
3D computer assisted craniofacial reconstruction: a brief (and non-exhaustive) overview

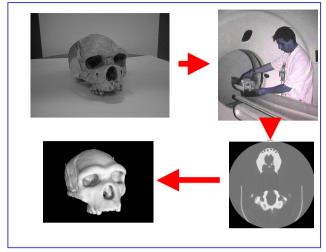
Image from http://www.csm.ornl.gov/viz/

Presented at a Round Table
16th Meeting of the
International Association of
Forensic Sciences,
Montpellier (France),
September 2002.

Gérard Subsol, Ph.D.

Senior Researcher in Computer Science
Lab. of Computer Science, University of Avignon - France
Lab. of Systems Theory, University of Perpignan - France

(part of this work was done at INRIA, Sophia Antipolis - France)


In collaboration with: Gérald Quatrehomme (Lab. of Forensic Medicine, University of Nice - France)

Bertrand Mafart (Lab. of Anthropology, University of Marseille - France)

The emergence of 3D computer assisted methods

• New devices allow to obtain **3D images** of a dry skull, a face surface or of a whole head non-invasively:

	Dry skull	Face surface	Whole head (skull & face)	Comments
CT-Scan	+++	++	+++	+ resolution up to 100µm - artifacts (metallic items) - radiation dose
MRI		++	++ face +/- skull	+ resolution up to 1mm - artifacts (chemical shift)
Laser scanning	++	+++		+ acquisition of texture - occlusions due to holes
3D US			++	+ useful for measurements

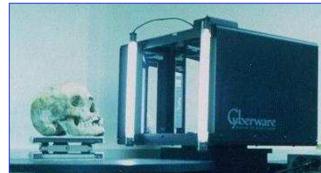
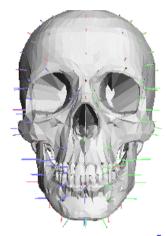
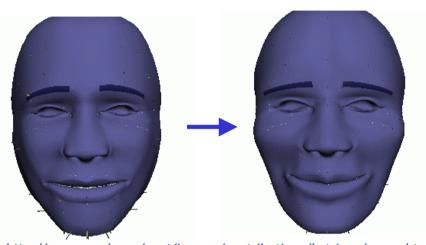


Image from http://www.shef.ac.uk/assem/1/evison.html

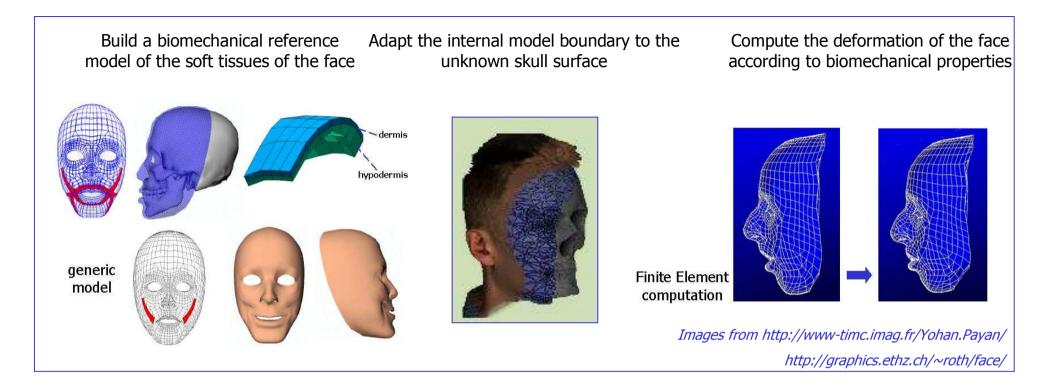

- Computer Aided Design and medical imaging software, computer graphics algorithms and virtual reality tools allow to interact with 3D images and surface representations.
- The results can be made available to the scientific community by Internet.
- University of Glasgow, UK: [Vanezis P., Blowes R., Linney A., Tan A., Richards R. & Neave R., Forensic Science International 1989]
- University of Sheffield, UK: [Tyrrell A., Evison, M., Chamberlain A. & Green M., Journal of Forensic Sciences 1997]
- Ufa State Aviation Technical University, Russia: [Ilyasov B., Galiulin R., Mugattarov M. & Tumashinov A., Int. Workshop on Computer Sciences and Information Technologies 2000]

