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Abstract

We present a general scheme for automatically building a morphometric anatomical atlas. We
detail each stage of the method, including the non-rigid registration algorithm, three-dimensional
line averaging and statistical processes. We apply the method to obtain a quantitative atlas of
skull crest lines. Finally, we use the resulting atlas to study a craniofacial disease; we show how
we can obtain qualitative and quantitative results by contrasting a skull affected by a mandible

deformation with the atlas.
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1. INTRODUCTION

To improve diagnosis, treatment planning, delivery and
follow-up, a physician needs to compare three-dimensional
(3-D) medical images from various modalities [computed to-
mography (CT), magnetic resonance imagery (MRI) or nu-
clear medicine (NM)] (Ayache, 1995). We can distinguish
three kinds of comparisons. comparison of a single patient’s
images to study the evolution of a disease; comparison of dif-
ferent patients’ imagesto contrast a healthy and asick person
and registration of imageswith an anatomical atlastofacilitate
the anatomical interpretation.

Thislast type of comparisonisnecessary to identify and lo-
cate precisely the various anatomical structures of the patient.
It also allowsoneto study potential variationsfrom ‘ standard’
anatomy.

1.1. Limitations of conventional anatomical atlases

For years, medical doctors have used books such as Pernkopf
(1983), nevertheless, such atlases are quite difficult to use,
especially by anon-skilled person, dueto:

e Two-dimensional (2-D) representation. Images are
usually in 2-D and are taken from a single point of view.
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The 3-D shape of the anatomical structure has to be re-
constructed mentally, which is atask that requires a lot
of experience.

e Ambiguous landmark definition. In general, such
atlases are based on different kinds of features. points
(e.g. apex), lines (e.g. sutura, crista) or areas (e.g. pars,
foramen). Moreover, the definition of these features can
vary according to the observer.

e Lack of a quantitative description. Most of these
atlases provide only aqualitative description; they do not
give much quantitative information about feature posi-
tion. In fact, localization of the anatomical structuresis
based only on therel ationship between featuresrequiring
expert anatomy. One exception is the stereotactic brain
atlas developed by Talairach and Tournoux (1988).
Moreover, conventional atlases usually present the de-
scription of only one patient. So, it is impossible to
estimate the statistical distribution of the position, the
size or the topology of anatomical structures.

These limits are particularly emphasized when physicians
want to use atlases with volumetric medical images. They are
then obliged to compare either 2-D dlicesthat are not takenin
exactly the same position or a 2-D plate with a 3-D rendering
of the medical image.
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1.2. Current digital anatomical atlases

To overcome the limitations of conventional atlases, some
digital anatomical atlases based on 3-D medica images have
been developed over thelast 10 years. These can be separated
into three classes of application:

e 3-D database. These atlases, e.g. Voxel-Man (Hohne 13.

(Cutting et al., 1995a), brain abnormality detection
(Thompson et al., 1996; Thompson and Toga, 1997), sex
differences in the morphology of the corpus callosum
(Davatzikos et al., 1996) or computer-aided surgery,
e.g. craniofacial operations (Cutting et al., 1995b).

Complexity of building a morphometric atlas

et al.,, 1992; Schiemann et al., 1996b) which is &- To build a computerized morphometric anatomical atlas, we
ready marketed, include powerful volume visualization have to address the following two major problems:

techniques to display anatomical data from any view-

point with functionalities such as cutting or transparency. .
They also integrate a sophisticated structure labelling

thanks to a database engine. These atlases can be used

to consult reference cases and, above al, for teaching
anatomy. Nevertheless, they remain a digital version of
conventional atlases[or of several atlasesasin Nowinski

et al. (1995)] with a qualitative description of only one

patient.

e Normalized registration. With non-rigid 3-D regis-
tration tools, it becomes possible to register the patient
images with the atlasin order to locate anatomical struc-
tures (Christensen et al., 1996a). In Marrett et al. (1989),
a manual method is proposed to register an atlas with
MRI data: first a globa affine matching is performed
manually then the user can choose one (or a set of) vol-
umesof interest in order to apply an affinetransformation
locally. Greitz et al. (1991) introduced quadratic trans-
formations (called pear, skew, asymmetry or scoliosis)
in addition to linear ones (trandation, rotation, scalings) .
in their ‘computerized brain atlas’. The first automatic
atlas registration method was introduced by Bajcsy and
Kovati¢ (1989) to find the cortical and brain ventricle
structures.  Since then, other methods have been pro-
posed (asin Thirion, 1995; Bro-Nielsen and Gramkow,
1996; Christensen et al., 1996b; Feldmar and Ayache,
1996; Szeliski and Lavallée, 1996).

e Morphometric study. Morphometry allows one to
study covariances of biological shapes(Bookstein, 1991,
1997). After the registration between the atlas and the
patient data, a statistical analysis of landmark positions,
or shape parameters of anatomical structures, is per-
formed. The structures with coordinates, or parame-

Defining shape description parameters. Morphology
results depend on the statistical study of shape. So we
have to determine a set of parameters that characterize
the shape of an anatomical structure that is quite com-
plex. Thus, if wetake anisosurface of asimplestructure,
e.g. the cerebral ventricles, extracted by the classical
‘marching cubes’ algorithmin ahigh-resolution MR im-
age (voxel sizeof 1.0x 1.0x 1.5 mm?3), we obtain several
tens of thousands of 3-D points to define the geometry.
What we want isto compute an extremely condensed set
of ‘meaningful’ shape parameters, say around ~20-30,
to obtain a more compact and easy to understand repre-
sentation.

