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A B S T R A C T

Today, it has become more frequent and reasonably easy to digitize the surface of 3D objects. However,
the obtained results are often inaccurate and noisy. In this paper, we present an efficient method to
analyze a curvature histogram from a digitized 3D surface using a real object. Moreover, we propose to
use the curvature histogram analysis for many steps of a reverse engineering process, which can be used
to retrieve a CAD model from a digitized one for example. Our objective is to design a fast and fully
automated method, which is seldom seen in reverse engineering. Experimental results applied on
digitized 3D meshes show the efficiency and the robustness of our proposed method.
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1. Introduction

The availability of 3D scanners has increased the fast develop-
ment of applications in Computed-Aided Design (CAD), reverse
engineering, medicine and inspection. Many 3D processes use the
objects shape, like segmentation, recognition or classification for
example. In the production line of manufactured objects, steps can
be distributed to many partners, and during the process, some data
can be lost. An industrial reverse engineering application aims to
reconstruct an object as a combination of geometric primitives,
from a digitized 3D mesh or 3D point cloud [1,2]. For mechanical
objects, we search for planes, spheres, cylinders and cones, but also
torus and more specifically developable or ruled surfaces. This can
lead to quality control or object modification issues for example. To
reconstruct the initial geometry, we must take into account the
shape of the objects and their relationship with each other. But an
object shape can be very complex, and the measured data can often
be noisy. So, we need robust 3D descriptors to accurately define the
objects shape.

In previous work, geometry descriptors like the curvatures [3,4]
allow us to deal with the 3D mesh shape. But the curvature is
computed locally, while it is often necessary to characterize the
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shape globally. To do this, we can construct curvature distributions
[5,6] and analyze them.

In this paper, we propose a method based on the analysis of a
digitized 3D mesh curvature histogram. We use the curvature
approximation from Bénière et al. [7] who incorporates two other
methods [8,9]. Then, a distribution is constructed continuously by
a kernel estimation from all of the curvature values. Finally, an
accurate curvature distribution analysis is realized. In the
distribution, we propose to search for peaks and valleys, and
compute some statistics depending on the chosen application.
Indeed, curvature distribution approximately describes the objects
shape, so these distributions can be useful to many applications. In
this paper, we propose to use a curvature histogram to segment 3D
meshes, detect primitive type and measure the quality of the mesh.

This paper is organized as follows. Previous work in this topic is
presented in Section 2. In Section 3, we present in detail our
distribution construction and analysis. Section 4 is dedicated to
three uses of curvature distribution, which are mesh segmentation,
primitive type detection with tolerances adaptation and mesh
quality evaluation. In Section 5, we apply our proposed analysis on
digitized 3D surfaces of real objects and we show that our analysis
hugely improves the obtained results. Finally, we conclude and
propose directions for future research in Section 6.

2. Previous work

We present in Section 2.1 previous work on curvatures and
distributions. Then, we show three fields in 3D mesh processing:
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Fig. 1. Curvature representation on: (a) 2D curves and (b) 3D surfaces.

Fig. 2. (a) Discrete and (b) continuous distribution samples.

Fig. 3. Examples of mesh segmentation from [19]: (a) A section-type segmentation, (b) a surface-type segmentation.
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mesh segmentation in Section 2.1.1, geometric primitive type
detection in Section 2.1.2 and mesh quality evaluation in
Section 2.1.3.

2.1. Curvature distribution

Intuitively, curvature quantifies the deviation between a curve
and a straight line, or between a surface and a plane in 3D. The
curvature of a 2D curve at a point P equals the inverse of the
osculating circle radius r at P. The osculating circle is the circular arc
which best approximates the curve around P (Fig. 1a).

On a 3D surface, an infinity of curvature directions exists around
the normal vector of P (Fig. 1b). So, we need to distinguish
particular curvatures. Principal curvatures are the minimum and
maximum curvatures. Mean curvature and Gaussian curvature
equal respectively the mean and the product of principal



Fig. 4. (a) Original 3D mesh, (b) curvature: planar (green), spherical (yellow), convex (blue) and concave (red), (c) point areas, (d) extracted primitives [2]. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Spheres of radius r = 10 with Gaussian noise and their corresponding mean curvature histogram: (a) original sphere, (b) s = 0.01, (c) s = 0.1.

Fig. 6. Method overview.
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curvatures. The Euler formula gives the continuous curvature at a
point P for each tangent vector ti:

knðtiÞ ¼ kmaxcos2ðuÞ þ kminsin
2ðuÞ; ð1Þ

where kmax and kmin are the principal curvatures, and u is the

angle between the maximum principal direction ~d
max

and the
direction of kn. But since a mesh is a discrete object, we need to
approximate the curvature from a point cloud. Chen and Schmitt
[8] compute “discrete” curvatures at P with the Meusnier theorem:

knðtÞ ¼ kC � cosðuÞ; ð2Þ
where kC is the curvature at P of the curve obtained by intersection
between the surface and a plane PC, and u is the angle between the
normal at P and the normal of the plane PC. Each neighbor pair of P
defines a plane with P, and the curvature circle is the circumscribed
circle of the three points. A linear regression is then applied on all
discrete curvatures to retrieve approximated principal curvatures.



