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Abstract

We consider the problem of aligning histological sections for 3D reconstruction and analysis. The method we propose is based on a block-
matching strategy that allows us to compute local displacements between the sections. We then collect these local measures to estimate a
rigid transformation. Our emphasis is on the necessity to use a robust approach for this estimation step. The process is integrated within a
multi-scale scheme to improve both accuracy and computation time. We prove experimentally that we can reach sub-pixel accuracy and we
show some results of aligning histological sections from a rat’s brain and a rhesus monkey’s brain.q 2001 Elsevier Science B.V. All rights
reserved.
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1. Introduction

1.1. Presentation of the problem

Histological sections provide useful information for the
diagnosis or the study of a pathology. To obtain histological
sections, the anatomical structure is first fixed using paraffin
embedding or by cryogenization. Then it is trimmed into
thin sections with a constant inter-section gap. The micro-
scopic images are then scanned using a digital camera. Very
often, the acquisition is performed independently for each
section and the alignment is lost as we can see in Fig. 1.
Hence, in order to perform a 3D reconstruction of the anato-
mical structure, we need to register the sections to recover
the original alignment.

The 3D reconstruction from serial sections may lead to
numerous applications at both the microscopic and the
macroscopic levels. At the microscopic level, which corre-
sponds to a magnification greater than 100, the 3D recon-
struction study allows one to define new and more accurate
histological and cytological parameters, such as the tumoral
angiogenis in oncology, the fibrosis development in hepati-
tis, the cellular distortions in prion diseases and, more
generally, to quantify many physiological and pathological
phenomena. At the macroscopic level, the 3D reconstruc-
tion study allows one to study objects that are too small to be

accurately dissected and too large to be analyzed based only
on the 2D slices.

With average quality data, which can be obtained in
current laboratories, different problems can arise. When
laying the sample on the cover-glass, some spots can appear
and the edges of the cover-glass can be within the field of
view of the camera (as in the example of Fig. 1). All this can
create many artifacts in the background. The intensity
contrast can be different from one slice to another (e.g.
due to staining), and changes in the lighting can occur
during the digitalization. Moreover, during sectioning, the
edges of the sections can be distorted or even torn and, more
generally, the whole section can be deformed. Nevertheless,
we will assume in the following that the distortions remain
small enough to consider the transformation between two
consecutive sections as being rigid.

Different methods have been proposed in the literature to
align histological sections. The most common one is the
manual registration using interactive operator alignment
[6,15,26]. It is a non-reproducible method because it is
user-dependent and it could depend on the structure the
user wants to focus on. Moreover, it is a tremendous task
and it cannot be used when the number of sections is large.

Other methods are based on fiducial markers. Useful
markers can be obtained by sticking needles in the structure
before cutting [9]. Nevertheless, the resulting tracks may be
unreliable if the cutting planes are not perfectly orthogonal
to the needles. Moreover, creating such tracks can destroy a
part of the structure and then impede any post-mortem
diagnosis.
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Features automatically extracted from the images have
also been used to drive registration. A classical method
consists of segmenting the anatomical structure in two
successive sections, and then computing the principal-axes
transformation (PAT) [1,10]. Schormann and Zilles argue in
Ref. [28] that the precision of this method remains very
limited. Much-improved results are obtained by matching
contours [4,34], edges [12,13], or points [23].

Finally, intensity-based methods were also proposed in
the context of section registration. These methods search for
the transformation that maximizes a measure of the similar-
ity in intensity between corresponding pixels. Some authors
have used the correlation coefficient as a similarity measure
[2,10], while others have used mutual information [14].

To our knowledge, there is no quantitative comparison
between these approaches. This would be an interesting
future work, although this is far beyond the scope of this
article, in which we concentrate on a new, robust, intensity-
based approach.

1.2. Motivation

A particular difficulty of section registration is that the
structures represented in two successive slices are not
perfectly equivalent from an anatomical point of view.
Severe morphological differences may be observed if the
inter-slice gap is large, as can be seen in Fig. 2.