Moreover, once these parameters are chosen, we can cal -
culate their average and covariance which will be used
in statistical tests. This can be done for points or frames
(Pennec and Thirion, 1995) or for more abstract param-
eters such as vibration modes.

Handling large amounts of data. To obtain meaning-
ful statistical morphometric results, we have to process
a large database of at least several dozen 3-D images,
each one requiring several Mbytes. Currently, however,
digital anatomical atlases are built by delineating man-
ualy anatomical structures in one medical 3-D image
(Schiemann et al., 1996a): an anatomist uses a semi-
automatic interactive segmentation tool to identify the
voxels, very often dlice by slice. Thistask takestoo long
and istoo difficult to be generalized for a huge database.
Moreover, it is not always possible to identify manually
landmarks with a precision of one voxel in a huge 3-D
medical image.

ters, which are outside of ‘normal’ statistical bounds are We conclude that only automatic tools could lead to the
considered as ‘abnormal’. A pathology diagnosis could construction of morphometric anatomical atlases that both
then beinferred, for example, by using an expert system take into account the accuracy of new medical images and
(Suzuki et al., 1995). Such morphometric tools can also integrate the computation of quantitative parameters. These
be used to characterize the evolution of an anatomical tools must integrate automatic segmentation of anatomical
structure over time, or throughout history (Dean, 1993). features, automatic non-rigid registration of these features
In fact, the study of morphometry opens up new between patients, automatic i dentification and statistical com-
atlas applications, in particular, in computer-aided parison of shape parameters and must be applicable to large

diagnosis, e.g. characterization of Crouzon's disease databases of very high-resolution images.
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1.4. Somerelated work

In Cutting et al. (1993, 1995a), the authors propose building
an average template of the skull composed of points, lines
and surface patches based on a database of nine normal skulls
segmented from CT scans. They use this average model to
study the shape of skulls affected by Crouzon’s disease. This
work involves anatomists, morphometricians and surgeons.
In particular, anatomy speciaists are needed to define an
apriori template of anatomically meaningful feature points
and lines, and also to adapt this template to the patient data.
Such manual intervention could limit or prevent the general-
ization of the technique to large databases, required to obtain
agood statistical accuracy in shape variability studies. More-
over, the template is based on manually extracted points and
lines that could appear too sparse (only 50 points and 100
lines) for a very precise shape parametrization. Also, the
template is static and cannot be improved by adding points or
lineswhich could evolvewith the study of new data. Morpho-
metric tools presented in this work were also applied in Boes
et al. (1994) to build an average model of the liver based on
six landmark points extracted in 15 CT images.

Our work can aso be related to some research devel oped
for brain study. In Royackkers et al. (1995), a sulci statistical
model is built from several MR images. The aim is to iden-
tify efficiently and robustly the superficial part of six major
sulci in patient data. Here aso, the structure of the atlas is
fixed once by the user. In Mangin et al. (1995), a high-level
representation of the cortical topography is inferred from a
brain MR image. This representation is very complete and
integrates the topology and quantitative parameters such as
length or depth. This model is intended to estimate statisti-
cally the inter-subject variability and to detect and recognize
automatically the main cortical sulci.

Similar to these works, we would like to emphasize that
building an atlas consists not only in computing the average
parameters and standard deviations of features, but also in
detecting and identifying in the images which features are
common to all the subjects and will be used in the atlas.

15. Content

In this paper we describe a scheme for automatically building
morphometric anatomical atlases. After an overview of the
method in Section 2, we detail each stagein Sections3—7. The
schemeisfully automatic and has been tested on a database of
six different skulls extracted from high-resolution CT scans.
At the end of the process, we obtain an average skull model
composed of common linefeaturesin their mean positionsand
their standard deviations. In Section 8, we present a sample
morphometric study of a skull affected by a severe maxil-
lary deformation. This study, in spite of its simplicity from
a medical point of view, shows how an automatically built

morphometric atlas could be useful for medical applications.
Section 9 describes future work, in particular, the application
of the scheme to other anatomical structures.

This paper must be considered as a long-term computer
science research presentation to test anew concept and not as
adirect medical application. In this spirit, we have given a
greater importance to the presentation of aglobally consistent
scheme with working prototypes, being aware that each stage
of this scheme could be improved.

2. THEATLASBUILDING SCHEME

Our scheme summarizes the method used by anatomists to
draw up atlases: the study of different patients structures
allowsoneto identify which features appear visually common
to al the dataand in a stable position. Thiswould correspond
to the notion of “biological homology’.

First, we need to collect a database of high-resolution 3-D
medical images of different patients. In our skull example, we
use six high-resolution CT scans? of dry skulls, without any
artefacts and with avoxel sizeof 1.0 x 1.0 x 1.5 mm?®.