Fig. 7. Minimum and maximum possible for absolute curvature values.
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Dong and Wang [9] compute discrete curvatures with:

knðtÞ ¼ < Pi � P; Ni � N >

kPi � Pk2
; ð3Þ

where Pi is a neighbor of P with a normal Ni, and~t the projection of
PiP on the tangent plane of P. A linear regression is also applied on
all discrete curvatures, but with a coefficient fixed to the maximum
computed value.

Bénière et al. [2] compute discrete curvatures with the formula
(3) for each neighbor of P, and apply the linear regression of [8]. For
our proposed approach, we prefer to use this approximation
because it is more accurate. Indeed, Eq. (3) uses each neighbor
independently and avoids some curve distortion. Moreover, fixing
a linear regression coefficient when we do not know if we have
computed the real maximum curvature is dangerous. Curvatures
are often used to characterize surface shape [10,11]. So, for
example, it is possible to analyze a shape to detect saliency [12] or
apply segmentation [13,5].

There are many different types of distributions. But overall, we
can distinguish discrete and continuous distributions. A discrete
distribution is often represented by a histogram, as illustrated in
Fig. 2a. On the other hand, continuous distributions correspond to
mathematical models. Common models are Gaussian or Normal
distributions (Fig. 2b).

In our case, computed curvature values are real. So, it is
necessary to approximate a discrete distribution with a continuous
model. Most of the time, models are optimized from the measured
data. Model optimization estimates the parameters of a density
function by maximizing the joint likelihood of the observed
samples to be generated by this model. A common optimization
algorithm is the Expectation–Maximisation (EM) [14]. For exam-
ple, these distributions can be used in image processing to improve
compression [6], for perceptual hashing systems [15], or even
automatic image thresholding [16].

Previous methods in 3D mesh processing proposed to use
distributions [17,5]. For example, Demarsin et al. [17] compute an
Fig. 8. Normalized mean curvature kernel-estimated histogram example.
absolute mean curvature histogram used to extract object edges.
They analyze many histogram resolutions to define a sufficient bin
number. However, Chen and Feng [5] construct a signed mean
curvature histogram, then apply a Laplacian smooth modifier and
analyze the histogram to segment the object. They can separate
homogeneous intervals by histogram analysis. But the main
limitation of these two methods is that the histogram is
constructed with a discrete approach, whereas curvature values
are real. To extend their methods, we can construct a histogram by
optimization or kernel estimation for example.

2.1.1. Segmentation
A segmentation is a partitioning of a digital image, a 3D mesh or

a 3D point cloud in several regions, as illustrated in Fig. 3. For 3D
objects, we distinguish between cloud-based [18] and mesh-based
approaches [19].

Many different 3D mesh segmentation algorithms have been
published [20,21], but each segmentation gives more or less good
results depending on the chosen application. Most of the time, a
segmentation brings together points with similar criteria. For
example, the segmentation can be based on a waterfall [22],
hierarchical clustering [23], iterative merging [24] or remeshing
[25]. In reverse engineering, the best results are reached when
using curvatures, because primitives are extracted from curvatures
analysis. Some methods use curvatures to segment by disconti-
nuities [1,5], clustering [26], or to better digitize [27], but they are
often not robust enough around object edges or are sensitive to
noise [13,2]. Indeed, curvatures are often inaccurate around object
edges because adjacent points can run over many different
primitives. Moreover, we are searching for a fully automatic
method, so we cannot use parameters like a cluster number [28].

The edge extraction of Demarsin et al. [17] is interesting, but it is
not entirely automatic. Indeed, they compute an absolute mean
curvature histogram and define a threshold leading to edge
extraction. Then, they ask for user help to validate the result or
compute another threshold. To extend this threshold computation,
we can normalize the curvature and fix the histogram range.

Chen and Feng [5] propose to construct the mean curvature
histogram, and then to apply a Laplacian smooth modifier. After,
they compute valleys on the histogram, which define segmenta-
tion thresholds. Finally, they retrieve the isolated regions and
improve their boundaries. But their method is limited since they do
not have a single primitive per submesh. To extend this
segmentation, we can apply a recursive extraction of salient edges.



Fig. 9. Histogram: (a) peaks and (b) valleys.

Fig. 10. (a) Gaussian Mixture Model of a histogram, (b) starting models with peak and valley detection.

Fig. 11. Segmentation overview based on the proposed curvature analysis.

Fig. 12. Edge extraction.
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2.1.2. Primitive type detection
Primitive extraction starts from an initial set of measured data

and builds derived values, which are primitives (Fig. 4).
We generally search for planes, spheres and cylinders because

they are the most common primitives contained in mechanical
objects, but we can also search for cones, torus or ruled surfaces for
example. Primitive extraction can be based on fitting profiles [1],
quadratic surfaces [29] or freeform surfaces [30]. But most of the
time, primitive extraction uses curvature analysis, after a mesh
segmentation [2], with a distribution [31], or even with outlier
handling [32]. Since two primitives with identical parameters are



Fig. 13. Homogeneous area extraction.

Fig. 14. Region growing algorithm.

72 S. Gauthier et al. / Computers in Industry 92 (2017) 67–83
not distinguished by their curvature, these methods cannot
directly handle primitive positions. But curvature is robust to
noise, and can be analyzed locally to extract each primitive
separately.

The limit of these methods is that they can not estimate the
primitive type before extraction. To detect this primitive type, we
propose to analyze the principal curvature distributions.