Our method does not assume that two consecutive
sections are anatomically equivalent. It only assumes local
similarities and tries to find the rigid transformation that
matches a maximum of similar regions. Local displace-
ments between two sections are first computed using a
block-matching strategy [11]. The rigid transformation is
then estimated from these matches as the solution of a

robust regression problem. Robustness is a key point
because we want the transformation to be governed by the
majority of matches instead of being averaged over all the
displacements. This process is iterated within a multi-scale
scheme to deal with large displacements and to obtain accu-
rate results.

We detail the different steps of the algorithm in Section 2.
In Section 3, we analyze its accuracy and robustness quan-
titatively, with respect to the relative displacement of two
sections. Section 4 presents the results of reconstructing a
rat’s brain and a Rhesus monkey’s brain. Finally, we
propose several research tracks for future work in Section 5.

2. Algorithm

The algorithm takes as input two section images: a refer-
ence imageI1 and a floating imageI2 with the same dimen-
sionsX × Y: The output will be the transformationT and the
image I � I2+T21

; which is aligned withI1. The whole
process follows from a multi-scale iterative scheme
where, at each stage, two successive tasks are performed.
The first is computing a displacement field betweenI1 and
the current floating imageI; this is done through a block-
matching strategy. The second is gathering these displace-
ments to estimate a rigid transformationS. Updating the
current transformation according toT ← S+T; we get the
new floating imageI by resampling only once the image
I2 in terms of the newT. Then, the scheme parameters are
modified and the process is iterated.

2.1. The block-matching step

Block-matching techniques, which were previously
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Fig. 1. Three consecutive stained rat’s brain histological sections. We can see how they are misaligned.

Fig. 2. Three consecutive sections from a rat’s brain dataset as an illustration of morphological changes from one section to another. The inter-slice gap is
0.4 mm.



developed for video compression [11], have inspired several
algorithms in image registration [5,8]. The basic principle is
to move a blockB 0 of the floating image in its neighborhood
and to compare it to the blocksB that have similar positions
in the reference image. The best corresponding blockB
allows one to define a vector between the centers of the
blocksB andB 0.

The block-matching algorithm involves three parameters:
the sizeN of the blocks (each block containsN × N pixels),
the half-widthV of the neighborhood which is searched,
and the spacingD1 between two consecutive blocksB 0 to be
displaced. For each blockB 0, 4V 2 neighboring blocks have
to be tested, which may be computationally expensive.
Hence, we generally sub-sample the authorized displace-
ments of a block according to a stepD2. This results in
the following algorithm, where the coordinates�i; j� of a
block are taken as its left upper corner.

• For �i � 0; i # X 2 N; i � i 1 D1�
• For �j � 0; j # Y 2 N; j � j 1 D1�
• Consider the blockB 0ij in imageI:

◦ For �k � i 2 V; k # i 1 V; k � k 1 D2�
◦ For �l � j 2 V; l # j 1 V; l � l 1 D2�
◦ Compute the valueCkl

ij of a given similarity measure
betweenB 0ij and the blockBkl in I1.

• Let Bmn� arg maxCkl
ij be the block that maximizes the

similarity measure. It defines the displacement vector
between�i 1 N=2; j 1 N=2� and�m1 N=2; n 1 N=2�:

One important feature of the block-matching process is
the choice of the similarity measure. As discussed in Refs.
[24,32], it should depend on the expected relationship
between the intensities of corresponding pixels of two
successive sections. In the case of histological sections, it
is reasonable to assume that this relationship is affine within
a block (locally affine). Hence, the similarity between two
blocks can be measured using the correlation coefficient
[3,22]:
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where �ı�a;b� ands I �a;b� ��ı1�u;v� andsI1
�u; v�� are the mean

and standard deviation, respectively, of the blockBab �B 0uv�:
In our block-matching experience, the main problem

when using a similarity measure is that the blocks are not
always comparable. This may occur due to morphological
differences between the sections, background artifacts, or
simply because the displaced block is almost uniform.
This leads to a certain number of bad matches: in our experi-
ments, typically 20% of the displacement vectors are due to
outliers.

This problem can be partially alleviated by constraining

the authorized displacements to privileged directions, as is
classically done in optical flow formulations [8,31]. In doing
so, however, we may remove too much information on the
actual motion we want to measure. Instead, we propose to
keep the displacement field as is and to estimate the global
rigid transformation using a robust approach.