We then apply a preprocessing stage to segment the
anatomical structure we want to study. Various methods can
be applied and one can refer to Ayache et al. (1996) for an
overview of the methods, Mclnerney and Terzopoul os (1996)
about using deformable models or Kapur et al. (1996) for
brain segmentation. From the segmented binary image, we
extract the anatomical structure surface by using the ‘ march-
ing cubes' agorithm (Lorensen and Cline, 1987).

In the case of the skull, a smple intensity thresholding
givesagood segmentation of the bone asit appearsvery bright
in CT scans. In Figure 1, we present the surfaces of the six
skulls (A to F) which constitute our database. We notice
a very important diversity in the skull orientation, size and
shape.

The building scheme itself is composed of four stages (see
Figure 2, |eft):

e Stage 1. Feature extraction. We extract some geomet-
rical features automatically. We have to choose afeature
type which combines a mathematical definition and an
anatomical relevance.

e Stage2: Common featureidentification. We find cor-
respondences between the sets of featuresin different im-
agesby using anon-rigid registration algorithm. Wethen
identify which features are common to all the data sets.
These common feature subsetswill form the structure of
the atlas.

3Data from the Cleveland Museum of Natural History (CMNH672, 939,
1162, 1253, 1273) and General-Electric Medical System Europe.
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Figurel. Theskulls A, B, C, D, &, F (left to right, top to bottom).
These skulls were segmented from high-resolution CT scan images
(acquired from two different devices, the voxel size is about 1 x
1 x 1.5 mm®) by classic mathematical morphology and thresholding
tools. We notice an important diversity in the skull size, orientation
and shape.

e Stage 3: Average position. We average the common
feature positions and then obtain the atlas mean
geometry.

e Stage 4: Variability analysis. We analyse the variabil-
ity of common feature positions with respect to the mean
position and we compute some shape parameters. They
describe and quantify, concisely and precisely, the shape
of the common features and thus those of the anatomical
structure.

When we want to study a patient (see Figure 2, right),
we extract features from the 3-D image. We use the non-
rigid registration algorithm to find correspondences between
atlas and patient features (automatic labelling and normalized
superimposition). We can then compare the shape parameters
statistically. This leads to the detection of ‘abnormal’ shapes
of the anatomical structure (shape analysis).

3. FEATURE EXTRACTION

3.1. Choiceof feature

Once anatomical surfaces are extracted, one decomposes the
surface into characteristic features. It can be surface patches,
e.g. defined by their local shape (Brady et al., 1985), line
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Figure 2. A general scheme to build automatically computerized
morphometrical anatomical atlases.

features, e.g. based on differential geometry (Hosaka, 1992),
or point features, e.g. ‘extrema’ points (Thirion, 1996a).
Surface features are difficult to handle because they inte-
grate all the points of the structure. At the other extreme,
point features give only sparse and non-robust information
as there is no connectivity relationship. Line features are a
very interesting compromise as they combine an important
reduction of surface information with strong topological con-
straints as alineis an ordered list of points. In this paper we
concentrate on the use of ‘crest lines' introduced by Monga
et al. (1992) and developed by Thirion and Gourdon (1995,
1996). Indeed they appear to be very good landmarks as they
have been used successfully for rigid matching of 3-D medical
images (Ayache et al., 1993). Moreover, they have a very
strong anatomical meaning as we will seein the following.

3.2. Description of crest lines

Crest lines are defined by differential geometry parameters:
let k; be the principal curvature with maximal curvature in
absolute value and f; its associated principal direction, apoint
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Figure 3. Differential characteristics of a surface and the definition
of acrestline.

P belongsto acrest line when k; is maximal in the direction
of 1 V\Lhi ch can bewritten asthe zero crossings of the criterion
e, = Vky-f; (see Figure 3).

We find in Thirion and Gourdon (1995, 1996) an origi-
nal approach to computing crest lines on an isosurface de-
fined by 1 (X,y,2) = o, where | (X, Y, 2) is the intensity
of the voxel localized at (X, vy, z). It is based on the implicit
representation of surfaces that leads to formulae which in-
volve the differentials of the 3-D image up to third order:
al/ax, 821 /ax?, 3%1 Jax3. They are calculated by Gaussian
convolutions. Then the ‘marching lines' algorithm follows
the segments of crest lines that were extracted at each voxel
by application of the two criteriae; = Oand | = g to create
lines.

Due to their definition, the crest lines follow the salient
lines of a surface. We can verify this in Figure 4 where
crest lines of skull 7 emphasize the mandible, the orbits, the
cheekbones or the temples and also, inside the cranium, the
sphenoid and temporal bones aswell asthe foramen magnum.
The automatic extraction gives 548 lines composed of 19933
points.