2.1.3. Noise and mesh quality evaluation
In many 3D processes, it is important to handle noise properly

to avoid distorted representation. But noise characterization
depends on the chosen scanner. In fact, noise characterization
for depth sensors [33] and for laser beams [34] are different. So,
digitization noise estimation is difficult. Most of the time, methods
presume a Gaussian and isotropic noise, which does not reflect
reality. To properly deduce the real noise type, it is necessary to
know the object shape before the analysis. But in case of digitized
meshes, we cannot know this shape. Moreover, many different
noises can be present at the same time. In Fig. 5, we apply different
Fig. 15. Recursive segmentation.
values of Gaussian noise to a sphere and compare curvature
histograms. We show that curvature distributions of noisy spheres
have a Gaussian shape, which is related to the noise type.

We can also introduce an estimation for the roughness of the
surface [35], which is defined by a local analysis of the curvature
values. Like the noise on coordinates, the roughness can be difficult
to characterize since it depends also on the object material and the
digitization. Sometimes, roughness can quantify locally the noise.

3. Proposed curvature distribution analysis

Our proposed method first computes a discrete curvature on
each vertex of the initial 3D mesh. This method constructs a
continuous estimated and normalized histogram for each curva-
ture (Section 3.1), then analyzes it (Section 3.2). An overview of our
proposed method is illustrated Fig. 6.

We provide, for example, a peak and valley extraction used for
segmentation (Section 4.1). In the same way, some statistics
computed on each histogram are useful to adapt geometric
extraction tolerances (Section 4.2) or measure the quality of the
mesh (Section 4.3).

3.1. Probability curvature distribution

A probability distribution assigns a probability to each
measurable subset of the possible outcomes of a random
experiment, survey, or procedure of statistical inference. We can
represent a probability distribution by a histogram. But to define
the probability distributions for the simplest cases, we need to
distinguish between discrete and continuous random variables. In
the discrete case, we can easily assign a probability to each possible
value. By contrast, when a random variable like curvature takes
values from a continuum, then probabilities can be nonzero only if
they refer to intervals.

To approximate continuous curvatures on a discrete 3D mesh,
we use the method proposed by Bénière et al. [2]. In our case,



Fig. 16. Principal curvature histograms: (a) for a plane and (b) for a sphere.

Fig. 17. Principal curvature histograms for a cylinder.

Fig. 18. Principal curvature histograms: (a) for a cone and (b) for a developable surface. We can see in hatched orange a constant curvature which can be analyzed. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 19. (a) Example of GMM standard deviations. (b) Corresponding CAD curvature distribution.

Fig. 20. Initial mesh from Scanner 1: Aerospace.
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Fig. 21. Initial mesh from Scanner 1: Moldy.

Fig. 22. Initial mesh from Scanner 2: Outlet.

Fig. 23. (a) Edge extraction and (b) segmentation of Aerospace.

Fig. 24. (a) Edge extraction and (b) segmentation of Moldy.
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meshes can be defined with different scales and can give different
curvature ranges. So, to construct curvature histograms which can
be compared between many objects, we must normalize curvature
values with each mesh (Section 3.1.1). Moreover, curvature values
are real, so it is more suitable to construct a histogram with kernel-
estimation for example (Section 3.1.2).

3.1.1. Normalized curvature
Histograms must have the same range to make a comparison.

Indeed, we must take into account the mesh scale. To homogenize
them, curvature values have to be normalized. Our method
normalizes curvature values by multiplying them by the mean
edge length of the mesh.

If the object is correctly meshed and edge lengths are equal, we
can deduce the minimum and maximum possible curvature
values, as illustrated in Fig. 7. We propose then to limit the
histogram range according to these values.

Edge lengths of a digitized mesh are not all equal, but they are
similar enough to not distort the histogram. If a mesh has varying
edge lengths, some curvature values can be truncated. Most of the
time, there is only a small number of long edges, and the histogram
is similar with or without these edges.

3.1.2. Kernel estimation
Curvature values are real, so it is more suitable to compute a

histogram with a continuous estimation. Our method computes
histograms with a kernel-type estimation. We chose a Gaussian
kernel because digitized meshes with only one primitive often give
Gaussian-type curvature distributions. This may be related to



Fig. 25. (a) Edge extraction and (b) segmentation of Outlet.

Fig. 26. Example of automatic recursion: (a) Edge extraction and (b) segmentation of Manique, (c) edge extraction and (d) segmentation of the first submesh from (b), (e) edge
extraction and (f) segmentation of the first submesh from (d). The computed curvature thresholds are shown in the middle, computed from the corresponding gray part.
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scanner characteristics. We compute the histogram with:

f̂ hðxÞ ¼ 1
n

Xn

i¼1

Khðx � xiÞ; ð4Þ

where x is the central value of a bin, f̂ hðxÞ is the quantity inside the
bin, n is the number of points, xi is the ith point and h is the kernel
standard deviation. The Gaussian kernel is defined by:

Khðx � xiÞ ¼ 1
h

ffiffiffiffiffiffiffi
2p

p e�
1
2ð

x�xi
h Þ2 : ð5Þ

Each bin of the histogram is computed by centering the kernel
on it. Then, kernel density estimation (KDE) is applied on each
curvature value and added to the bin. So each bin is computed with
a neighborhood defined by the kernel standard deviation. Fig. 8
shows an example of a normalized mean curvature distribution
with a kernel deviation h = 0.01.