2.2. Computing a robust estimate of the rigid transformation

The block-matching step provides a list of corresponding
2D points, xk and yk: Assuming that there exists a rigid
transformation between the sections, the problem is to esti-
mate a two-by-two rotation matrixRand a translation vector
t � �t1; t2� that characterize the inter-section displacement.
A standard approach to solving such a problem is to perform
a least squares (LS) regression on the matched points:

�R̂; t̂� � arg min
R;t

X
k

irki2
; �2�

where rk � yk 2 Rxk 2 t are the residual errors andi i
denotes the Euclidean norm.

The main advantages of the LS estimator are that the
solution is unique and is quickly computed. Several closed
forms are discussed in Ref. [7]. However, LS is known to
have poor robustness properties [25], in the sense that its
solution is sensitive to outliers. In our experiments, the LS
estimate is generally inaccurate.

A number of robust estimation techniques have been
investigated in the literature of point matching [33],
among whichM-estimators appear to be the most straight-
forward alternative to LS. TheM-estimators generalize LS
by replacing the squared residualsirki2 in Eq. (2) with
another function, yielding:

�R̂; t̂� � arg min
R;t

X
k

r�irki�; �3�

where r is a symmetric, positive-valued function with a
unique minimum at zero. The basic principle is to reduce
the influence of outliers by choosing a slowly increasingr-
function. One usually distinguishes between two classes of
M-estimators depending on whetherr is convex or not.
AlthoughM-estimators from the latter class tend to be less
sensitive to large errors, the uniqueness of the solution is
guaranteed only for convexr-functions [16].

In our particular case, we do not expect large errors since
the yk points as well as thexk points have bounded norms.
We have thus chosen a convexM-estimator, namely theL1

estimator that corresponds to the simple functionr�x� � uxu:
Unlike in the LS estimation, only a numerical solution can
be obtained. To do so, we use Powell’s method [19], which
does not manipulate the derivatives of the criterion to be
minimized.

We note that other candidates such as the Huber or “Fair”
estimators are theoretically more efficient thanL1 [25]. The
main advantage ofL1 over thoseM-estimators is that it does
not require estimating a scale parameter beforehand. After
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computing theL1 estimate, however, we may compute
such a scale parameter and refine the solution using another
M-estimator. In practice, we did not observe significant
improvement over theL1 solution and thus we decided to
suppress the refinement step.

Another observation is that our results were often slightly
improved when replacing the Euclidean norm of the resi-
duals in Eq. (3) with their 1-norm (or Manhattan distance),
i.e. irki1 � urk1u 1 urk2u; where�rk1; rk2� are the components
of rk in the coordinate system of the reference section. This
might sound surprising since choosing the 1-norm causes
the solution to be dependent upon the particular coordinate
system in which the points�xk; yk� are given. On the other
hand, the block-matching algorithm is itself coordinate-
dependent and, thus, there is no reason why the estimated
transformation should not be so.

The implementation of this coordinate-wiseL1 estimator
using Powell’s method yields the same computation time as
for the conventionalL1 estimator. This is actually the default
estimation method that is used in our implementation.

2.3. Multi-scale implementation

To obtain a precise displacement field, we should choose
low values forD1 andD2. On the other hand, the complexity

of the block-matching process is proportional to�N2V 2�=
�D2

1D
2
2� [20]. We propose a multi-resolution method to

achieve a good trade-off between accuracy and complexity.
We start at a coarse scale with large values forN,V ,D1, and
D2. We then progressively refine the scale by decreasing
these parameters. In this manner, we find large but inaccu-
rate displacements at the higher level, and smaller but more
accurate ones as the scale decreases. The parameters of the
algorithm are initialized according to the image size. Our
usual choice is:

N � min
X;Y

8

� �
; V � N; D1 � N

4
; D2 � 4:

At each iteration, we compute a variation measured
between the new transformationS+T and the previous one,
T. Let P1–P4 be the four corners of the floating imageI2:

d � 1
4

X4
i�1

iS+T�Pi�2 T�Pi�i2
: �4�

The decision rule for changing the scale is to compared to a
given thresholde . If d . e; we iterate at the same scale;
otherwise, we iterate with each parameter halved. Notice
that the complexity is then constant at each level. The
whole process is stopped when the block size becomes
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Fig. 3. Left and center: two consecutive slices shifted by a rotation of 208. Right: the second slice is registered to the first one.