3.3. Anatomical relevance of crest lines

Salient structures are al so used by doctors as anatomical |and-
marks. For example, the crest lines definition is very close to
the ‘ridge lines' described in Bookstein and Cutting (1988)
and Cutting (1991). In Figure 5, we display on the same
skull the crest lines (in grey) and the ridge lines (in black)
which were extracted semi-manually under the supervision of
ananatomist (Dean et al., 1995). Thetwo setsof linesarevery
close, showing that crest lineswould have a strong anatomical
significance. Nevertheless, some crest lines appear noisy due
to the discretization of the image (e.g. on the top of the skull
in Figure 4). This problem can be partially solved by filtering

Figure 4. Crest lines of the skull F. Notice the inside lines em-
phasizing the sphenoid and tempora bones and also the foramen
magnum.

Figure 5. Comparison of crest lines (in grey) and ridge lines (in
black) which were extracted semi-manually under the supervision of
an anatomist. Their superimposition shows that crest lines have a
strong anatomical significance.

the crest lines by a hysteresis thresholding on the value of
the maximal curvature to avoid small curved curves (see Fig-
ure 6). Moreover, crest lines do not always correspond to
the topology expected by anatomists; for example, the orbital
crest lines are not closed. Only an a priori model could add
this constraint.

Furthermore, we would aso like to emphasize that the
schemeitself checksthe stability of thefeatureanditsvalidity.
In stage 2, we search for the common features and in stage 4,
we computestatistical information. If nofeatureiscommonto
al the database sets or if their variabilities are too large, this
type of feature must be rejected. Otherwise the features can
be considered as having good anatomical significance. This
isvery important because we can imagine testing features de-
fined only by very complex mathematical formulae and seeing
whether they could be relevant to characterizing anatomical
structures.
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Figure 6. Crest lines of the skull F filtered by a hysteresis thresh-
olding on the value of maximal curvature. Thus, we have discarded
all the noisy lineswhich lay on the forehead and the top of the skull.
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3.4. Other featurelines
Other feature 3-D lines have been used in medical image
processing:

e Geodesic lines. These lines are the shortest path be-
tween two points on a surface. In Cutting et al. (1993),
geodesic lines are used to complement ridge linesto rep-
resent the surface of theanatomical structurewith greater
precision. Nevertheless, geodesic lines do not have a
real anatomical meaning. Moreover, the optimization
scheme for computing the geodesics is computationally
Very expensive.

e Medial axis. In 2-D, these lines can be defined as the
collection of all the centres of the circles which fit just
inside the anatomical structure boundary (Blum, 1967).
They define the local symmetry axis and indicate how
a bhiological form is put together out of geometricaly
simpler pieces (Bookstein and Cutting, 1988). The gen-
eralizationin 3-D givesmedial surfacesbut 3-D linescan
be obtained by the intersection with another surface. For
example, in Székely et al. (1992) and N&f et al. (1997),
the media surfaces of the brain data complement are
intersected with the smoothed cortical surfacewhich cre-
ates 3-D linesfollowing the sulci. Neverthel ess, comput-
ing medial surfacesisvery expensiveintermsof memory
and time.

e Junction lines. The skeletonization of the anatomical
structure by discrete topology methods gives surfaces.
Then, the junction lines can be detected by a topological
classification algorithm (Malandain et al., 1993). Such
lines have been used to define lines following the sulci
on the cortical surface (Fernandez Vidal, 1996).

Description of stage 1:
e Extract featuresin A, B,C,D, &, F.

Figure7. Two setsof linesto beregistered: theleft-hand set is com-
posed of 591 linesand 19 302 points; the right-hand oneis composed
of 583 lines and 19 368 points. We notice the variationsin the shape,
the number and the topology of lines.

4. FEATURE REGISTRATION

4.1. Introduction
Given two sets of lines A and B extracted from two different
patient images (see Figure 7), we want atwofold result:

e Linetolinecorrespondence. WhichlineL; of Acorre-
spondsto which line L’J- of B? Thisallows usto find the
common linesto all the setsin stage 2.

e Point to point correspondence. Which point of A cor-
responds to which point of B? We need to know the
corresponding points over the different sets to compute
the average positions of lines in stage 3 and to analyse
their variabilitiesin stage 4.

As a matter of fact, little work has been done on the reg-
istration of 3-D curves. In Bastuscheck et al. (1986) and
Schwartz and Sharir (1987), therigid matching algorithm uses
fast Fourier transforms to determine the least-squares differ-
ence between sequences of points sampled at equal intervals
along two piecewise linear approximations of 3-D curves.
Mokhtarian (1993) proposes to model a 3-D line by its tor-
sion profile for different scales, the extrema of which are
then matched. Guéziec and Ayache (1994) improve on the
method described in Kishon et al. (1991): lines are indexed
according to their differential characteristics computed by an
approximation by B-splines. With hash tables, itisthenfast to
retrieve a point with given differential parameters and to test
the accuracy of arigid transformation. Pajdla and Van Gool
(1995) use a semi-differential invariant description requiring
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only first derivatives and one reference point. All these meth-
ods have been developed for rigid matching and cannot be
generalized to the non-rigid case as they are based on using
Euclidean invariants.

Moreover, the development of a registration algorithm
must deal the complexity of the data. The sets of lines are:

e very different in orientation, number of lines, shape,
topology and discretization.

e very dense as they are congtituted of several hundred
lines and tens of thousands of points.