This continuous estimation makes histograms less sensitive to
noise and bin number. Indeed, high frequency fluctuations are
naturally smoothed by the kernel. Besides, if the noise deviation is
close to or greater than the kernel deviation, curvature values can
be too mixed and histogram analysis is limited.
3.2. Analysis

Many characteristics of a histogram can be useful to numerous
applications. We can, for example, search for a modal number and
positions (named “peaks” here), pattern, sparsity and statistics. In
our method, we essentially provide robust peak and valley
detection (Section 3.2.1), and use some statistics like mean and
standard deviation (Section 3.2.2).

3.2.1. Peaks and valleys
To detect homogeneous curvature intervals, we need to detect

peaks and valleys in the histogram, as illustrated in Fig. 9a and b. A
peak defines a dominant curvature value and a pair of two
consecutive valleys defines an homogeneous interval of curvature.

To detect peaks (or modes), many methods exist like the mean-
shift algorithm [36]. But these kind of methods can be heavy and do
not detect valleys. Therefore, we prefer to use a simple method
based on derivatives.

We begin by computing a discrete approximation of the second
derivative of the histogram:

D2ðiÞ ¼ Hði þ 1Þ þ Hði � 1Þ � 2HðiÞ; ð6Þ
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with D2(i) the ith second derivative value and H(i) the ith histogram
value.

Thus, we aim to detect robust peaks and valleys from the second
derivative. A peak (resp. a valley) is a bin with a higher (resp. a
lower) probability than the two adjacent bins. A robust peak (resp.
a robust valley) is a bin with the highest (resp. the lowest)
probability in a window. Finally, a robust peak (resp. a robust
valley) in the second derivative corresponds to a valley (resp. a
peak) in the histogram. Our method uses small sliding windows for
both peaks and valleys detection, just to avoid small fluctuations.

3.2.2. Gaussian Mixture Model
We can also estimate our distribution by a Gaussian Mixture

Model (GMM), which provides mean and standard deviation of
each homogeneous interval of curvature. To do this, we can use
algorithms like K-Means or Bayesian Information Criterion (BIC) to
give a number of Gaussian models. Thus, we can use an
Expectation–Maximisation algorithm (EM) to optimize these
models (Fig. 10a).

With our peak and valley detection, it is possible to obtain a fast
convergence of EM. Indeed, we can suppose that the optimal
number of models is close to our number of valleys. Moreover, we
can compute starting mean and standard deviation of each model
by computing it between each couple of consecutive valleys
(Fig. 10b). We can see that these models are already close to
optimized ones, so fewer iterations are needed to compute them.

4. Curvature distribution applications

Our method can be useful in many applications. This section
presents three applications which can be used, for example, in a
reverse engineering process: digitized 3D mesh segmentation
(Section 4.1), primitive type detection with tolerances adaptation
(Section 4.2) and mesh quality measurement (Section 4.3).
Table 1
Segmentation performances: time (T.) and region number (R.).

Mesh Triangle T. R.

Vase 20 000 <1 s 6
Fandisk 23 964 <1 s 21
Lego 24748 <1 s 35
Lego_small 26 371 <1 s 10
Cup 55 552 1 s 32
Yoke 62 276 1 s 8
Manique 65 090 1 s 40
Nespresso 71012 1 s 5
MediumBolt 89 000 2 s 11
StripedShoe 100 000 1 s 16
Connector 195 424 4 s 36
Outlet 195 853 5 s 72
Etui 210 963 5 s 3
Shoe 258 994 3 s 4
Czslowakei 400 026 8 s 162
Part2 414 823 12 s 20
Chair 500 000 7 s 85
Gear 500 000 6 s 283
Aerospace 799 296 16 s 70
Master 820 793 29 s 53
Moldy 851194 13 s 48
Watertight 921216 16 s 40
OilPump 1064 031 22 s 175
Carter 1067 079 34 s 108
Pump 1105 570 21 s 518
Block 1125 832 33 s 113
Te 1297428 40 s 39
Splint 2 095 079 1 min 09 s 21
Metrologic 2159 724 1 min 27 s 14
ProductPart 3 427 245 2 m 16 s 191
4.1. Segmentation

In our case, we work on digitized meshes, with point coordinate
inaccuracies and noise. To correctly segment these, we aim to
extract salient object edges matching with intersections between
geometric primitives (Section 4.1.1). We can retrieve isolated and
homogeneous regions (Section 4.1.2). Finally, we also apply
recursivity (Section 4.1.3) to improve results and obtain only
one primitive in each submesh. Our proposed segmentation, based
on curvature histogram analysis, is fast and completely automated.
Fig. 11 shows an overview of our proposed segmentation.

4.1.1. Edge extraction
The edges of an object are the salient mesh areas characterized

by a high curvature. We propose to extract these edges with
curvature histogram analysis, as described in Section 3. Indeed,
high curvatures are on the extremities of curvature histograms. To
detect and extract the edges, we apply a thresholding on curvature
values. Our method defines two thresholds, matching with the
extreme left and right valleys of the histogram (Fig.12). Points with
curvature between the two thresholds are labeled “uniform”, and
others are labeled “edge”.

