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Abstract. Physicians often perform diagnoses based on the evolution of
lesions, tumors or anatomical structures through time. The objective of
this paper is to automatically detect regions with apparent local volume
variation with a vector field operator applied to the local displacement
field obtained after a non-rigid registration between successive temporal
images. In studying the information of apparent shrinking areas in the
direct and reverse displacement fields between images, we are able to
segment evolving lesions. Then we propose a method to segment lesions
in a whole temporal series of images. In this paper we apply this approach
to the automatic detection and segmentation of multiple sclerosis lesions
in time series of MRI images of the brain.

1 Introduction

1.1 Multiple Sclerosis Data

Multiple sclerosis is a progressive disease that requires an evolution study through
time. The evolution of the disease can be followed on a patient with a tempo-
ral series of examinations. A time series of 3D images of a patient is acquired
from the same modality and with a definite protocol to have similar properties:
similar histogram, field of view, voxel size, image size, etc. In this paper we use
two sets of multiple sclerosis time series composed of T2 weighted MRI images.
These two time series come from the Brigham and Women’s Hospital 1 and from
the BIOMORPH 2 European project. The data from the Brigham and Women’s
Hospital consist in 256 × 256 × 54 images, with a voxel size of 0.9 × 0.9 × 3.0
mm. The temporal interval between two images of the series is about one week.
The data from the BIOMORPH project consist in 256 × 256 × 24 images with
a voxel size of 0.9 × 0.9 × 5.0 mm. The temporal interval between two images of
the series is about four weeks.

1 Dr Guttman and Dr Kikinis
2 http://www.cs.unc.edu/̃styner/biomorph/biomorph.html

A. Kuba et al. (Eds.): IPMI’99, LNCS 1613, pp. 154–167, 1999.
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1.2 Quantitative Measurements

A quantitative analysis is required to give accurate and reproducible results, and
because the data are large. Between two examinations, a patient does not have
the same position in the acquisition device. Therefore images at different times
are not directly comparable. We have to apply a transformation to each image to
compensate for the difference in position (translation) and orientation (rotation).
Then we can compare the two images, and apply automatic computerized tools
to detect and quantify evolving processes There are several existing automatic
methods to study the lesions of multiple sclerosis in time series:

– With a single image, it is possible to threshold or to study the image intensity
to segment lesions [1]. Unfortunately, thresholding does not always make it
possible to distinguish the lesions from the white matter.

– It is possible to subtract two successive images to find areas where the le-
sions have changed. But this method has two major problems. First, the
subtraction is extremely dependent on the rigid registration [2], [3]. For in-
stance, we show in Fig. 13 an evolving lesion that appears in the image of
the subtraction as a dark hole. But when the registration is inaccurate, it is
hard to distinguish evolving lesions: the edges of the anatomical structures
appear (cortex, ventricles, etc.) and give the same apparent information as
the lesions. Secondly, the subtraction only characterizes the difference of in-
tensity between two images. The image of the subtraction does not give a
contrasted image with respect to the evolution ratio, but only with respect
to the difference between the intensity of the lesion and the intensity of the
background. For example we show in Fig. 1 that if we threshold the image
of the subtraction, only some parts of the evolving structures are detected.
Moreover the threshold value is not related to the amplitude of the evolu-
tions as can be seen in Fig. 1 where a series of threshold values is applied to
a synthesis example.

image 1 image 2 image2 - image 1 image2 - image 1 < -0.5 image2 - image 1 < -0.1 image2 - image 1 > 0.1 image2 - image 1 > 0.3

Fig. 1. Different threshold values applied to an image of subtraction. For each value,
only some parts of the evolving structures are detected. Moreover, the threshold value
is not related to the amplitude of the evolutions

– With n images, it is possible to follow the intensity of each voxel in time
[4]. Although very nice results are obtained with perfectly rigidly aligned,
the approach remains sensitive to the rigid registration, and there is no di-
rect relation between the amplitude of evolution and the variation of voxels
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Fig. 2. Method of detection and segmentation of evolving processes using the displace-
ment field

intensity. Moreover, this method does not take into account the spatial cor-
relation between neighboring voxels.

