possible of their fathers. Fig. 12(b) and
(d) illustrate the cumulative functions of r+ and r− respectively.
Fig. 12(c) shows an inflection point near 1.5 × 10−2. For the last
case, in Fig. 12(e) we can see that the radius r2 has a maximum
distribution around 0.0233 which is much larger than the radius
r+. Fig. 12(f) shows the cumulative distribution which proves that
most of the vertices have a radius r2 ∈ [0.02, 0.3]. This behaviour
is observed in our database, we propose to present the next result
with a radius r defined as: r = min{r+, r−}, since by experiments
the radius r2 has a very low influence.

After these detailed observations on the 3D object Horse, we
compare the behaviour of criteria r+ and r− on seven 3D objects
of our database. Fig. 13(a) and (b) illustrate, respectively, the dis-
tributions of the vertices for the 3D objects normalized as a func-
tion of the size of their bounding box (normalization (1)). Fig. 13(c)
and (d) illustrate, respectively, the distribution of the same 3D ob-
jects normalized as a function of the average distance between two
vertices in the mesh. The distributions of r+ seem to be the same
for the seven objects we analysed. The main part of the vertices
cannot be moved, as we have previously seen for the 3D object
Horse, but some of them can be moved. In particular, for criterion
r−, we also notice the same shape as Horse. Indeed, a lot of ver-
tices cannot bemoved, but we observed a peak around a particular
valuewhich corresponds to the average distance between two ver-
tices. In Fig. 13(c), we can validate this intuition because the peak
is around the same value. Indeed, this peak is a function of the av-
erage distance between two vertices of the mesh.

In order to determine howavertex can bemoved,wepropose to
let a criterion r quantify the possible motion of each vertex. Thus,
for each vertex, we calculate:

ri = min{r+i , r
−

i }.

The distribution of this new criterion r is illustrated in Fig. 14,
and compared to r+ and r−.
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In Fig. 15 we visualized the more robust vertices in order to
locate the most robust areas. These mesh parts could be used to
synchronize hidden data during awatermarking process for exam-
ple. Fig. 15(a) and (c) illustrates the original mesh of the 3D object
Horse, while Fig. 15(b) and (d) illustrates the result of the visual-
ization. The darker colours correspond to the most fragile areas,
whereas the lighter colours correspond to the most robust areas.

As we can notice, a large number of areas, illustrated in darker
colour, seem to be rather fragile. We can also notice, for the most
robust areas, that the space between them and their neighbour-
hoods are not regular. This might be a clue for the search of geo-
metrical criteria.

5.3. Validation of the proposed theoretical analysis

To validate our proposed theory, we need to have a relation-
ship between the theoretical criteria as a function of r+ and r− pre-
sented in Section 3, and the experimental measures as a function
of the percentage of the common edge rate between the EMST of
the original mesh and the EMST of a noisy one. First, we select x%
of the most robust vertices which are the most mobile vertices in
the original EMST, where ri > rx%.

Let T denote the EMST of the original mesh and Tσ the EMST
of a noisy mesh such that the noise is Gaussian and its standard
deviation equals σ . In fact, the analysis can be done by determining
the correlation between rx% and the intensity of the Gaussian noise
added to the 3D mesh.

Let σx% be the critical standard deviation σ of the Gaussian noise
such that its mean µ(T , Tσ ) = x%. For the experiments, we take
several 3D objects and we set x to compute, for each mesh, the
values of rx% and σx%. We repeat this experiment 100 times for each
3D object.

In Fig. 16, for different selection rate x%, the critical standard de-
viation as a function of our theoretical criterion is presented. Each
3D object is linked to a point in the graph. The x-axis corresponds
to the theoretical criterion rx% and the y-axis to the critical standard
deviation σx%. For each selection rate, x = 10% (Fig. 16(a)) x = 20%
(Fig. 16(b)) and x = 30% (Fig. 16(c)), we obtain a straight line. In-
deed, there is a linear relationship between rx% and σx% that does
not depend on x:

σx% = k · rx%.

We estimate k, the value of the coefficient of the linear correla-
tion by linear regression, for various vertex selection rates x. Table 1
presents the results.

We also noticed that for x > 30%, we do not obtain a straight
line. The behaviour of the criterion is chaotic because the areas
selected are not robust. If some fragile vertices are selected (i.e. rx%
is too small), the disturbed vertex is out of its displacement cell
and creates disorder in the EMST. This disorder results in a non-
correlation of our criterion. In future work, it will be interesting to
formalize this study in a theoretical context. This kind of technique
should be interesting with various criteria that we are studying,
such as estimation of the discrete curvature. The aim is to find
a stable criterion in order to use the synchronization in a robust
watermarking scheme.

6. Conclusion and future work

In this paper, we have presented a theoretical analysis of the
displacement of vertices without changing the connections in the
EMST. Moreover, we have proposed a theoretical criterion in line
with the Gaussian noisemodel in order to select the x% most robust
vertices. The proposed approach could be used to synchronize data
for several 3D techniques such as watermarking or compression.
In this paper, we limited the vertex displacement analysis along
the half-line ]f (vi); vi), Assumption 3.2 and we assumed that this
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Fig. 16. Correlation between our theoretical criterion rx% and σx% the critical
standard deviation.

Table 1
Experimental results, coefficient of the linear correlation (k) as a function of the
vertex selection rate (x).

Fig. 16(a) 16(b) 16(c)

x 10% 20% 30%
k 0.258 0.322 0.223

analysis can be done independently for each vertex, Assump-
tion 3.1. These assumptions are not toomuch restrictive in the case
of watermarking and compression applications where each vertex
is processed one by one. In particular, with this analysis, we are
able to locate robust areas that could be used for message embed-
dingwith thewatermarking technique proposed by Amat et al. [3].

To continue this work, from a theoretical standpoint, it would
be interesting to reduce the chosen constraints of our study. For a
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given step of Prim’s algorithm,wewould like to knowhow tomove
the vertex in three dimensions without changing the EMST built in
the previous steps and without any a priori or hypotheses about
these steps.

Wewould also like to link this studywith 3D robustwatermark-
ing in order to build a new synchronization technique using EMST.
This is a challenge since EMST is a fragile approach. For example, it
might be interesting to build a treewith only themost robust areas
for synchronizationwith the aim of being robust against attacks. Of
course, the synchronization is strongly connected with the water-
marking method and the application. For example, Su et al. pro-
posed a very specific watermarking method for CAPD where the
synchronization is a function of the flow direction [26].
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