We can also realize multiple thresholding by taking each valley
pair as thresholds (Fig. 13). This method directly isolates
homogeneous intervals, but we need to be aware of potential
curvature inaccuracy.

To improve edge detection, we may have to remove some
valleys which are due to downsampling on some curvature
intervals.

4.1.2. Region growing
After curvature thresholding, we can retrieve connected points

by region growing. Our method retrieves triangles instead of
points, but it is based on the same principle. A triangle type is
defined by its dominant point type. Region growing is a common
Table 2
Submeshes with only one primitive (O.P.).

Mesh O.P. Total in %

Vase 6 6 100
Fandisk 20 21 95.2
Lego 35 35 100
Lego_small 10 10 100
Cup 32 32 100
Yoke 7 8 87.5
Manique 33 40 82.5
Nespresso 5 5 100
MediumBolt 10 11 90.9
StripedShoe 16 16 100
Connector 33 36 91.7
Outlet 72 72 100
Etui 3 3 100
Shoe 4 4 100
Czslowakei 162 162 100
Part2 20 20 100
Chair 79 85 92.9
Gear 279 283 98.6
Aerospace 66 70 94.3
Master 49 53 92.5
Moldy 48 48 100
Watertight 35 40 87.5
OilPump 169 175 96.6
Carter 106 108 98.1
Pump 502 518 96.9
Block 111 113 98.2
Te 36 39 92.3
Splint 19 21 90.5
Metrologic 13 14 92.9
ProductPart 182 191 95.3



Fig. 27. Geometric primitives extraction with (a) mesh analysis and (b) curvature analysis of Aerospace.

Fig. 28. Geometric primitives extraction with (a) mesh analysis and (b) curvature analysis of Moldy.

Fig. 29. Geometric primitives extraction with (a) mesh analysis and (b) curvature analysis of Outlet.
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algorithm that groups similar adjacent elements: take a “seed”
triangle and assign a unique ID (Fig. 14a) and propagate the seed ID
to its neighbors (Fig. 14b) until it reaches the borders (Fig. 14c).

The choice of the seed does not matter since triangles have only
two possible values: threshold or non-threshold. We always
retrieve the same set of regions.

4.1.3. Recursivity
A mechanical object can be composed of many parts with

different scales. In this case, it is not possible to compute a unique
threshold to obtain optimal results. So in our method, we choose to
apply recursive segmentation. In fact, we segment the input mesh,
then segment again each submesh with the same method, until we
obtain only one region by submesh. Since our method is based on
curvature histogram analysis, each submesh has a different
histogram and we can detect object edges with many scales
(Fig. 15).

4.2. Primitive type detection tolerances

Most of the time, geometric primitive extraction uses many
tolerances. These tolerances, on curvature for example, are often
specific to the primitive type (plane, sphere, cylinder, cone, torus,
. . . ). If we can determine the dominant surface type in a mesh, we
can also adapt tolerances thanks to this information. In fact, we can
deduce it directly from curvature histogram analysis. So, it is
possible to improve geometric surface fitting. This section presents
tolerance adaptation for planes and spheres in Section 4.2.1,
cylinders in Section 4.2.2 and more complex primitives in
Section 4.2.3.

4.2.1. Planes and spheres
On a plane, the two principal curvatures equal zero. So we can

define a planar mesh as a mesh with minimum and maximum
curvature histogram values around zero (Fig. 16a).

The tolerance of zero curvature can be computed from the
principal curvature histograms:

CurvatureZeroPlane ¼
SigmaMin þ SigmaMax

2
; ð7Þ

with SigmaMin and SigmaMax the standard deviations of minimum
and maximum curvature histograms.

On a sphere, the two principal curvature histogram values are
equals and far from zero. So we can define a spherical mesh as a
mesh with minimum and maximum curvature histogram values
which are similar and far from zero, as illustrated in Fig. 16b.

The curvature similarity tolerance can be computed with:

LowerBound ¼ minðMuMin � SigmaMin; MuMax � SigmaMaxÞ;
UpperBound ¼ maxðMuMin þ SigmaMin; MuMax þ SigmaMaxÞ;
SimilarCurvaturesSphere ¼ ½LowerBound; UpperBound�;

ð8Þ

with (MuMin, SigmaMin) and (MuMax, SigmaMax) the mean and
standard deviation of minimum and maximum curvature histo-
grams respectively.



Table 3
Primitive extraction with mesh analysis (F.M.A.) proposed by Bénière et al. [2] and
curvature analysis (F.C.A.) tolerance adaptation.

Mesh F.M.A. [2] F.C.A.

Vase 1 4
Fandisk 14 20
Lego 15 30
Lego_small 5 9
Cup 1 4
Yoke 1 3
Manique 28 32
Nespresso 1 4
MediumBolt 4 6
StripedShoe 2 2
Connector 22 28
Outlet 31 52
Etui 2 3
Shoe 2 2
Czslowakei 102 107
Part2 11 16
Chair 19 44
Gear 277 279
Aerospace 71 105
Master 0 7
Moldy 37 55
Watertight 8 28
OilPump 17 56
Carter 3 9
Pump 241 263
Block 85 89
Te 20 28
Splint 8 14
Metrologic 0 16
ProductPart 0 62

Fig. 30. Noise in submesh minimum (blue, left), maximum (orange, middle) and mean
different submesh, and vertical axis shows the corresponding standard deviation value
referred to the web version of this article.)
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4.2.2. Cylinders
On a cylinder, one of the principal curvatures equals zero and

the other is far from zero. So we can define a cylindrical mesh as a
mesh with a principal curvature histogram around zero and the
other far from zero (Fig. 17).