4.2. Theregistration algorithm
4.2.1. General overview
To overcome the difficulties of the registration task, we pro-
poseto use aheuristic algorithm based on an iterative scheme.
Such ideas are not new: for example, Burr (1981) introduced
an iterative technique to update gradually local registration of
two different images, where each feature at onelocation influ-
ences matching decisions made at other locations. This prin-
ciple is developed in the ‘iterative closest-point’ algorithm
introduced by Besl and McKay (1992) and concurrently by
Zhang (1994). It consists of iteratively applying rigid trans-
formations, based on alocal point matching with its closest
neighbour, to the set A in order to superimpose it on the set
B. Such amethod has already been generalized to non-rigid
registration of surfacesin Feldmar and Ayache (1996).

We have adapted the original algorithm to our problem by:

e Generalizing it to non-rigid transformations. We
have modelled deformations between anatomical struc-
tures by affine, polynomial and spline functions.

e Takingintoaccount constraintsinferred by lines. The
order of points along the lines constrains point corre-
spondences. Thus, we discard inconsistent point match-
ings and compute registration parameters which define
line correspondences.

In the following, we are going to review each step of the
adapted | CP agorithm (see Figure 8).

4.2.2. Point matching

At each iteration, all the points of A’s lines are linked with
their closest neighbour in B with respect to the Euclidean
distance. This is possible by using an efficient data struc-
ture (Zhang, 1994) caled a‘k-d tree’ (Preparata and Shamos,
1985) or by precomputing adistance map (Cuchet et al., 1996)
that integrates the coordinates of the closest points. The Eu-
clidean distance could be extended to include differential pa-
rameters (e.g. curvature) as proposed in Feldmar and Ayache
(1996). This preliminary simple matching gives afirst list of
point pairs, M. Notice that the closest-point process is not

Set of Set of
Lines Lines

Point Matching Pairs of matched points

Pairs of consistent

Line Matching matched points

Line Registration Parameters

Rigid, Affine, Spline
Least squares method

Transformation
Computation

Transformation

Implementation A is transformed

Corresponding Corresponding
Lines Points

Figure 8. The feature registration algorithm.

bijective: each point of A hasone and only one correspondent
on B, whereas some points of B may have either no corre-
spondent on A or more than one.

4.2.3. Linematching

If we want to estimate whether two linesL; € A and L/j eB
areregistered, we need to compute the proportion p! of points
of L; which are matched with points of L and the proportion

p’]-i of points of L} which are matched with points of L;. If

p! or p/j' are larger than a given threshold, for example 50%
(it then corresponds to more than half of the line points being
matched), we can conclude that the two lines are registered.

However, computing the line registration parameters p!
and p’j' is not smple due to the non-bijectivity of points
matching aswe can seein Figure 9. On theleft-hand side, we
compute p! = 100% and p}' = 40% (5/5 points of L; are
registered with 5/13 points of L}). Moreover the matchings
2 and 3 joinaportion of L; to aportion of L which has been
already registered with another portion of L; by the matchings
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Figure 9. Computing registration parameters is not obvious due to
the non-bijectivity of points matching.

1 and 4. We call this event a cross-matching. On the right-
hand side, the important difference of sampling along L; and
L’ yieldsthat p/ = 100% and p;' = 67% (10/10 points of
Li areregistered with only 4/6 points of L}). We also notice
numerous multiple matchings (e.g. matchings 3, 4 and 5). To
addressthis problem, weintroduce two additional constraints:

e Injectivity constraint. Each point of B is linked to at
most one point of A.

e Monoatonicity constraint. The ordering of correspond-
ing pointson L; and L; must be the same. In particu-
lar, this implies that the same portion of L’ cannot be
matched to two different portionsof L;. Suchacondition
has also been described in Geiger and Vlontzlos (1993).

To impose these constraints, we sort the matching between
pointsof L; and of L according to their distance. The closer
two matched points are, the more likely the correspondence
is. We begin at the most likely matched point Py of L; and we
follow the line in the two directions. When we meet another
point, Py (that is the kth one on L; after Pp), we look at its
correspondent corres(Py). If corres(Py) does not belong to
L’ (we should not forget that we deal with hundreds of lines
in B), we stop the propagation in this direction. Otherwise,
if corres(Py) (that belongs to L) has already been marked,
it means that we are creating a cross or a multiple match-
ing, which we prevent by discarding the current matching
and stopping the propagation. If corres(Py) has not been
marked, we keep the matching (Py, corres(Py)), we mark al
the pointsof the portion of L, Jcorres(P-1), corres(Py)] and
we continue.

When the process is terminated, we begin again with the
most likely matched point of L; that has not already been met.
In this way, we obtain consistent point correspondences. The
algorithm is very fast as the complexity is proportiona to the
number of pointsof L;. To compute correctly the registration
parameters between L; and L/j, we have to follow the lines

p,:3/5 p, : 10/10

pjl_’.' 10/13 pjl_'.' 6/6
Figure 10. After discarding non-consistent matched points, we can
compute the line registration parameters correctly.

