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Abstract 

Geometric model reconstruction from a set of points 
is a difficult problem, which has been tackled with many 
different approaches. The reconstruction of the 
mechanical part is a necessity to visualize parts, simulate, 
assembly and detect interferences... The reconstruction of 
geometric entities (curves, edges, surfaces, faces) of these 
parts introduces particular difficulties. The most difficult 
problem to obtain the 3D geometric model from a cloud of 
points is the reconstruction of the faces. Many methods 
have been proposed to simplify the reconstruction of 
surfaces. There are two types of surface reconstruction: 
one of primitive shapes and the other of complex shapes 
like deformed mechanical parts and objects containing 
complex surfaces. In this paper, we present an algorithm 
to reconstruct the computer-aided design model from a 
deformed mesh. Then, we address a solution to reconstruct 
a 3D surface from a cloud of points extracted from a 
deformed mesh.  

1. Introduction 

The appearance of 3D scanning techniques such as the 
use of scanners in various fields is increasingly multiplied. 
These scanners are becoming a standard source for input 
data in many application areas, providing millions of 3D 
points. Consequently, the problem of reconstruction a 
CAD model from this point cloud is receiving more and 
more attention. This model is composed of many surfaces. 
So, to rebuild a CAD model, it is necessary to reconstruct 
its different surfaces. The CAD model is one of the most 
important models used throughout the product’s entire life 
cycle. It represents the geometric support used in many 
other activities (analysis, manufacturing, assembly, etc.). 
This model is used to visualize 3D objects that were 
scanned and approximate their shapes by mathematical 
formulations. As we can simulate, test and virtually 

validate products, we will have a model that is faithful to 
its real object and easy to manipulate and modify. This 
paper is organized as follows: first, a literature review 
covering the reconstruction of the CAD model from a set 
of points is presented. Next, the general algorithm to 
reconstruct the deformed CAD model is exposed. Then, 
the algorithms utilized to reconstruct these different types 
of surfaces are detailed, followed by an illustration of the 
results. Conclusions is presented at the end.   

2. State of the art 

Computer-aided design is the use of computer systems 
to create three-dimensional graphical representations of 
physical objects. The benefits of CAD include 
visualization of 3D objects that were scanned, simulation, 
testing and virtually validate products. 

A CAD model can be reconstructed from a mesh or 
from a set of 3D points. On the first hand, reconstruction 
of CAD model from a mesh, many researches has been 
developed to reconstruct this model. In [1], Volpin 
proposed a new method for mesh simplification and 
surface reconstruction. The method begins by simplifying 
the initial mesh model by first constructing restricted 
curvature deviation regions, generating a boundary 
conforming finite element quadrilateral mesh of the 
regions, and then fitting a smooth surface over the 
quadrilateral mesh using the plate energy method. After 
the construction of the quadratic mesh, Volpin provides 
continuity between the surfaces reconstructed from the 
regions. 

To refine the meshes, Ren [2] developed a remeshing 
algorithm to iteratively refine a given mesh to be closer to 
the actual shape of the meshed object. This method inserts 
a new node between two consecutive nodes of the old 
mesh respecting the type and form of the surface. This 
subdivision divides each triangle by four. Refinement 
methods are applied to the mesh to evaluate the 
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triangulation of 3D surfaces. These methods add and 
improve information for better reconstruction.  

In the same context as Ren, several methods have been 
presented for the approximation of a surface by successive 
subdivision of the corresponding mesh [3]. A new node is 
inserted between two successive nodes. So, each edge is 
divided into two and each triangle is divided into four 
triangles respecting the shape of the mesh object. Other 
methods have been based on different subdivisions known 
patterns to refine a mesh successively in order to obtain a 
smooth surface [4] [5]. 

To evaluate a surface from a mesh, many methods have 
been based on Bezier triangles. For example, Walton [6] 
proposed an evaluation algorithm of a Bezier surface from 
a triangle of a mesh. This algorithm was then improved by 
Owen [7]. This algorithm attributes for each node of the 
triangulation a vector which will be used then as the 
normal to the reconstructed surface. Subsequently, from 
the coordinates of the three vertices of the triangle and the 
three normal vectors on these vertices, other control points 
will be calculated.  