1.3 A New Method Based on the Displacement Field

Our idea is thus to avoid a voxel by voxel comparison and to use the “apparent”
motion between two images. Figure 2 shows the different stages of the automatic
processing and gives an overview of this paper. First, images are aligned by a rigid
registration. Then we compute the displacement field to recover the “apparent”
motion between images with a non-rigid registration algorithm. We focus on the
detection of the regions of interest of the field thanks to vector field operators,
and use them to segment evolving lesions. This work is a natural continuation
of the previous research work of Thirion and Calmon [5].

2 Computation of the Displacement Field

2.1 Rigid Registration

First we compute a rigid registration with an algorithm which matches “ex-
tremal” points defined as the maxima of the crest lines of the images [6]. Fea-
ture points called “extremal” points are automatically extracted from the 3D
image. They are defined as the loci of curvature extrema along the “crest lines”
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image 1 image 2 displacement field (zoom)

Fig. 3. An example of the computation of the “apparent” displacement field thanks to
a non-rigid registration algorithm. Notice how it emphasizes the shrinking lesion

of the isosurface corresponding to the zero-crossing of the Laplacian of the im-
age. Based on those stable points, a two-step registration algorithm computes a
rigid transformation. The first step called “prediction” looks for triplets of points
from the two sets which can be put into correspondence with respect to their
invariant attributes. The second step called “verification” checks whether the
3D rigid transformation computed from the two corresponding triplets is valid
for all the other points. A study of the accuracy of this algorithm, especially for
aligning MS data, can be found in [7].

2.2 Non-rigid Registration

We compute the 3D displacement field with a non-rigid algorithm based on
local diffusion [8]. This algorithm diffuses the first image into the second one.
Each point of the second image “attracts” or “repels” the point that has the
same coordinates as the first image according to their difference of intensity.
All these forces are regularized and deform the second image. The process is
iterated based on a multi-scale scheme. At the end, each point P (x, y, z)T of
the reference image has a vector u(u1(P ), u2(P ), u3(P )) that gives its apparent
displacement (cf Fig. 3). We can also define the deformation which is a
function Φ(Φ1(P ), Φ2(P ), Φ3(P )) that transforms the point P (x, y, z)T into the
point P ′(x′, y′, z′)T . We have thus:




x′ = x + u1(x, y, z) = Φ1(x, y, z)
y′ = y + u2(x, y, z) = Φ2(x, y, z)
z′ = z + u3(x, y, z) = Φ3(x, y, z)

This apparent displacement field u gives an idea of the time evolution between
two images. We can compute the two fields: from image 1 to image 2, and from
image 2 to image 1, which contain complementary information as we will see in
section 4.1. Figure 3 shows the vector field from 1 to 2 around a lesion, emphasiz-
ing a radial shrinking. The vector field operators should transform a 3D vector
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Fig. 4. u(P ) is the apparent displacement of P at time 1. P ′ = P +u(P ) is the apparent
location of P at time 2. The Jacobian of the apparent deformation measures the local
volume variation δV ′

δV
(see text)

field in a simpler representation that is a 3D scalar image. This scalar image
should be contrasted with respect to the time evolutions. Moreover we need to
introduce operators that have a physical meaning for a better interpretation.

3 The Jacobian Operator

3.1 Mathematical Expression and Physical Meaning

We introduce as an operator the Jacobian of the deformation function at point
P, as suggested from [9]: Φ(Φ1(P ), Φ2(P ), Φ3(P )). This operator is widely used
in continuum mechanics [10] [11]. The Jacobian of Φ at point P is defined as:

Jacobian = det(∇pΦ) =

∣∣∣∣∣∣∣

∂Φ1
∂x

∂Φ1
∂y

∂Φ1
∂z

∂Φ2
∂x

∂Φ2
∂y

∂Φ2
∂z

∂Φ3
∂x

∂Φ3
∂y

∂Φ3
∂z

∣∣∣∣∣∣∣
.