(1) Computerizing the manual method


landmarks *S* are placed on the unknown skull

facial landmarks *F*positions are computed according to the positions of *S* and anthropological measurements

a reference 3D face surface is deformed in order that its facial landmarks fit the positions of $\it F$

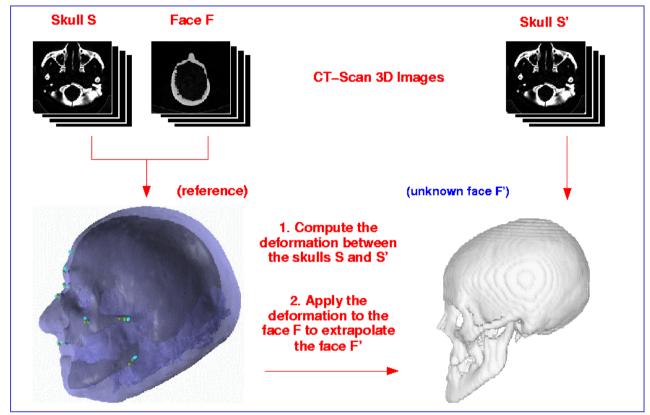


Images from http://www.cs.ubc.ca/nest/imager/contributions/katrinaa/recon.html

- University of British Columbia, Canada: [Archer K., Coughlan K., Forsey D., Struben S., *Graphics Interface* 1998]
- Oak Ridge National Laboratory, USA: [Uberbacher E., Mural R. & Mann R., Super Computing 1999]
- University of Glasgow, UK: [Vanezis P., Vanezis M., McCombe G. & Niblett T., Forensic Science International 2000]
- University of Koblenz-Landau, Germany: [Petrick M., Computer Graphics Seminar 2001]
- Polytechnical Institute of Havana, Cuba: [Plasencia J. Int. Conf. in Central Europe on Comp. Graphics, Visualization and Comp. Vision 1999]
- INRIA, Sophia Antipolis, France: [Delingette H., Subsol G., Cotin S. & Pignon J., Visualization in Biomedical Computing 1994]
 - ⇒ how to interpolate the face shape between the landmarks (bilinear, radial-based functions, B-spline, etc.)?
 - ⇒ the small number and the sparseness of landmarks limits the accuracy of the reconstruction
 - ⇒ requires to locate precisely manually some anatomical landmarks

Other methods have been investigated

(2) Introduction of a biomechanical model

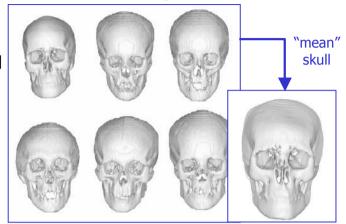

Research in craniofacial surgery:

- Federal Inst. of Tech. Zürich, Switzerland: [Koch R., Gross M., Carls, F., von Büren D., Fankhauser G. & Parish Y, SIGGRAPH 1996]
- Faculty of Medicine of Grenoble, France: [Chabanas M. & Payan Y., Medical Image Computing and Computer-Assisted Intervention 2000]

Is it possible to use such a model to reconstruct the face from an unknown skull?

- ⇒ extremely difficult to build a realistic biomechanical model for the whole face: several structures (muscles, epidermis, dermis, hypodermis) with physical behaviors that are not well defined
- ⇒ how to fit the model to the unknown skull (i.e. to find the structure locations and to adapt their material parameters)?
- ⇒ numerical resolution (e.g. Finite Element Method) can be highly time consuming

(3) Volume deformation of a reference model



- University of Nice & INRIA Sophia Antipolis, France: [Quatrehomme G., Cotin S., Subsol G., Delingette H., Garidel Y., Grevin G., Fidrich M., Bailet P. & Ollier A., Journal of Forensic Sciences 1997]
- **ZGDV Darmstadt, Germany:** [Hildebrand A. & Seibert F., *Computer Graphics topics* 1997]
- University of Wales Swansea, UK: [Nelson L. & Michael S., Forensic Science International 1998]
- University of Pisa, Italy: [Attardi G., Betrò M., Forte M., Gori R., Guidazzoli A., Imboden S. & Mallegni F., SIGGRAPH 1999]
- **GE Corporate R&D Center, USA:** [Tu P., Hartley R., Lorensen W., Allyassin M., Gupta R. & Heier L., *Scientific Meeting of the International Association for Craniofacial Identification* 2000]
 - ⇒ what type of mathematical function to take to obtain a smooth and accurate deformation?
 - ⇒ how to compute the deformation? Landmarks points are sparse. **3D image registration algorithms** allow to find automatically correspondences between the two skull images

A requirement: creating a significant reference model

The three presented methods require a database of measurements or of reference models to deal with the large intra-human variability.