L’ and to consider as virtually matched, the points which are
localized between two pointsreally matched with points of_Li .
Thus, in Figure 10, wenow have ontheleft-hand side p! =
60% and p’I = 77% (3/5 points of L; are reglstered with
10/13 p0| nts of L ) and on the right-hand side pI = 100%
and p = 100% (10/10 points of L; are registered with 6/6
poi ntsof L’). Based onthisnew matching, we obtainasecond
list of matched point pairs, M, which is a consistent subset

of M;. )

Moreover, we can use the parameters p! and p/' to make
the registration algorithm more reliable. Theideaisto con-
sider that only matched pointswhich belong to lineswhich are
registered with a given threshold (piJ > threshold or p/j' >
threshold) and to take only them into account in thefollowing.
We can then raise this threshold as iterations are performed,
to improve only registration of lines already quite well reg-
istered. With this selection, we obtain a new list of matched
point pairs, M3 which can be considered as a reliable subset
of Mo.

4.2.4. Transformation computation

Based on the list of matched points M3 = (P, Py), we can
compute a transformation T of a given type, by minimizing
the least-squares criterion:

> dA(T (R, PY)

Pce M3

where d is the Euclidean distance between two 3-D poaints.
What types of transformation can we use? In fact, we have
to address the four following problems:

e Physical modelling. Others have tried to define some
transformation classes to model inter-patient deforma-
tions as, for example, piecewise affine functions in Ta-
lairach and Tournoux (1988), but they remain much too
simple to be very accurate.
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Figure 11. Example of application of transformations to a regular
mesh displayed upper left: rigid (upper right) for position and ori-
entation differences, affine (lower left) for scaling differences, and
spline (lower right) for local and complex differences.

e Computation complexity. A transformation that can be
written mathematically as a linear function of its coeffi-
cientsis easy to compute by aleast-squares method.

e Regularity control. With avery general class of trans-
formations, we can deform anything into anything. So,
we need to have the possibility of controlling regularity
by introducing constraints.

e Topology conservation. Thetopology of the anatomical
structure must be preserved by the transformation. In
particular, we have to avoid self-intersection of the sur-
face (Christensen et al., 1995).

According to these four criteria, we choose to use the fol-
lowing transformation types (see Figure 11):

e Rigid transformations at the beginning of the regis-
tration to align the two sets of lines. The least-squares
computation can be performed by several methods (Arun
et al., 1987; Horn, 1987).

o Affinetransformationstoretrievethe scalar differences
between the two sets.

e Spline transfor mations to model more local and com-
plex deformations. They have been used widely in 3-D
medical image processing (e.g. Declerck et al. 1996;

Szeliski and Lavallée 1996). Bookstein (1989, 1997)

proposes using athin-plate spline interpolating function.

Nevertheless, interpolation isrelevant when the matched
pointsof M3 aretotally reliableand distributed regularly
(for example, with afew points being located manually).

In our case, these points are not totally reliable due to
possible mismatches of theregistration algorithm and are
sparsein afew compact areas asthey belongtolines. So,
we prefer to use aspline approximation functionwhichis
regular enough to minimizetheinfluence of an erroneous
matched point (Declerck et al., 1995). The coordinate
functions of T, (u, v, w), are then computed by a 3-D
tensor product of B-spline basis functions. For instance,
for u:

ny—1ny—1n,—1

ux,y,2 = Z Z Z aijk B () B« (¥) B¢« (2)

i=0 j=0 k=0

with the following notation: ny is the number of control
points in the x direction, which sets the accuracy of the
approximation (eight in our experiments). ok isthe3-D
mesh of the control points abscissae. These parameters
define the transformation. By istheith B-spline basis
function; its order is K. The By generate the vector
space of piecewise K-order polynomials. u is then a
piecewise Kth degree polynomial in each variable x, y
and z. For their regularity properties, we choose cubic
B-splinesin our experiments (K = 3) with aregular grid
of 3-D knots.

For a given number of control points and a set of B-spline
basis functions, u is completely defined by the o;jj. They are
calculated by minimizing a criterion computed with the set
M3 of matched points. In fact, the criterion splits into two
parts: J(U) = Jposition (W) + Jsmooth (U).

e Position term. For each data point P, u(Py) must be
as close as possible to P;. We choose a |east-squares
criterion:

N

‘J;;(osition(u) = Z (U(Xky Vs Zk) — XI/()Z.

k=1

Similar equations apply t0 Jygion(v) aNd JIZion(w)
with y, and z, respectively.

e Smoothing term. B-splines have intrinsic smoothness
properties, but these may be insufficient. We choose a
second-order Tikhonov stabilizer: it measures how far
from an affine transformation the deformation is:

Js)x(nooth(u) = Ps /|;3 [uix + U?,y + uiz + 2u§y

+2uf, + u3, |
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Figure 12. The two simplified sets of crest lines in their original
positions. The left-hand set will be deformed toward the right-hand
onein order to find line and point correspondences.

Figure 13. After the rigid transformations, the two sets of lines are
aligned. We see only the registered lines and the matched points that
arelinked. Left, the setsarein their deformed positions. Right, they
arein their original positions.

where ps isaweight coefficient that tunestheimportance
of smoothing.

