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Abstract .  This paper describes a method to automatically generate the 
mapping between a completely labeled reference image and 3D medical 
images of patients. To achieve this, we combined three techniques: the ex- 
traction of 3D feature lines, their non-rigid registration and the extension 
of the deformation to the whole image space using warping techniques. 
As experimental results, we present the retrieval of the cortical and ven- 
tricles structures in MRI images of the brain. 

1 I n t r o d u c t i o n  

It becomes needless to emphasize the advantages of electronic atlases versus 
conventional paper atlases. However, even if such atlases are available [9] and 
even if Computer  Graphic techniques are sufficiently developed to manipulate 
and display those atlases in real time, there remains a crucial need for automatic 
tools to analyze the variability of features between patients [11], [14]. For that  
purpose, we have to find correspondences between the image of any patient and 
the atlases. 

This paper presents one possible approach to achieve this goal, usually re- 
ferred to as a segmentation problem, by using a strong a priori knowledge of the 
human anatomy. 

There are usually two complementary ways to explore, which are the region 
based technique using the voxel values inside the regions [3], and the feature 
based one only using the boundaries of those regions [5], such as the interfaces 
between organs, or specific lines or points of those surfaces [17], [16] 

In the present paper, we concentrate on a feature line based technique to 
segment fully automatically the same organ in the images of different patients. 
We give first a global description of the method,  which is then detailed into 
feature lines extraction using differential geometry, registration of lines using 
deformable models, and at last 3D space deformation using warping techniques. 
Finally, we present a practical example, which is the automatic extraction of the 
cortical and ventricle surfaces from the 3D MRI images of a patient. 

2 A g l o b a l  d e s c r i p t i o n  o f  t h e  m e t h o d  

Let us assume that  we have a 3D reference image Ir and an associated fully 
labeled image Mr, called map (figure 1) in which each voxel value specifies the 
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type of a corresponding structure in I t .  We call structure a set of connected 
voxels of Mr having the same label. Ip is the image of a new patient to process. 

We suppose also that  images Ir  and Ip have been acquired with the same 
modality and parameter  settings: their intensities are very similar. 

To find the correspondence between Ip and the reference map Mr, we propose 
to follow this scheme (figure 1): 

- automatically find and label some features in I r  corresponding to a labeled 
structure Sr of Mr, 

- automatically find the equivalent features in Ip, 
- find the correspondence Cp,r between those features, 
- either deform individual structures or the global map Mr into new structures 

or into a new map Mp, which is exactly superimposable to Ip. This step is 
achieved by finding a space warping function Dp,r and applying it to Mr. 
We retrieve then the structure Sp in Ip corresponding to Sr in I t .  
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Fig. 1. Features of the labeled structure Sr are extracted from the reference image I~. 
Equivalent features are extracted from Ip. By finding the registration Cp,r between these 
features, a warping]unction Dp,r can be computed to obtain the map Mp superimposable 
on I~ and so, the structure S~. 

3 Feature based non-rigid registration 

3 .1  T h e  f e a t u r e  t y p e :  t h e  c r e s t  l i n e s  

Raw medical images are stored in a discrete 3D matr ix  I = f (x ,  y, z). By thresh- 
olding I = -To, isosurfaces of organs are computed (for instance the brain with 
MRI images). To get a sparser but  relevant representation of the isosurface, we 
propose to use the "crest lines" introduced in [10]. 

They  are defined as the successive loci of a surface for which the largest 
principal curvature is locally maximal in the principal direction (see figure 2, 
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left). Let kl be the principal curvature with maximM curvature in absolute value 

and ~ the associated principal direction, each point of a crest line verifies: 

V kl. tl = 0. These lines are automatically extracted by the "marching lines" 
algorithm [17]. 

155 

Fig. 2. Left: mathematical crest line definition. Right: crest lines on a braiu. 

In fact, crest lines turned out to be anatomically meaningful. Thus, in figure 
2, right, crest lines follow the cortical convolutions, emphasizing the sulci and 
gyri patterns described by Ono et al. [12]. 

3.2 The crest lines extraction 

We want to extract the crest lines of the structures Sr in In and their equivalent 
in Ip. The problem is then to find the threshold I0. I0 is representative of the 
interface between S~ and the other structures and can be computed as the mean 
value of the voxels of I~ labelled as S~ in M~. As the images have the same 
dynamic, we can use the same threshold in Ip. 