Fig. 4. Accuracy of the estimated translation with respect to the angle of rotation. The upper left window shows a magnified view of the graph.



inferior to a given limit (typically,Nlim � 4�; after which the
information content of the blocks is considered no longer
sufficient to draw meaningful comparisons.

3. Robustness and accuracy analysis

To characterize the performance and the robustness of the
algorithm, we used the data of a rat brain from the UCLA rat
brain atlas [29] where the cryoplaned block-face was consis-
tently positioned during section acquisition. Thus, the
“ground truth” registration is the identity. Then, we
randomly resampled consecutive sections with a known
rigid transformation (see Fig. 3) and we studied the error
du � uu 2 û u on the rotation angle and the errordt � it 2
Ru t̂i on the translation component [21]. In the following, the
experiments are performed on three couples of contiguous
sections from the middle of the brain. To speed up the
statistics (we performed more than 1600 registrations), we
extracted a sub-image of size 256× 256 in the 1024× 1024
images.

3.1. Sensitivity to rotation

A first experiment with a translation smaller than 40
pixels shows that the algorithm is almost completely insen-
sitive to this kind of translation. Thus, in the first step, we
can focus on the parameteru alone.

In Fig. 4, we show the translation errord t with respect to
the rotation angleu . Each point on the graph is the average
value for 50 registrations with random translations. On the
large scale graph, we clearly see that the algorithm always
converges for rotations of an angle less thanucut � 288: For
higher values, the algorithm occasionally diverges. On the
small scale graph, we see that the accuracy of the translation
is statistically constant (RMS of 0.75 pixels) when the algo-
rithm converges. We observed exactly the same type of
graphs for the error on the rotation angle, with the same
cutting angle value and a mean accuracy of 0.28.

3.2. Sensitivity to translation

We repeated the above experiment, but keeping rotations
under 158 with a translation range from 0 to 100 pixels. We
obtained very similar results: a statistically constant accu-
racy of the transformation for translations less than a cut-off
value of tcut � 52 pixels and sporadic to continual diver-
gence above this threshold.

This cut-off value approximately corresponds to 1.5 times
the half-width of the block neighborhood at the higher level
�V � 32 pixels). Since the block matching is optimized with
a maximal displacement of

��
2
p

V; this means that at least
50% of the corresponding blocks need to be within the
search area, which is in accordance with what we expected.
Hence, the size of the convergence basin for translations is
directly linked to the size of the block neighborhoodV and
can be extended by taking larger blocks.

4. Results

4.1. Rat’s brain

We realigned several datasets from rat brains containing
from 20 to 26 sections with a resolution of 768× 576 pixels
(0.03 mm× 0.085 mm) and an inter-section gap of 0.4 mm.
This was achieved without any preprocessing step. The
registration of two sections took around 1 min on a standard
PC (OS Linux), 450 MHz, 256 MBytes of RAM. In Fig. 5,
we compare the results of aligning the sections using the
presented method with the PAT method, and with the maxi-
mization of the correlation coefficient over the whole image
(using Powell’s method as an optimization scheme). This
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Fig. 5. Median perpendicular view of the section set. Left: initial data. Middle left: after registration using the principal axes method. Middle right: after
registration using global correlation. Right: after registration using the presented method.

Fig. 6. Reconstruction with segmentation of an ischaemia area.



dataset corresponds to the sections shown in Fig. 2. We
notice that the inner structures are better observed in our
result image.

In Fig. 6, we segmented the cortical surface and an
ischaemia area from another reconstructed block using
digital topology techniques. This data corresponds to the
sections shown in Fig. 1.

4.2. Rhesus monkey’s brain

We have realigned 170 sections from a rhesus monkey’s
brain [30]. These sections, with a resolution of 636× 512
pixels (0.085 mm× 0.085 mm) and an inter-section gap of
0.1 mm, correspond to the posterior third of the left hemi-
sphere. The result is shown in Fig. 7 and compared to the
original data. One may notice that large displacements have
been recovered. Using the reconstructed volume, we
segmented the cortical surface and the white matter by
combining 3D digital topology techniques and deformable
models [18] (see Fig. 8).