We can compute a zero curvature tolerance from the histogram
with curvature values around zero:

CurvatureZeroCylinder ¼ SigmaZero; ð9Þ
with SigmaZero the standard deviation of the histogram which is
around zero.

4.2.3. Other primitives
We can also find other primitive signatures in curvature

histograms.
On a cone, one of the principal curvatures equals zero and the

other is variable (Fig. 18a). So we can only analyze the zero
curvature histogram.

On a developable surface, one of the curvature equals zero, and
the other is variable. The difficulty is that we may have an inversion
of minimum and maximum curvatures values (Fig. 18b). A possible
solution can be to use the principal directions to test the
consistency of the two sets of curvatures.

We can extend this to other surfaces. For example, on a torus or
a uniform generalized cylinder, one of the curvatures is constant,
even if we can have the same curvature inversion as a developable
surface. In all cases, if we can find a constant curvature, we can use
it to adapt tolerances and also measure mesh quality, as described
in Section 4.3.
 (gray, right) curvature distributions. Each position on horizontal axis represents a
s. (For interpretation of the references to color in this figure legend, the reader is



Table 4
Measuring the quality: (a) without segmentation and (b) with segmentation.

(a) Without segmentation

Mesh GMMs Deviation Mean Weighted mean

Aerospace 3 0.015 0.014 0.015
0.015
0.013

Moldy 2 0.023 0.019 0.022
0.015

Outlet 3 0.027 0.030 0.028
0.028
0.034

(b) With segmentation

Mesh Submeshes Deviation Mean Weighted mean

Aerospace 70 min = 0.003 0.013 0.009
max = 0.122

Moldy 48 min = 0.001 0.008 0.006
max = 0.086

Outlet 72 min = 0.001 0.013 0.010
max = 0.065

Fig. 31. Primitive type detection and

Fig. 32. Principal curvature histograms of the submesh 
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4.3. Quality measurement

In many 3D processes, noise leads to distortion and has an
impact on result accuracy. So to handle this noisy data, we can
quantify it on curvature values.

From our curvature distribution approximated by a GMM, as
defined in Section 3.2.2, we can retrieve standard deviation of each
homogeneous interval, as illustrated in Fig. 19a, and so estimate a
global value representing the noise quantity. For example, we can
basically use the mean of standard deviations, before or after
removing outliers.

In Fig. 19a, models number 6 and 7 could be outliers because a
primitive leads to a sharp mode, whereas smooth ones are often
due to noise. We can also weight each standard deviation by the
number of corresponding points to compute the mean.

Furthermore, we can also analyze each standard deviation
according to the surface type (primitive), size, position, and so
characterize noise more accurately. Indeed, the noise depends on
the scanner sensor type (depth, laser, . . . ), but also on object
material, texture, or even scene luminosity and object radiance. In
fact, we can approximate curvature distortion between the
digitized mesh (Fig. 19a) and the corresponding CAD mesh
(Fig. 19b).
 noise evaluation on Metrologic.

containing the torus and the two spheres (Fig. 31).



Fig. 33. Primitive type detection and noise evaluation on Lego_small.

Fig. 34. Example: quality control in a production line.
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We can also construct many distributions, like minimum,
maximum, mean and Gaussian curvature histograms, and gather
all the informations of those to obtain a better characterization. But
it is very difficult to have a good, accurate and mostly exhaustive
method allowing proper noise characterization. In previous work
they try to quantify impact of noise on point coordinates, for depth
sensor [33] or laser beam [34] scanners, and propose adapted
algorithms.

In our case, we can even characterize the noise on each
submesh from a segmentation (Section 4.1), and avoid object edge
curvature errors in our analysis. So, it is possible to measure the
noise depending on the mesh area, compare values and compute
some statistics. This possibly leads to other applications like
scanner noise characterization [37], for example.

5. Experimental results

Section 5.1 presents three meshes from different scanners.
Then, we show our results on these meshes, for segmentation in
Section 5.2, primitive type detection in Section 5.3 and quality
measurement in Section 5.4.

5.1. Presentation of the three used meshes

For experimental results, we used three digitized meshes from
two different structured light scanners. The first two come from a
first scanner and are illustrated in Figs. 20 and 21 respectively. The
third comes from a second scanner and is illustrated in Fig. 22.

To have an accuracy with an order of magnitude of �3 and
center values around zero in the same bin, our method constructs
histograms with 1001 bins. These histograms are constructed
using a kernel with a standard deviation h = 0.01. Moreover, we
limit our histogram range in the interval [�2; 2] since we
normalize curvature by edge length.

5.2. Segmentation

This section presents results of our segmentation using
curvature histogram analysis. Each figure shows edge extraction
and the final submesh set. In reverse engineering, our results are
very good, since most of the primitives are correctly isolated.
Indeed, edge extraction is accurate since curvature thresholds are
computed from distribution, and so are adaptative.

The sharp edges of Aerospace are properly detected (Fig. 23a)
and the primitives are correctly isolated, except for a few tangent
ones. We obtain 70 submeshes and 94.3% of them contain a single
primitive (Fig. 23b).