3.3 The  3D non-rigid registration algorithm 

The 3D lines registration algorithm is a key point in our scheme: given two sets 
t extracted from two different A and A t composed of the crest fines L~ and Lj 

images, we want to find which lines L~ of A correspond to which lines L) of 
Aq Two difficulties arise: the number of lines of each set is quite large (several 
hundreds to more than a thousand) and the registration between A and A I is 
not rigid, preventing from using Euclidean invariant based methods as in [8]. 

Zhang [18] and independently Besl [1] introduced an "iterative closest points" 
matching method. Both authors use this algorithm to register free-form curves 
but only for the rigid case. Nevertheless, we can improve and generalize this 
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method to our problem and our algorithm follows the steps of the "iterative 
closest point" method. 

P o i n t s  m a t c h i n g  Each point of A is linked with its closest neighbour in A t 
according to the Euclidean distance. We plan also to use in the distance compu- 
tat ion the differential curve parameters as the tangent,  normal, curvature and 
torsion [8] or surface parameters as the normal, the principal directions and 
principal curvatures as described in [6]. This gives a lists of registered points, C1. 

But  as we have curves, i.e. an ordered list of points, we can apply some 
topological constraints in order to remove non-consistent couples of registered 
points and then to avoid irrelevant configurations..We obtain an other list C2. 

From C2, two coefficients can be computed: p~ and p~ which are the pro- 
portion of the curve i of A matched with the curve j of A' and  vice versa. By 

'i thresholding, p~ > thr and pj  > thr ,  we can determine the curves which are 
"registered" at thr  percent. For instance, curves can be considered completely 

'i registered when p~ > 0.5 and pj > 0.5. 

L e a s t - s q u a r e s  t r a n s f o r m a t i o n  We want to register A and A' with polynomial 
transformations. The 0th-order is a rigid transformation and l ' t -order an affine 
one but  they are not sufficient for an accurate non-rigid registration. So, we use 
2nd-order polynomial transformations defined by (for the x coordinate): 

x t = a l x  2 -4- a2y 2 + aaz 2 + a4xy -4- asyz  + a6xz  + aTx + asy + agz + alo 

As these polynomials are linear in their coefficients, we can use the classical 
least-squares method to compute the ai from C2. 

2"d-order polynomial transformations give accurate registration but we are 
not able to decompose them into intuitive physical meaning transformations such 
as rotation, translation or scaling. Notice that ,  at each iteration, we compose the 
transformation with a 2"d-order polynomial and so, we obtain after n iterations, 
a potential  2'~-order polynomial transformation. 

2"%order transformations are also used by Greitz et al. [7] to model natural  
deformations as brain bending. 

U p d a t i n g  The transformation is then applied and the algorithm iterates again 
or stops according to some criteria (mean value of the distance distribution be- 
tween matched points, stability of the registration coefficients p~ and p~, thresh- 

old on the matrix norm l i T -  Idll where T is the transformation and Id the 
identity matrix). 

P a r a m e t e r s  a d a p t a t i o n  By incrementing the threshold value thr  at each it- 
eration and by taking only into account the matched point couples belonging to 
"registered" curves at thr  percent, the algorithm tends to improve the registra- 
tion of already matched curves and to discard isolated ones. Moreover, we can 



157 

begin to apply rigid transformations to align the two sets of lines, then affine 
transformations to scale them and, at last, quadratic transformations to refine 
the registration. 

At the end, we obtain a good registration between the two sets of fines and 
so, a point to point, correspondence between lines. These correspondences give 
significant landmarks to define a B-spline based warping on the whole space. 

4 S p a c e  w a r p i n g  

4.1 The problem 

Let us call F ,  the exact matching function, i.e. the geometric transformation 
that  takes a point Pr in Iv and gives its anatomically equivalent Pp in Ip: 

F :  )Ip 
P v ( x , y , z )  , , 

The set of matched points A/I obtained with the feature based registration is 
an estimation of some pairs (Pr, F(Pr)) .  We have then a sparse estimation of F 
which we can extend to the whole space by a warping function ~o_~a. 

4.2 C a l c u l a t i o n  o f  t h e  warp ing  function 

Bookstein and Green [2] define to~a as a thin-plate spline interpolating function 
but only in 2D. Two problems raise if we apply this definition to our approach. 
First, it appears difficult to generalize in 3D. Second, interpolation is relevant 
when the matched points of A~I are totally reliable and regularly distributed (for 
example, a few points manually located). In our case, these points are not totally 
reliable due to possible mismatches of the registration algorithm and are sparsed 
in a few compact areas as they belong to lines. 