In [8], Beniere and al., have proposed a new method to 
reconstruct a boundary representation (B-Rep) model 
based on the extraction of geometric primitives from a 3D 
mesh to detect geometric primitive types of the mesh and 
to compute the parameters that give the best fit. To define 
the topology of the object, intersections between 
primitives should be calculated. 

Louhichi and al. [9] proposed a method to reconstruct 
a CAD model from a deformed mesh. This method 
consists of using the weighted displacement estimation 
(WDE) method to solve the problem of the inconstant 
density of information over the deformed surface and the 
un-organization of the set of points. The idea is to calculate 
the regular lattice of control points on the initial surface 
(before deformation). To update the position of the B-
spline surface lattice control points, the weighted 
displacement of each control point should be estimated. 
Using this lattice, we can compute the parameters of the 
B-spline surface and we reconstruct the deformed CAD 
face. 

On the other hand, reconstruction of CAD model from 
a point cloud, many methods have been proposed. The 
method of Ball-Pivoting (BPA) [10] computes a triangular 
mesh interpolating a given point cloud. Generally, the 
points are surface samples acquired with multiple range 
scans of object. The principle of BPA is very simple: 
Three points form a triangle if a ball of a user-specified 
radius ߩ touches them without containing any other point. 
Starting with a seed triangle, the ball pivots around an edge 
until it touches another point, forming another triangle. 
The process continues until all reachable edges have been 
tried, and then starts from another seed triangle, until all 
points have been considered.  

Also, the Poisson method [11] is one of the strongest 
methods in the domain of 3D surface reconstruction. It 
uses the Poisson equation to interpolate a set of oriented 
points. It computes the gradient of an indicator function ߯ 
which is a vector field equal to zero almost everywhere 
except at points near the surface, where it is equal to the 
inward surface normal. Thus, the oriented point samples 
can be viewed as samples of the gradient of the model’s 
indicator function which is defined as 1 at points inside the 
model, and 0 at points outside, and then the reconstructed 
surface is obtained by extracting an appropriate iso-
surface.  

In the context of B-Splines surfaces, many methods 
have supposed that the surface has a simple topological 
type. For example, Dietz [12], Hoschek and Schneider 
[13], Rogers and Fog [14] and Sarkar and Menq [15] 
assume that the surface is a deformed quadrilateral region 
with trimmed boundaries. In [16], Hoppe and al. have 
developed an algorithm that takes a set of unorganized 
points {ݔଵ, … ,  and ܯ ௡} of an unknown manifoldݔ
produces as output a simplicial surface that approximates ܯ. Neither the topology, the presence of boundaries, nor 
the geometry of ܯ are assumed to be known in advance, 
all are inferred automatically from the data.  

3. The general algorithm for 3D model 
reconstruction  

Inital 3D deformed model 

Identification of the nodes 
corresponding to each 

face

Reconstruction of surfaces 
using the LMA

Reconstruction of vertices, 
edges and contours to 

obtain faces

Deformed CAD 
model (BREP)

 
Figure 1: General algorithm of the reconstruction [9] 

In general, the reconstruction algorithm follows the 
hierarchy of the BREP model (see Figure 1). In a first step, 
it begins with the identification of the topology (the 
identification of triangulations - or the point cloud 
corresponding to the faces). After, the surfaces are 
determined from the previous information. In the third 
stage, contours are added to surfaces to obtain faces in 
order to reconstruct the deformed model. 

The third step, reconstruction of the surfaces from 3D 
points, is the most difficult step in this algorithm. In fact, 
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this problem has been investigated by various works. The 
surfaces have two types: simple classical entities which 
are described by mathematical formulas and can be 
modeled as perfectly as other complex objects. Among 
these primitives we mention: the plane, cylinder, cone, 
sphere, torus... or complex geometry entities (Bezier, B-
Spline, NURBS ...). We have chosen to use the Levenberg 
Marquardt algorithm to approximate geometric entities. 

4. Surface reconstruction 

To reconstruct a geometric primitive from a set of 3D 
points, the Levenberg Marquardt algorithm [17] is applied 
to minimize the objective function which is the sum of 
non-linear least squares problems.  The main idea of this 
algorithm is to find the vector ݌ which minimizes the 
following objective function: (݌)ܬ = ∑݀௜ଶ(݌), such as ݀௜ 
is the distance from the point ࢞࢏ to the geometry defined 
by the vector of parameters ݌. 