J* is a positive quadratic function of the wjjk variables.
To find the coefficients which minimize J*, we derive its
expression with respect to all the o;j: thisyields ny x ny x
n, linear equations. Rearranging these equations, we get a
sparse, symmetric and positive linear system. We solve three
systems (one for each coordinate) to completely estimate T.

We also have tried to use quadratic transformations which
model some anatomical deformations of the brain according
to Greitz et al. (1991), but spline functions appeared to be
more general and more convenient to control the regularity.

4.2.5. Transformation implementation and iteration

The transformation T is then applied to A, bringing A closer
to B and we iterate the process by modifying at each step two
parameters:

Figure 14. After rigid and affine transformations, there is no longer
any global size difference. Nevertheless, the orbits are still not
aigned. We only seetheregistered lines and the matched points that
arelinked. Left, the sets arein their deformed positions. Right, they
arein their original positions.

Figure 15. At the end of the iterations, after rigid, affine and spline
transformations, the superimposition isvery accurate and gives very
accurate results for registered lines and matched points. We see only
the registered lines and the matched points that are linked. Left, the
sets are in their deformed positions. Right, they arein their original
positions.

o the threshold on the registration parameter threshold
used in the ‘lines matching’ step.
o thetype of the transformation T.

Presently, we use a constant iteration scheme: 30 iterations
where the variable threshold is incremented from 0% to 50%
and which consists of 10 rigid transformations, then 10 affine,
and finally, 10 spline transformations. For spline functions,
the smoothing parameter ps decreases from 10.0 (very rigid)
to 1.0 (very deformable). We plan to use an adaptive scheme
that automatically modifies the number of iterations as well
as the number of each transformation type. But we would
need to find a good criterion to evaluate the accuracy of the
registration at each step (maybe based on the evolution of the
mean-squared distance between matched points).
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Figure 16. Registration of C towards B. Left, we see the deformed
set C with B. The matched pointsarelinked. Notice how thetwo sets
are reasonably superimposed. Right, C isinitsoriginal position. It
allows us to estimate the extent of the deformation between the two
Sets.

At the end of the iterations, we obtain two results: the
registered lines by thresholding the registration parameters pil
and pj‘ to the value 50% and the matched points belonging to

3.

In Figures 1215, we show the result of the registration at
different iterations (original position, after rigid, rigid-+affine,
and rigid+ affine+ spline) for two simplified sets of lines: we
can see the registered lines and the matched points, in their
deformed positions on the left, and in their original positions
on theright.

Despiteitssimplicity and generality, thisalgorithm appears
to be quite robust and is quite insensitive to discretization
differences [for more details, see Subsol (1995)]. Neverthe-
less, it isnot symmetric in the sense that the registration of A
towards B gives different results (small in general) from the
ones obtained with the registration of B towards A.

4.3. Areal example

Inthefollowing example, weregister C towards B. Thewhole
registration takes about 10 min on a DEC-Alphaworkstation,
166 MHz. Noticethat 80% of the CPU timeisrequired to find
theclosest point. Thisstepisalready optimized withak-d tree
structure and an algorithm of complexity O(n?23) in the worst
case, if n isthe number of points stored in the tree (Preparata
and Shamos, 1985). In Figure 16 we can see on the left that
the superimposition of the two setsis relatively accurate and
we can conclude that line and point correspondences are rea-
sonably correct. On theright, thetwo setsarein their original

Table 1. The number of matched points and statistical parameters
about the distribution of distances between matched points at the
beginning of the registration (Begin), after rigid (Rigid), rigid +
affine (Affine), and rigid + affine+ spline (Spline). These last values
are to be compared with the set diameter which is around 200.0 mm.

Std-Dev. Med

Nb Min  Max Mean

Begin 4454 0.05 19.80 5.06 2.73 4.54
Rigid 5420 010 1873 3.77 221 321
Affine 5358 019 1622 342 204 2.89
Sline 6052 003 1150 227 1.59 1.78

position which shows the extent and the complexity of the
deformation between inter-patient anatomical structures.

In Table 1, we show the number of matched points and
some statistical parameters about the distribution of distances
between matched points at the beginning of the registration
(Begin), after rigid (Rigid), rigid + affine (Affine) and rigid +
affine + spline (Spline). All the values must be compared
with the diameter of the anatomical structure that is about
200.0 mm. Whereas the number of matched points increases
very fast after rigid (Begin — Rigid= +22%) and spline
transformations (Affine — Spline= +13%, Begin — Sline=
+36%), it stays stable between the rigid and affine transfor-
mations (Rigid — Affine= —1%). Nevertheless, affine trans-
formations are very useful asthey diminish the mean distance
alot (Rigid — Affine= —9%). During the whole process,
the mean distance has diminished by 55% while the matched
points increased by 36%. The standard deviation also de-
creases by 42%: more points are closer, which is confirmed
by the evolution of the median distance: —61%.

4.4. Anatomical relevance of the registration

The previous figures give us only an evaluation of the quality
of the superimposition of the two sets of lines. We assume
then that a‘good’ superimposition involves accurate registra-
tion results. But what about the real anatomical relevance of
the registration?