- INRIA, Sophia Antipolis, France: [Subsol G., Ph.D. thesis 1995]
- University of Pennsylvania, USA: [DeCarlo D., Metaxas D. & Stone M., SIGGRAPH 1998]
- Case Western Reserve University, USA: [Dean D., Bookstein F., Koneru S., Kamath J., Luce E., Hans M., Goldberg J. & Cutting C., Journal of Craniofacial Surgery 1998]
- **GE Corporate R&D Center, USA:** [Tu P., Hartley R., Lorensen W., Allyassin M., Gupta R. & Heier L., *Scientific Meeting of the Int. Assoc. for Craniofacial Identification* 2000]
- University of Sheffield, UK: [Evison M., Forensic Science Communications 2001]

3D image processing and computer graphics tools allow:

- ⇒ to take 3D measurements all over the face in-vivo
- ⇒ to build an average model from a database of cases
- ⇒ to quantify and synthesize the variability ("principal warps Principal Component Analysis, etc.)
- ⇒ to classify the variability w.r.t. sex, ethnicity or corpulence

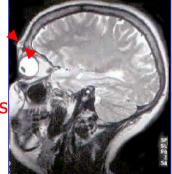
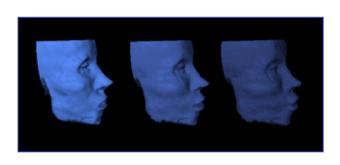
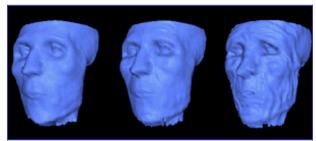
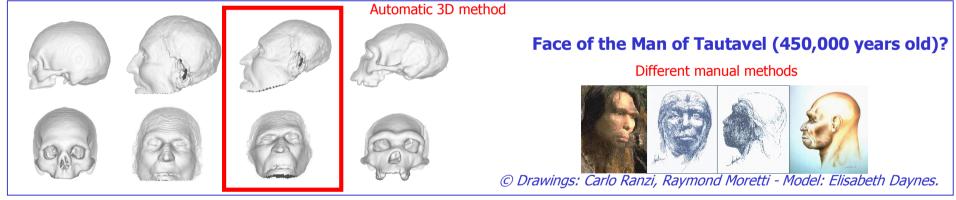
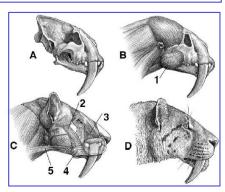




Image from http://www.fbi.gov/hq/lab/fsc/backi ssu/jan2002/sahni.htm


Images from http://forensic.shef.ac.uk/


Image from http://athos.rutgers.edu/~decarlo/

The future of computer assisted 3D facial reconstruction

- Validation of the computerized methods
- **Mixing different methods** (e.g. 1+3: finding the correspondences between the points of two skulls in order to propagate a reference 3D face)
 - University of Wales Swansea, UK: [Jones M.W., Modeling and Visualization 2001]
- Application in archeology and paleontology for museum presentations
 - Nagoya University, Japan: [Yasuda T., Yokoi S., Yoshida S. & Endo M., *Museums and the Web* 2002]
 - University of Nice & INRIA Sophia Antipolis, France: [Odin G., Quatrehomme G., Subsol G., Delingette H., Mafart B. & de Lumley M.A. XIV International Congress of Prehistoric and Protohistoric Science 2001]

- Application of these methods to reconstruct **non-human faces** (e.g. prehistoric animals)
 - National Museum of Natural Sciences, Spain & Liverpool University, UK: [Antón M., García-Perea R. & Turner A., Zoological Journal of the Linnean Society - 1998]