The algorithm requires an initial estimation and the first 
derivatives of the distance function. In the case of a sphere, 
for example, ݌ = (࢞, (ݎ = ,ݔ) ,ݕ ,ݖ  is the ݔ where ,(ݎ
center of the sphere and ݎ its radius. The distance equation ݀௜ = ݀௜(࢞࢏) = |࢞௜ − ࢞| −  and the objective function to ݎ
minimize is  ܬ(࢞, ࢘) = ∑(|࢞௜ − ࢞| −  .ଶ(ݎ

Derivatives of this objective function are defined as 
follows: ߲ݔ߲ܬ = −2෍݀௜(ݔ௜ − (ݔ |࢞௜ − ࢞|⁄ ݕ߲ܬ߲  = −2෍݀௜(ݕ௜ − (ݕ |࢞௜ − ࢞|⁄ ݖ߲ܬ߲  = −2෍݀௜(ݖ௜ − (ݖ |࢞௜ − ࢞|⁄ ݎ߲ܬ߲  = −2෍݀௜ 
And derivatives of the distance ݀௜ are: ߲݀௜߲ݔ = − ௜ݔ) − (ݔ |࢞௜ − ࢞|⁄  ߲݀௜߲ݕ = − ௜ݕ) − (ݕ |࢞௜ − ࢞|⁄  ߲݀௜߲ݖ = − ௜ݖ) − (ݖ |࢞௜ − ࢞|⁄  ߲݀௜߲ݎ = −1 

 

 
Figure 2: LM reconstruction of a sphere after 10 

iterations 

The literature has shown that it is a very reliable method 
which converges from the first iterations. The figure 

(Figure 2) represents an example of the reconstruction of 
a sphere although its initial parameters are so far off the 
exact parameters. 

The red points are 3D points to fit. The blue sphere is 
the sphere with parameter ݌ which is optimized at each 
iteration. After 10 iterations, the sphere passing through 
the 3D points is reconstructed. 

However, to fit a torus, the vector ݌ = (࢞, ,࡭ ,ݎ ܴ) ,ݔ)= ,ݕ ,ݖ ,ܣ ,ܤ ,ܥ ,ݎ ܴ), such as ࢞ is the center of the torus, ࡭ is the direction numbers of the torus axis, ݎ is the major 
radius and ܴ is the minor radius. The equation of the 

distance: ݀௜ = ݀௜(࢞࢏) = ඥ݃௜ଶ + ( ௜݂ − ଶ(ݎ − ܴ, where ௜݂ = ඥ|࢞௜ − ࢞|ଶ − ݃௜ଶ, ݃௜ = ࢏࢞)ࢇ	 − ࢞) and the objective 

function: ܬ(࢞, ,࡭ ,ݎ ܴ) = ∑ቂඥ݃௜ଶ + ( ௜݂ − ଶ(ݎ − ܴቃଶ 

In the case of a plane, ݌ = (࢞, (ࢇ = ,ݔ) ,ݕ ,ݖ ,ܣ ,ܤ  ,(ܥ
where ࢞ is a point on the plane and ࢇ is the direction 
cosines of the normal to the plane. The distance equation: ݀௜ = ݀௜(࢞࢏) = ,࢏࢞)݀ ࢞, ܽ) = ࢏࢞)ࢇ − ࢞) = ௜ݔ)ܽ − (ݔ ௜ݕ)ܾ+ − (ݕ + ௜ݖ)ܿ − ,࢞)ܬ and the objective function (ݖ (ࢇ = ∑݃௜ଶ = ∑ሾࢇ. ࢏࢞) − ࢞)ሿଶ. 

To fit a cylinder given its 3D points, the initial vector ݌ = (࢞, ,࡭ (ݎ = ,ݔ) ,ݕ ,ݖ ,ܣ ,ܤ ,ܥ  such as ࢞ is a point on ,(ݎ
the cylinder axis, ࡭ is the direction numbers axis and ݎ	is 
the radius of this cylinder. The distance equation ݀௜ =݀௜(࢞௜) = ௜݂ − where ௜݂ ,ݎ = ඥ|࢞௜ − ࢞|ଶ − ݃௜ଶ and	݃௜ ࢏࢞)ࢇ= − ࢞). The objective function ܬ(࢞, ,࡭ (ݎ = ∑( ௜݂ ࡭  ଶ. To calculate the initial cylinder axis(ݎ− = (A, B, C), 
the following inertia matrix which is symmetric should be 
calculated: ൭ܾଶ + ܿଶ −ܽ ∗ ܾ−ܽ ∗ ܾ ܽଶ + ܿଶ −ܽ ∗ ܿ−ܾ ∗ ܿ−ܽ ∗ ܿ −ܾ ∗ ܿ ܽଶ + ܾଶ൱ 