The sharp edges of Moldy are properly detected (Fig. 24a) and
the primitives are also correctly isolated. We note that freeforms
are not over-segmented. We obtain 48 submeshes and all of them
contain a single primitive (Fig. 24b).

The sharp edges of Outlet are properly detected (Fig. 25a),
except for the serrated cylinders, and the primitives are almost all
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correctly isolated. We obtain 72 submeshes and all of them contain
a single primitive (Fig. 25b).

As illustrated in Fig. 26, curvatures and thresholds are
computed from each submesh at each recursion step. Then, we
can continue to segment a submesh until we obtain only one
region. We can observe that sharp edges are removed from the
sharpest to the smoothest. Indeed, each recursion step refines the
curvature thresholds to extract smoother edges.

This recursion has a major impact on the robustness of our
method, which is fully automated and adapts to each step. For
example, it is possible to correctly segment an object with
heterogeneous noise.

We have segmented 30 meshes, with a processor Intel1 CoreTM

i7-4710 CPU @ 2.50GHz. These meshes are extremely varied: they
are generated from different softwares, with or without prepro-
cessing, small or large, more or less noisy. Results are presented in
Table 1, where bold names correspond to the three presented
meshes (see Section 5.1).

We can see that our segmentation is fast: less than one minute,
except forverylarge amounts of triangles.Moreover, these times also
include curvatures and mesh topology computation, which repre-
sents a large part of the calculation.

To validate our approach, we count the number of submeshes
that contain only one primitive. We can see in Table 2 that about
96% of submeshes match with only one primitive (remaining 4%
can contain similar tangent primitives).

Since primitives are correctly isolated, obtained results are
suitable for a reverse engineering application. Indeed, it is more
accurate and easy to extract only one primitive than many on the
same mesh, since we do not encounter curvature neighborhood
problems or primitive intersections.

5.3. Primitive type detection

This section presents results of our geometric extraction using
curvature histogram analysis to detect the primitive type and then
adapt the tolerances. Each figure shows extracted primitives with
tolerances computed by mesh analysis [7] and curvature analysis.
The best mesh analysis results are obtained with parameter
computations using edge lengths, numbers of points or elements
and object size. We show that our results are better with curvature
analysis because the tolerances are more accurate and suitable for
the purpose. Indeed, we can determine the main primitive on a mesh
(Section 4.2), and particularly on each submesh after segmentation.
Since our segmentation gives submeshes with only one primitive
(Table 2), we can more accurately compute the tolerances for each
primitive independently.

Aerospace contains 71 primitives with mesh analysis (Fig. 27a).
Some cylinders and cones are not extracted because they are often
more noisy and so less stable than planes. We extracted them with
curvature analysis and obtained 105 primitives (Fig. 27b).

Moldy contains 37 primitives with mesh analysis (Fig. 28a). The
small cylinders are not extracted because the tolerances must be
more accurate than those of larger ones. Curvature analysis
resolves this problem and leads to extraction of 55 primitives
(Fig. 28b).

Outlet contains 31 primitives with mesh analysis (Fig. 29a). All
cylinders are missing, because they are too noisy or are serrated on
this mesh. With curvature analysis, our tolerance adaptation
balances the noise and we obtain 52 primitives (Fig. 29b). The
serrated cylinders are still not very well rendered, but it is a
relatively specific case where the curvature is not constant.

We have extracted primitives from 30 meshes after segmenta-
tion, and compared results between the mesh analysis proposed by
Bénière et al. [2] and our proposed curvature analysis in Table 3.
These results are related to regions containing only one primitive,
presented in Table 2.

We can see that curvature analysis leads to a better primitive
extraction, which is suitable for reverse engineering applications.
Indeed, tolerances are more accurate and adaptative for each
submesh, and take the primitive type into account. Moreover,
curvature analysis tolerances can balance a larger amount of noise
than mesh analysis.

5.4. Quality measurement

This section presents results of our proposed method using
curvature analysis to quantify the noise of a digitized mesh.

We have analyzed the noise of four meshes after segmentation,
i.e. the noise in each submesh (Fig. 30). We can see that the noise is
often different between submeshes. Moreover, mean curvature is
almost always less sensitive to noise. These results can lead to a
better primitive extraction tolerance adaptation (Section 4.2), or
use in other fields like scanner recognition and authentication [37].

To quantify mesh quality, we can compute statistics on this
noise, and then give a global measurement. For example, we can
compute a mean or a point number weighted mean of standard
deviations. In the same way, we can compute the noise directly
from the entire mesh, i.e. without segmentation, from the
curvature distribution GMM (Section 4.3). Since we use a Gaussian
kernel with a standard deviation h to construct our distribution
(Section 3.1.2), we measure a mesh quality by:

sMean < 2h ! Good quality;
2h � sMean < 3h ! Middle quality;
sMean � 3h ! Bad quality:

ð10Þ

Mean curvature analysis results on the three used meshes
(Section 5.1) are compared in Table 4. First of all, we used the
entire mesh and a GMM (Section 3.2.2). Then, we used the
segmented mesh with its corresponding submeshes (Section 5.2).

Aerospace curvature distribution contains 3 Gaussian models
which are similar with a low standard deviation. After segmenta-
tion, we obtained a similar basic average, but with a better
weighted average, suggesting that there are large areas that are of a
high quality. Globally, this mesh has good qualities.