So for ~o2a, we prefer to use an approximation function which is regular 
enough to minimize the influence of erroneous matched points. We choose a 
B-spline tensor product which is easy to define and control in 3D. 

The B-spline approximation We define the coordinate functions of !o:a, (u, v, w) 
as a three-dimensional tensor product of B-spline basis functions. For instance, 
for u: 

n~ --1 r ip--1 n= --1 

i,I,:(x) BVK(Y) B~,K(Z) 
i : 0  j=O k :O  

with the following notations: 

- n= : the number of control points in the x direction, n= sets the accuracy of 
the approximation. 

- c~ : the 3D matrix of the control points abscissae. 
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- B~K : the i 'h B-spline basis function. Its order is K.  u is then a piecewise 
K *" degree polynomial in each variable x, y and z, easy to evaluate with 
the de Casteljau algorithm [13]. We choose cubic B-splines in our examples 
(K = 3), for their regularity properties. For the B-spline knots, we take the 
classic regular mesh. 

For a given number of control points and a set of B-spline basis functions, u 
is completely defined by the aljk. They are calculated by minimizing a criterion 
computed with the set M of matched points. 

T h e  c r i t e r i on  We define three criteria J~, j v  and jz (one for each coordinate) 
to determine the best ~0~a, with respect to our data. For instance, for u, JZ splits 
in two parts: 

- position term. For each da ta  point Pr, u(P,.) must be as close as possible to 
the abscissa of Pp. We choose a least-squares criterion: 

N 

y l , z 1 1 - 4 )  2 
t = l  

- smoothing term. B-splines have intrinsic rigidity properties, but it is some- 
times not enough. We choose a second order Tikhonov stabilizer: it measures 
how far from an affine transformation the deformation is. 

/ [02u2 02u2 02u2 02u2 02u2 02u21 
= + - -  + + + + 

where Ps is a weight coefficient. It  is currently manually defined and some 
solutions to choose it automatically are under study. 

The criterion to minimize is then: J~(u) = J~osi,~o,~(u) + J~moo, h(U) 

T h e  l inear  s y s t e m s  J ~  is a positive quadratic function of the aij~ variables. 
To find the coefficients that  minimize J~, we derive its expression with respect 
to all the aijk: it gives n~ × n v × nz linear equations. Assembling those equations, 
we get a sparse, symmetric and positive linear system. We solve the 3 systems 
(one for each coordinate) to completely calculate ¢~a. 

5 R e s u l t s  a n d  d i s c u s s i o n  

We apply the described process to retrieve the cortical and ventricles structures 
in MRI images of the brain of a patient from a reference segmented image (see 
figures 3 to 7). 

The structures have been correctly recovered in spite of the sparse represen- 
tation of the data. It shows tha t  crest lines turn out to be significant features 
with few ambiguities and to be anatomically consistent. Moreover, a data  point 
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has a local influence: to evaluate a transformed point, we need only (K-t- 1) 3 
control points (to be compared with the n ,  × n v × nz tha t  have been calcu- 
lated). Hence, the influence of outliers is very local. At last, the regularity of 
the B-splines defined ~0~ allows to get consistent correspondences everywhere 
in the image. In particular, we can retrieve inner structures of the brain, with a 
warping only based on its external surface features. 

6 Conclusion and perspectives 

The proposed method allows us to build fully automatically the maps associated 
to the 3D images of new patients, from manually designed maps of reference 
patients. It can be used to efficiently initialize 3D surface snakes if a more precise 
final segmentation of the organs is needed [4], [15]. 

We especially thank Dr Ron Kikinis from the Brigham and Woman's hospital, 
Harvard Medical School, Boston, for having provided the segmented image of 
the brain, and the MR images to analyse. We also thank Digital Equipment 
Corporation (External Research Contract) and the BRA VIVA european project 
who partially supported this research. 
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Fig. 3. The data : top, the reference brain, bottom, the patient brain. Notice the differ- 
euces in shapes and orientations. 
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Fig .  4. The crest lines have been automatically extracted from the reference brain (top) 
and from the patient brain (bottom). Some of the crest lines have been labeled (ventricles 
and medulla) and thickened for a better visualization. 

Fig .  5. Left, the reference image I~ with the cortical surface St. Middle, the patient im- 
age Ip with Sr before deformation. Right, Ip with the result Sp of the found deformation 
applied on S~. 
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Fig. 6. The same as figure 5, with the ventricle8 surface. 

Fig. 7. Different 3D views of the brains with their ventricle: left, the reference brain, 
middle, the same after warping and right, the patient brain. 