Then, the values of the eigenvectors of this symmetric 
matrix which return a matrix should be determined to find 
the initial axis (A = B	௫,࡭ = ௬࡭ ,	C =  ௭) which is its first࡭
colon. 

Levenberg Marquardt algorithm is an iterative method 
which interpolates between the Gauss–Newton algorithm 
and the method of gradient descent. Its advantage is to find 
a solution even if it starts very far off the final minimum. 
When the current solution is far from the best solution, the 
algorithm behaves like the gradient algorithm: slow, but 
guaranteed to converge. When the current solution is close 
to the correct solution, it becomes like the Gauss-Newton 
method. The solution ࢖∗ of each iteration can be expressed 
as follow: ࢖∗ = (ࣅ)࢖ = −൫ࡲ૙ࡲࢀ૙ +  as its ݅th (૙࢖)࢏ࢊ ૙ is the matrix having the gradient ofࡲ (૙࢖)ࢊࢀ૙ࡲ൯ି૚ࡰࢀࡰࣅ
row, ࡰ is an appropriate weighting matrix, ࢊ(࢖૙) is the 
vector of residuals ࢏ࢊ(࢖૙),  and ࣅ ≥ ૙ is a variable called 
the Levenberg Marquardt parameter. The matrix ࡲ૙ࡲࢀ૙  The .ࢂ is called (૙࢖)ࢊࢀ૙ࡲ and the vector ࡴ is named ࡰࢀࡰࣅ+
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p+1 p+1 

algorithm includes a modification suggested by Nash [18] 
which is to use a weighting matrix defined so that ࡰࢀࡰ is 
the identity matrix plus the diagonal of ࡲ૙ࡲࢀ૙. Nash’s use 
of the identity in the definition of ࡰ forces ࡴ to be positive 
definite. Since ࡴ is also symmetric, the system ࢞ࡴ = −࢜ 
can be reliably solved using the Cholesky decomposition 
[19]. Factors with which ࣅ is incremented and 
decremented respectively should be chosen. Also, the 
parameter vector, ࢖, must be normalized at every iteration. 

To reconstruct B-Spline curves and surfaces, the 
Levenberg Marquardt algorithm is applied to optimize the 
control points of each geometric entity. In the case of a B-
Spline curve, each point is defined using the following 
equation: S(u) = ෍ N୧,୩(ݑ௟)ܑܘ୑ାଵ

୧ୀ଴  

Given a set of points ࢒) ܔܙ = ૙,… , ࡸ + ૚), the objective 
is to find the curve that approximates these points. This 
curve interpolates the first and the last points ܙ૙ and ۺܙା૚ 
and it approximates the ࡸ points ܔܙ. This problem can be 
solved using the following least squares function: (݌)ܬ =෍൭෍ ௜ܰ,௞(ݑ௟)ܑܘ −ெ

௜ୀଵ ൱ଶ௅ܔܙ	
௟ୀଵ  

The goal is to find ܯ control points that will be 
optimized. That’s why, the differential of the objective 
function with respect to ܒܘ must be defined as below: 

(ܲ)ܬ∂
௝݌∂ = 2෍൭෍ ௜ܰ,௞(ݑ௟)ܑܘ −ெ

௜ୀଵ ൱௅ܔܙ	
௟ୀଵ ௝ܰ,௞(ݑ௟)					 	(݆ = 1,2,…  .(ܯ,

And the derivative of the distance ݀௜ is 
∂ௗ೔
∂௣ೕ = ௝ܰ,௞(ݑ௟). 

The algorithm requires the initialization of the degree 
of B-Spline curve and the control points that will be 
optimized in order to find the best control points that 
approximate the curve. 