It can also be written with the vector displacement field u(u1, u2, u3) at P:

det(∇pΦ) = det(Id + ∇pu) =

∣∣∣∣∣∣∣

∂u1
∂x + 1 ∂u1

∂y
∂u1
∂z

∂u2
∂x

∂u2
∂y + 1 ∂u2

∂z
∂u3
∂x

∂u3
∂y

∂u3
∂z + 1

∣∣∣∣∣∣∣
.

It is useful to recall a physical interpretation of the Jacobian operator in terms of
local variation of volume. With the notations of the Fig. 4, u(P ) is the apparent
displacement of P at time 1. P ′ = P + u(P ) is the apparent location of P at
time 2. The volume δV of the elementary tetrahedron defined by (P, P +δx, P +
δy, P + δz) is given by:

δV = 1
6

∣∣∣∣∣∣∣∣

1 1 1 1
x x + δx x x
y y y + δy y
z z z z + δz

∣∣∣∣∣∣∣∣
= 1

6

∣∣∣∣∣∣∣∣

1 1 1 1
0 δx 0 0
0 0 δy 0
0 0 0 δz

∣∣∣∣∣∣∣∣
= 1

6δxδyδz.

As we assume that δx is small, a first order approximation of the deformation
Φ in P is given by Φ(P + δx) = Φ(P ) + ∂Φ

∂x δx + o(δx2). We have the same
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approximation in y and z directions. Thus the volume δV ′ of the deformed
elementary tetrahedron is:

δV ′ ' 1
6

∣∣∣∣∣∣∣∣∣

1 1 1 1
0 ∂Φ1

∂x δx ∂Φ1
∂y δy ∂Φ1

∂z δz

0 ∂Φ2
∂x δx ∂Φ2

∂y δy ∂Φ2
∂z δz

0 ∂Φ3
∂x δx ∂Φ3

∂y δy ∂Φ3
∂z δz

∣∣∣∣∣∣∣∣∣
= 1

6Jacp(Φ)δxδyδz.

Therefore:

δV ′ ' Jacp (Φ) · δV.

Thus, the local variation δV ′
δV of an elementary volume is given (as a first order

approximation) by the Jacobian of the deformation function Φ. When Jacp(Φ) >
1 there is a local expansion at point P, and when Jacp (Φ) < 1 there is a local
shrinking at point P. The transformation is locally preserving the volume when
Jacp (Φ) = 1.

3.2 Robustness of the Jacobian with Respect to Misalignment

Figure 5 shows what happens when two images are not perfectly aligned: the
deformation function Ψ , which is measured, is different from the ideal one Φ.
The misregistration is given by a residual rotation R and translation t. We have
Ψ = R ◦ Φ + t.

image 2image 1

ψ

Φ

(R,t) -> misregistration

Φ

ψ

x

Y’ =    (x) = Ro    (x) + t

Y =    (x)

Φ

Fig. 5. Φ is the deformation function for a perfect rigid registration, and Ψ is the
deformation function when there is a misregistration (R,t). We have Ψ = R ◦ Φ + t

Then we have:

Jac (Ψ) = det(∇Ψ) = det(∇(R ◦ Φ + t)) = det(R · ∇Φ) = Jac (Φ).