5. Conclusions

We have presented a new method to align histological
sections. It alternates between computing local displace-
ments using a block-matching strategy and robustly estimat-
ing a rigid transformation from these matches. The whole
process is integrated in a multi-scale scheme to improve the
computation time as well as the registration accuracy. Our
algorithm has been shown experimentally to provide sub-
pixel accuracy while being able to compensate for large
displacements.

An extension of the method to non-rigid registration
would be useful to compensate for geometrical distortions
that occur during sectioning. This is a difficult problem
because part of the inter-section deformations are due to
morphological differences and mustnot be corrected.
Instead of evaluating geometrical distortions slice by slice,
perhaps a better approach is to non-rigidly register the 3D
reconstructed structure (after rigid realignment of the
sections) with another 3D modality such as MR [27] or
PET [17].

Another current limitation of the method is that the regis-
trations are performed independently for each pair of contig-
uous sections. As a consequence, registration errors are
integrated from the beginning of the stack to the end of
the stack. When dealing with a large number of sections,
this might prevent any reliable 3D reconstruction. Such
error propagation might be reduced by placing spatial
constraints on the reconstructed structure.
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Fig. 7. Rhesus monkey’s brain. Left: three orthogonal views of the initial section stack. Right: the same views after realignment.

Fig. 8. 3D reconstruction of the rhesus monkey’s brain with segmentation
of the white matter.



brain dataset. We would also like to thank Dr Christophe
Sattonnet for constant interaction and suggestions, and Janet
Bertot for proofreading.

References

[1] N.M. Alpert, J.F. Bradshaw, D. Kennedy, J.A. Correia, The principal
axes transformation — a method for image registration, J. Nucl. Med.
31 (10) (1990) 1717–1722.

[2] A. Andreasen, A.M. Drewes, J.E. Assentoft, N.E. Larsen, Computer-
assisted alignment of standard serial sections without use of artificial
landmarks. A practical approach to the utilization of incomplete infor-
mation of 3-D reconstruction of the hippocample region, J. Neurosci.
Meth. 45 (1992) 199–207.

[3] G.L. Brown, A survey of image registration techniques, ACM
Comput. Surv. 24 (4) (1992) 325–376.

[4] F.S. Cohen, Z. Yang, Z. Huang, J. Nissanov, Automatic matching of
homologous histological sections, IEEE Trans. Biomed. Engng 45 (5)
(1998) 642–649.

[5] D.L. Collins, A.C. Evans, ANIMAL: validation and applications of
nonlinear registration-based segmentation, Int. J. Pattern Recog.
Artif. Intell. 8 (11) (1997) 1271–1294.

[6] M.H. Deverell, J.R. Salisbury, M.J. Cookson, J.G. Holman, E. Dykes,
F. Whimster, Three-dimensional reconstruction: methods of improv-
ing image registration and interpretation, Anal. Cell. Pathol. 5 (1993)
253–263.

[7] D.W. Eggert, A. Lorusso, R.B. Fisher, Estimating 3D rigid body
transformations: a comparison of four major algorithms, Special
Issue on Performance Characteristics of Vision Algorithms, Mach.
Vis. Appl. 9 (5/6) (1997) 272–290.

[8] T. Gaens, F. Maes, D. Vandermeulen, P. Suetens, Non-rigid multi-
modal image registration using mutual information, in: W.M. Wells,
A. Colchester, S. Delp (Eds.), Proceedings MICCAI’98, Lecture
Notes in Computer Science, vol. 1496, Springer, Berlin, 1998, pp.
1099–1106.

[9] A.F. Goldszal, O.J. Tretiak, P.J. Hand, S. Bhasin, D.L. McEachron,
Three-dimensional reconstruction of activated columns from 2-
[14C]deoxy-d-glucose data, Neuroimage 2 (1995) 9–20.

[10] L.S. Hibbard, R.A. Hawkings, Objective image alignment for three-
dimensional reconstruction of digital autoradiograms, J. Neurosci.
Meth. 26 (1988) 55–74.

[11] A.K. Jain, Image data compression: a review, Proc. IEEE 69 (3)
(1981) 349–389.

[12] P.A. Kay, R.A. Robb, D.G. Bostwick, J.J. Camp, Robust 3-D recon-
struction and analysis of microstructures from serial histologic
sections, with emphasis on microvessels in prostate cancer, in: K.H.
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