B-Spline basis functions are automatically calculated 
using the degree of the curve, the number of control points 
and the parameters ࢛࢒ associated with each 3D point. At 
each iteration of the algorithm, new control points are 
calculated until the distance between the points of the B-
spline curve defined by these control points and the set of 
3D points is minimized.  

In the case of B-Spline surface which is defined with 
its degree, the values of the knot vectors and its control 
points, the objective is to approximate the surface defined 
on each point by the following equation [20]: ܵ(ݑ, (ݒ =෍෍ ௜ܰ,௣(ݑ) ௝ܰ,௤(ݒ) ௜ܲ,௝௠

௝ୀ଴
௡
௜ୀ଴ 	

The knot vectors ܷ and ܸ have respectively ݎ + 1 and ݏ + 1 nodes, where  ݎ = ݊ + ݌ + 1 and ݏ = ݉ + ݍ + 1. 

This surface is of ࢖ degree in the ࢛-direction and ࢗ-degree 
in the ࢜-direction, such as ࢛ and ࢜ are the location 
parameters that locate a point in the surface [21].  
Its node values must be in the interval [0,1]. So, the knot 

vectors should take the following form: ૙,… , ૙ < ା૚࢖࢛ < ⋯ < ࢔࢛ < ૚,… , ૚ 
 
The distance between two consecutive nodes of the 

subset ݑ௣ାଵ, … ,  ௡ for a uniform B-spline surface isݑ
identical and the vector is uniform where ݅ ∈ 	 ሾ݌ + 1, ݊ሿ. ௜ܰ,௣ and ௝ܰ,௤ are the B-Spline basis functions of degree ࢖ 
in the ࢛-direction and degree ࢗ in the ࢜-direction. These 
basis functions can be computed in a recursive way:     ௜ܰ,଴(ݑ) = ቄ1	݂݅	ݑ௜ ≤ u	 ≤ 							݁ݏ݅ݓݎℎ݁ݐ݋	௜ାଵ0ݑ	  

௜ܰ,௣(ݑ) = ݑ − ௜ା௣ݑ௜ݑ − ௜ݑ 	 . ௜ܰ,௣ିଵ(ݑ)+ ௜ା௣ାଵݑ − ௜ା௣ାଵݑݑ − ௜ାଵݑ 	 . ௜ܰା௣ାଵ,௣ିଵ(ݑ)	
The approximation of the surface is considered as an 

optimization problem which minimizes the distance 
between a point of the point cloud and the surface obtained 
by the initial control points. 

The problem of surface reconstruction is described by 
Weiss and al. in [22] as below:  

Given a set of points ࢘࢖ࡿ, for each point ࢘࢖, there exists 
a point on the surface defined by the parameters (࢛࢘, ࢜࢘). 
Using the sum of the least squares, the surface passing 
through these points can be approximated. 

Also in [23], Martin Aigner and Bert Jüttler, have 
explained that while the reconstruction of a surface from a 
set of points, certain distances between 3D points and the 
surface obtained by the initial control points should be 
minimized. These distances can be measured in different 
ways.  

The geometric distance from a given point 	࢘࢖ to the surface is given by this Euclidean distance: ݀ݎ = ݉݅݊ฮ൫ݎ݌ −  ൯ฮݎݒ,ݎݑݏ
The minimization of squares of the geometric distance 

leads to a least squares problem described as follows: (݌)ܬ = ෍݀௥ଶெ
௥ୀଵ  

Due to the nonlinearity, an iterative method must be 
used to solve this problem. This method starts with a base 
surface. After, it calculates - for each data point - the 
closest associated points. By substituting these points [24], 
a least squares problem for surface parameters is obtained 
and can be determined using optimization techniques. 
Also, in [25], Xiao-Diao and al. described the problem of 
finding the minimum distance between a point and a B-
Spline surface.  
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Given a set of points ࢒ࢗ and associated parameters (࢛࢒, ݈ with (࢒࢜ = 0,1, … ,  a B-Spline surface can be ,ܮ
reconstructed. Fist, the parameters (࢛࢒,  should be initialized. To attend this objective, a base ࢒ࢗ of each point (࢒࢜
surface formed by initial control points should be defined. 
Then by projecting the points on the base surface, the 
parameters associated to each point are obtained. This base 
surface is defined as the average plane of the 3D points, 
and its boundaries are defined using the maximum 
parameter in the ࢛-direction and the maximum parameter 
in the ࢜-direction. 