Therefore the Jacobian of the theoretical deformation function (for a perfect
rigid registration) is equal to the Jacobian of a measured deformation function
(whatever the misregistration). Of course this requires that, even in the case of
an approximate alignment of images, the non-rigid registration still computes a
correct displacement field. In our case the rigid registration is performed because
our non-rigid registration algorithm requires a proper initial alignment to give a
good result. Nevertheless, the rigid registration does not have to be as accurate
as for the subtraction method where a precision better than or equal to one voxel
is required.
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3.3 Computation and Application of the Jacobian

We have seen that the computation of the Jacobian of the deformation Φ can
be performed directly with the displacement field u. We need to compute the
first 9 derivatives of the displacement field u: ∂ux

∂x , ∂ux

∂y , ∂ux

∂z , . . . , ∂uz

∂z . For a faster
computation we use recursive filtering that gives an image for each derivative.
Then, we need to store in memory the 9 derivatives to compute the Jacobian and
for an image of 256 × 256 × 180 this requires about 425M-bytes of memory. So
to avoid overfilling the memory space we compute the Jacobian on sub-images
and then we fuse the different sub-results which include an overlapping border
to avoid side effects.

The Jacobian gives a contrasted image with respect to the evolution am-
plitude. The most contrasted areas tend to correspond to shrinking or growing
lesions. In Fig. 6 we see that an important shrinking of a lesion between two
images gives a dark region in the Jacobian image. On other areas, the value is
almost constant and very close to 1, which indicates no apparent variation of
volume. A zoom around a lesion shows that darker areas correspond to shrinking
lesions.

Fig. 6. Application of the Jacobian: we can see a lesion that shrinks
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3.4 Other Operators

Calmon and Thirion have developed another vector field operator based on the
divergence and the norm of the displacement field u [12] [13]:

norm · div(P ) = ‖u(P )‖div u(P ) = ‖u(P )‖(
∂u1

∂x
+

∂u2

∂y
+

∂u3

∂z
).

This operator has no simple physical meaning even if the sign of the operator
gives information about shrinking (negative values) or expansion (positive val-
ues). As we have no physical interpretation of the value, it is difficult to threshold
the image automatically in order to extract the regions of interest.

Prima et al. proposed another operator which gives the local variation of
volume [14]. A cell of voxels of volume is V1 is deformed to a complex polyhedron
which volume V2 is computed. Then V 2−V 1

V 1 is calculated. Note that another
algorithm to compute V2 is given in [15]. This operator is directly related to the
Jacobian:

V2 − V1

V1
=

V2

V1
− 1 ' Jac − 1.

Figure 7 shows the application of these three operators on the same dis-
placement field. In particular we can notice how the Jacobian and the discrete
computation of the relative variation of volume are similar. The advantage of
our approach is that it provides a continuous framework for a computation of
the Jacobian at any scale.

(a) (b) (c)

Fig. 7. Comparison between different existing operators. (a): ‖u‖div u. (b): discrete
computation of V2−V1

V1
∼ (Jac (Φ) − 1). (c): Jacobian
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4 Results

4.1 Thresholding and Segmentation

We can extract the areas that correspond to a significant time evolution. It is
possible to find a uniform threshold over the whole Jacobian image relying on its
physical interpretation in terms of local variation of volume. We chose an empiric
threshold of 0.3 for significant shrinking. An example in Fig. 8 shows that it gives
a good segmentation of a shrinking lesion. correspond to shrinking lesions. In

Fig. 8. The threshold det(∇Φ) < 0.3 makes it possible to segment shrinking lesions

fact, we are going to focus only on the shrinking areas. We can see in Fig. 9 that
a better description is provided with the shrinking field. If there is an important
expansion locally between images 1 and 2, we would need a one to many mapping
due to limited resolution of the image. To avoid this, we consider only shrinking
regions from 1 to 2, and then shrinking regions from 2 to 1. By thresholding
shrinking areas we obtain the segmentations s1→2 in the first image, and s2→1
in the second image. Then we have to combine those two information: the whole
segmentations in image 1 and 2 are given by S12(t1) = [s1→2] ∪ [u2→1(s2→1)],
and S12(t2) = [s2→1] ∪ [u1→2(s1→2)]. Figures 10 show automatic segmentation
results obtained at two times.