Moldy curvature distribution contains 2 Gaussian models which
are different with a low to middle standard deviations. After
segmentation, the averages are significantly better, suggesting that
distribution analysis on the entire submesh is not adapted. This
mesh has an average quality whereas most of its submeshes have a
very good quality.

Outlet curvature distribution contains 3 Gaussian models which
are different with two middle and a high standard deviations. After
segmentation, the averages are better, suggesting that distribution
analysis on the entire mesh is not the best approach. This mesh has
a high quality when evaluated on submeshes.

Globally, we can see through our results that curvature
distribution analysis on a segmented mesh is better than on the
entire mesh. Indeed, the submeshes have homogeneous curvature
values and so are consistent for noise evaluation. Although, the
entire mesh contains many primitives that are mixed in a unique
distribution. So, a model can approximate many primitives at the
same time. This leads to a degraded approximation and therefore a
degraded mesh quality evaluation.

The noise evaluation, associated with primitive type detection
after segmentation (Fig. 31), can give a quality coefficient
depending on the type.
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For example, we can compute the quality coefficient with:

if Plane : Qf ¼ SigmaMean;
if Sphere : Qf ¼ SigmaMean;
if Cylinder : Qf ¼ maxðSigmaMin; SigmaMaxÞ:

ð11Þ

Note that in this object, a submesh contains a torus with two
sheres. Our method detects the submesh as spherical, because the
minor radius of the torus equals one of the spheres. So, the
associated curvature values are similar. However, the major radius
leads to a small peak on the maximum curvature histogram, but
not significant enough to disturb the method (Fig. 32).

In the same way, we can detect submeshes with higher noise
than the others and have a better adaptation of our algorithms. To
illustrate this, the upper right plane in Fig. 33 has a slightly higher
noise than others for the minimum curvature distribution.

We can also use this to improve some processes. For example,
we can apply a recursion on segmentation with noise handling,
depending on the primitive type. Indeed, the interpretation of the
noise from a plane is slightly different than that from a cylinder or a
sphere. So, we can construct histograms with a different bin
number and kernel standard deviation, according to this noise.

5.5. Case study: quality control

The proposed approaches developed in this paper can be used
in many applications. In case of a process using reverse
engineering, we can, for example, control the quality of some
parts during a manufacturing process, as illustrated Fig. 34.

In fact, we can digitize separately each part of an object, then
analyze their curvature distributions, as presented in Section 3.
This allows us to segment the digitized meshes (Section 4.1) and
then extract the geometric primitives (Section 4.2). Finally, we can
measure distances between the primitives and the initial points
(Section 4.3), but also angles and distances between the different
primitives. We can thus quantify the quality of the manufactured
object, and eventually stop the manufacturing process if an
anomaly is detected, as illustrated Fig. 34.

Since our proposed methods are fast and automatic, this
process can be used in real time for control on a production line.

6. Conclusion

In this paper, we proposed a new digitized 3D mesh shape
analysis based on curvature analysis. Our proposed method is fast
and fully automated, which is an advantage for industrial
applications like reverse engineering for example. Our proposed
analysis first constructs a continuous normalized curvature
distribution, then searches for peak and valley positions and
values, and finally provides some statistics computed from the
curvature distribution.

Our histogram analysis leads to an automatic computation of
some parameters. So, it can be useful for a large number of
processes using many parameters, which often need to be fixed by
an expert.

We chose a reverse engineering process because it is a growing
research area, which becomes a hot topic for industrials. Indeed, it
is used in many applications since it allows to retrieve directly a
parametric model (and thus a CAD model if discretized) from a
digitized object. We can also measure object deviation for quality
control, reconstruct lost models, copy and understand how a
mechanical object works for example. Moreover, our proposed
applications can be a reliable base for primitive adjustments (like
beautification), assembly or symmetry analysis.

We applied our method on three fields: 3D mesh segmentation,
geometric primitive type detection and measurement of quality.
We showed that our proposed method is accurate and adapted to
many fields, through results on digitized 3D meshes from different
scanners.

For 3D mesh segmentation, curvature thresholds are computed
from the distribution to extract the object salient edges. Then, it is
possible to retrieve isolated regions corresponding to the object
primitives. The final submeshes are homogeneous, and each
submesh matches with only one primitive. It also provides
important information, like the primitive neighborhood through
edge connectivity. Our segmentation is fast and automatic.

For primitive extraction, the type of the primitive is deduced
from the distribution and then curvature tolerances are computed
to fully adapt them to each 3D mesh. Then, more primitives are
extracted and they are more accurate.

For quality measurement, statistics are computed in the first
instance on the entire mesh, and then on each submesh after
segmentation. These statistics, like standard deviation, quantify
the noise of a mesh or its submeshes, and so the mesh quality. This
quality measurement must be interpretated according to the
distribution construction parameters.

We show that our three applications can be associated to
improve results. These three fields show the extensibility and the
robustness of our method, which can be used with any distribution
to quickly and automatically adapt a method according to the input
data.

In future work, we will analyze more precisely our curvature
distribution construction parameters, like bin number or kernel
standard derivation, to improve computing accuracy. In the same
way, we will try to compute multiple primitive extraction
tolerances in the case of 3D meshes with more than one type of
primitive. We can also search for multi-resolution curvature
distributions.
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