To reconstruct the surface passing through the 	࢒ࢗ points the following approximation method of least 
squares is used: 

(ࡼ)ܬ =෍ቌ෍෍ ௜ܰ,௞ೠ(ݑ௟) ௝ܰ,௞ೡ(ݒ௟)ࡼ௜,௝ − ௟ெࢗ
௝ୀ଴

ே
௜ୀ଴ ቍଶ௅

௟ୀ଴ → 		min 

ܰ) is a collection of : ࡼ  + 1) × ܯ) + 1) control points ݅ࡼ,݆. Mathematically, this is equivalent to solve (ܰ + 1) ܯ)× + 1) linear equations: ෍ቌ෍෍ ௜ܰ,௞ೠ(ݑ௟) ௝ܰ,௞ೡ(ݒ௟)ࡼ௜,௝ − ௟ெࢗ
௝ୀ଴

ே
௜ୀ଴ ቍ௅

௟ୀ଴ ௥ܰ,௞ೠ(ݑ௟) ௦ܰ,௞ೡ(ݒ௟) = 0	 
with	(ݎ = 0,… , ܰ; ݏ = 0,…  .(ܯ,

Alternatively, the system of the above linear equations 
can be written as follows: ෍෍෍ ௜ܰ,௞ೠ(ݑ௟) ௝ܰ,௞ೡ(ݒ௟)ெ

௝ୀ଴
ே
௜ୀ଴

௅
௟ୀ଴ ௥ܰ,௞ೠ(ݑ௟) ௦ܰ,௞ೡ(ݒ௟)ࡼ௜,௝ = 	෍ ௥ܰ,௞ೠ(ݑ௟) ௦ܰ,௞ೡ(ݒ௟)௅

௟ୀ଴  	௟ࢗ
with	(ݎ = 0,… , ܰ; ݏ = 0,…  .(ܯ,
As shown, the above system has four matrixes of 
manipulation and multiplication. It is difficult to set the 
final matrix on the basis of the above representation. 
However, if ࢗ௟ are randomly sampled, the approximation 
algorithm of least squares of the set of points can be solved 
by deriving a simple representation. In fact, it is clear that 
the B-Spline surface can be represented like a B-Spline 
curve. This surface contains (ܰ + 1)× ܯ) + 1) control 
points. 
By noting ܭ = (ܰ + 1)× ܯ) + 1) − 1, the following 
equation is obtained: ܵ(ݑ, (ݒ = ෍݌௞ܤ௞(ݑ, ௄(ݒ

௞ୀ଴  

 With ܤ௝× (ேାଵ)ା௜ = ௜ܰ(ݑ) ௝ܰ(ݒ). Consequently, the 
problem of least squares can be written as follows: (ࡼ)ܬ =෍൭෍࢖௞ܤ௞(ݑ௟, ௟)௄ݒ

௞ୀ଴ − ௟൱ଶ௅ࢗ
௟ୀ଴ → min ܤ: is a matrix of size (ܮ + 1)	× (K + 1) 

൮ܤ଴(ݑ଴, (଴ݒ ,଴ݑ)ଵܤ ,ଵݑ)଴ܤ(଴ݒ (ଵݒ ,ଵݑ)ଵܤ (ଵݒ ⋯ ,଴ݑ)௄ܤ …(଴ݒ ,ଵݑ)௄ܤ ⋮(ଵݒ ,௅ݑ)଴ܤ⋮ (௅ݒ ,௅ݑ)ଵܤ (௅ݒ ⋮ 																				… ,௅ݑ)௄ܤ  ௅)൲ݒ

Using the same principle as B-Spline curves, the 
derivative of the distance function on each point is: 

∂ௗ೔
∂௣ೕ = ,௟ݑ)௝ܤ  ௟) and the differential of the objectiveݒ

function with respect to ܒܘ is : 

(ܲ)ܬ∂
௝݌∂ = 2෍൭෍࢖௜ܤ௜(ݑ௟, ௟)௄ݒ

௜ୀ଴ − ௟൱௅ࢗ
௟ୀ଴ ,௟ݑ)௝ܤ ݆)						(௟ݒ = 0,1, … ,  .(ܭ

Finally, by applying the algorithm of Levenberg 
Marquardt which minimizes the objective function of the 
sum of this non-linear least squares problem, the 
approximated control points of the reconstructed surface 
are obtained.  ܵ(ݑ, (ݒ =෍෍ ௜ܰ,௣(ݑ) ௝ܰ,௤(ݒ) ௜ܲ,௝௠

௝ୀ଴
௡
௜ୀ଴  

5. Validation 

The proposed approach is developed by using 
Microsoft Visual Studio C++ 6.0 and Open Cascade which 
is an open source software development platform for 3D 
CAD.  