With the fields between images 1 and 2 and between images 2 and 3, we can
compute segmentations S12 in the images 1 and 2 and S23 in the images 2 and
3. Then we propagate the segmentations S12 and S23 respectively to times t3
and t1, thanks to the vector fields u21 and u23. Then by addition, we obtain a
segmentation of the lesions in all the images of a series ([16]). In Fig. 11, we can
see the result of this method on three successive instances.

4.2 Study on a Synthetic Example

We have created two images I1 and I2, by including two artificial evolving 3-
D lesions into the same 3-D T2 weighted image of a brain without lesions. The
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field from 2 to 1 (shrinking)

evolving lesion or anatomical structure

field from 1 to 2 (expansion)

Fig. 9. The information is richer when we look at the shrinking field. Left: If there is
a large expansion, the direct displacement field cannot express that one voxel should
deform to several voxels. We would need a one to many mapping due to limited res-
olution of the image. Right: Thanks to the reverse field, a better description of the
phenomenon is possible

Fig. 10. Segmentation of evolving lesions. Left: Brigham & Women’s Hospital data.
Right: BIOMORPH data

artificial lesions are represented by spheres of radius respectively 10mm and 4mm
in I1, and 6mm and 8mm in I2 (Fig. 12a). Because the global rigid registration
of I1 and I2 is the identity in this case, we have only applied the non-rigid reg-
istration algorithm to compute the direct and reverse local displacement field
everywhere. We have then applied our method to extract the boundary of evolv-
ing regions, with Jac(Φ) < 0.3. Results on Fig. 12c show that the evolving
regions are correctly detected. The accuracy of the delimitation of the boundary
is qualitatively correct, but we observed a difference between 5 and 20 percent
between the correct diameter of lesions and the measured one.

4.3 Robustness with Respect to Imperfect Rigid Registration

From the previous example, we also created an image I ′
2 by translating I2 by 3

voxels in one direction. As expected, our method provides similar results when
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Fig. 11. Thanks to the segmentation of the evolutions between times 1 and 2, and
between times 2 and 3, it is possible to visualize the lesions evolution between the 3
successive acquisitions

applied to I1 and I ′
2 (Fig. 12e) , while a simple difference yields very noisy results

(Fig. 12d).
We also considered the application of our method between two real T2

weighted MR image, Im1 and Im2 (same 3D images as the ones presented in Fig.
3). When Im1 and Im2 are perfectly rigidly registered, our method produces
the segmentation of an evolving lesion in the cross-section shown in Fig. 13b,
which can be compared to a simple difference analysis between the registered
images (Fig. 13a). We also created an image Im′

2 by adding a misalignment to I2
corresponding to a rotation of 1 degree around an axis orthogonal to this cross-
section and passing through its center, plus a translation of 1 voxel in the two
directions of the plane of this cross-section. We observe that the results provided
by our method (Fig. 13c) remain similar to the results of Fig. 13b, whereas a
simple difference now produces very noisy results (Fig. 13d).

5 Conclusion

In this article we proposed a new method to study multiple sclerosis lesions evo-
lution through time based on the apparent displacement field between images.
We believe that our approach will be useful to detect evolving regions corre-
sponding to local apparent expansion or shrinking. As this method is robust
with respect to imperfect rigid alignment, we plan to use it in combination with
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Fig. 12. (a): two synthetic temporal images I1 and I2. (b): the Jacobian image of the
field from I1 to I2 and I2 to I1. (c): automatic segmentation of evolving lesions in I1

and I2 using Jac(Φ) < 0.3. (d): I2 − I1 on the left. On the right I ′
2 − I1 where I ′

2 is a
translated version of I2. (e): automatic segmentation of evolving lesions in I1 and I ′

2,
which shows robustness to imperfect rigid registration of images

other segmentation algorithms in order to delineate more precisely the bound-
ary of the lesions in temporal sequences. Then we will compare our results with
manual and other automatic segmentation results [17]. This will be done within
the BIOMORPH project. Finally we plan to apply our approach to study the
“mass effect” by quantifying the evolution of anatomical structures such as the
cerebral ventricles or the interface between grey matter and white matter.
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