To evaluate the proposed method’s performance, 
many case studies are used. First, we present the results of 
reconstructing four geometric primitives by 
approximating the point cloud using the Levenberg 
Marquardt algorithm. Then, we present the results of the 
reconstruction of a B-Spline curve and two B-Spline 
surfaces. After that, the reconstruction of the complete 
CAD model of a deformed mechanical piece is presented.  

5.1. The reconstruction of geometric primitives    

(a) (b) (c) (d)

 
Figure 3: LM reconstruction of a sphere after 10 

iterations 

(a) Real sphere of radius 19.8; (b) Point cloud of 3D 
points; (c) approximation of the sphere; (d) 
Reconstructed sphere of radius 19.8 after 5 iterations. 

 Reconstruction of a real sphere of radius 19.8 cm 
(see Figure 3) 
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(a) (b) (c) (d)  
Figure 4: Reconstruction of a real cylinder after 2 

iterations 

(a) Real cylinder of radius 34, height 74 and axis 
(0,0,1); (b) point cloud of 3D scan; (c) 
Approximation of the cylinder ;(d) Reconstructed 
cylinder: radius 34, height 74, axis (0.2,0.4,1) 

 Reconstruction of a real cylinder of radius 34 cm, 
height 74 cm and axis (0.2,0.4,1) (see Figure 4) 

 

(a) (b) (c) (d)  
Figure 5: Reconstruction of torus after 5 iterations  

 
(a) Torus of minor radius 10 cm and major radius 30 

cm; (b) Point cloud of the torus; (c) 
approximation of the torus; (d) Reconstructed 
torus of major radius 30 and minor radius 10 

 Reconstruction of a torus of minor radius 10 cm 
and major radius 30 cm (see Figure 5) 

 

(a) (b) (c) (d)  
Figure 6: Reconstruction of a real plane after 2 

iterations 
(a) Real plane of axis (-0.1,-0.2,1) ; (b) Point cloud 

of the plane ; (c) approximation of the plane ; (d) 
Reconstructed plane from the point cloud of axis 
(-0.1,-0.2,1). 

 Reconstruction of a real plane using its 3D point 
cloud of axis (-0.1, -0.2, 1) (see Figure 6) 
 

5.2. The reconstruction of B-Spline curves and 
surfaces  

(a) (b) (c)

 
Figure 7: Optimization of control points of a B-Spline 

curve and two B-Spline surfaces 
 

(a) Approximated B-Spline curve of degree 3; (b) and (c) 
Approximated B-Splines surfaces of degree 2 

5.3. The reconstruction of mechanical parts   

Reconstruction of 
the CAD model

Reconstructed intial CAD model

Reconstructed deformed CAD model

Initial 3D model

Deformed 3D model

Point cloud of the initial 
model

Point cloud of the deformed
model

 
Figure 8: Reconstruction of a deformed mechanical 

part 

The objective of our researchers is to reconstruct the 
CAD model from the point cloud of deformed mechanical 
parts which are reconstructed of planar and cylindrical 
faces. After its deformation, these faces became of 
complex type and have been modelized using B-Spline 
form.  

The figure (Figure 8) presents a simple mechanical 
model containing 26 planar and cylindrical faces. These 
surfaces became complex B-Spline surfaces after their 
deformation. 

6. Conclusion 

In this paper, the iterative approximation method 
(LM) is used to reconstruct the CAD model specially 
deformed mechanical model. In the first, we have 
presented the method to reconstruct simple geometric 
primitives by defining the equation of the distance of each 
one. Then, we demonstrated the reconstruction of B-
Spline surface by adjusting the control points iteratively. 
In each iteration, the distance between the 3D scanned 
points and the points of the reconstructed surface is 
minimized. The convergence of this method from the first 
iterations shows its performance to reconstruct CAD 
models. 
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