Thirion et al. (1996) present a technique to cross-validate
different non-rigid matching techniques. The overall aim is
to determine whether different methods, devel oped indepen-
dently, give mutually coherent image superimposition results.
In particular, a study was performed to compare three de-
formable techniques to superimpose skull images of different
patients: the first method is based on ridge lines relying on
the manual identification of anthropometric landmarks (see
Section 3) (Cutting et al., 1993; Dean et al., 1995), the second
technique is the one described in the present paper and the
last oneisbased onintensity (Thirion, 1995). The conclusion
is that the three methods give mutually coherent results, with
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Figure 17. The registration graph: each node is a line of a set and
the oriented link represents the relation ‘is registered with'.

Set A Line 66

an average difference for feature location of 3-4 mm where
the skull is highly curved. In smoother places, this average
accuracy is reduced to 6-9 mm. It proves, in particular, that
our registration technique is consistent with the superimposi-
tion based on ridge lines supervised by anatomists. Moreover,
it confirms that crest lines are good landmarks as results are
more stable around anatomically salient lines.

5. COMMON FEATURE IDENTIFICATION

5.1. Theregistration graph

With the registration algorithm, we can find the line corre-
spondences between two sets, for example, A and B. More
generaly, we can find line correspondences between all the
sets of the database (A — C, C — B etc.). A line that
will be common to all the patients of the database will be a
line that has a correspondent in al the data sets. So to find
such lines, we need to build an overall representation of the
correspondences between al the lines of al the sets.

We choose to use a graph representation where nodes rep-
resent a line of a set and the links mean ‘is registered with’
(see Figure 17). Notice that the links are oriented as the
registration algorithm is not symmetric. To overcome this
asymmetry, we perform the registration between two sets X
and Y inboth directions(X — Y andY — X). Wethen keep
only the symmetric links (solid arrows) which we assume to
correspond to robust line matchings.

5.2.  Finding common lines

Sets of corresponding lines can be modelled as the con-
nected components of the registration graph which are easy
to compute by a classic propagation algorithm [for example,

Set A Line123
Mandible
\
\
\
\
1

-
.
4 -
7=
?,
Set CLine78

Subgraph 1
grap Subgraph 2

Figure 18. The connected components of the registration graph
define subsets of corresponding lines of different data sets. If these
subgraphs contain at least one line of each data set, they define a
subset of common lines.

described in Cormen et al. (1990)] (see Figure 18). Since we
want lines which are common to al the data, we keep only
the connected subgraphs which contain at least one line of
each set. In Figure 18, subgraph 3 is not taken into account
as it does not contain aline from set C. All these subsets of
common lines form the structure of the atlas.

Infact, to reducethe complexity of theatlasbuilding, wedo
not always perform all the registrations between al the sets,
an operation of complexity O(n?) where n is the number of
sets in the database. We can use a circular permutation that
reducesthecomplexitytoO(n): A— B,B—->C...Z »> A
Nevertheless, performing n registrationsinstead of n? reduces
the number of links and may diminish the number of common
line subsets. Soin this case, we can then accept the subgraphs
which include lines not from all the data sets but from a high
proportion, for example, 80%.

5.3. Application to automatic labelling
If weare ableto associate alabel (for example, manually) to a
common line of adataset (for example, ‘mandible’ associated
to the line 123 of set A in the graph of Figure 18), we can
propagate it to the subgraph, and then to all the corresponding
common lines. This application is very useful for visualizing
the results of registration and common feature identification.
Thus, by building the registration graph for the six skulls
of the database, we find 63 subsets of common lines. We have
represented in Figure 19 the lines of skulls B and C which are
common. Aswe have labelled skull .4, we can propagate the
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Figure 19. The structure of the atlasis displayed for skulls 3 and C.
Some subsets of common lines have been labelled automatically and
highlighted: the mandible (bottom and top), the nose, the orbits, the
cheekbones, the temples, the foramen magnum and the sphenoid and
temporal bones.

Figure 20. Automatic extraction of parts of the skull: ontheleft, the
orbits, the nose and the mandible; on the right the | eft sphenoid bone
and the foramen magnum.

labelling to skulls B and C. Thus, werecognizein highlighted
lines, the mandible (LM B + RMB), the nose (NOS), the orbits
(LOR and ROR), the cheekbones (L CB and RCB) thetemples
(LTP and RTP) and the foramen magnum (FOR).

We also notice that the two parts (left and right) of the
mandibl e have been merged asthe same common linelabelled
RMB + LMB. This s due to the fact that in one data set,

the mandible wasin one part which has been registered to the
two parts of the mandible of 5 and C, clustering then the two
halves in the same common subset.

Automatic labelling can be generalized to automatic ex-
traction of a part of the anatomical structure. Patches of the
skull isosurface with points which are within a given distance
of thelinesidentified by automatic labelling can be extracted.
Thus, in Figure 20, skull 1 is automatically decomposed: we
can identify the left and right orbits, the nose, the mandible,
the left sphenoid bone and the foramen magnum.

Description of stage 2:

e Register A and B, B and C, C and D, D and €,
& and F, F and A, in both directions. Find the
corresponding lines.

e Build theregistration graph.

e Extract the connected components which contain
at least one line from each data set. This givesthe
structure of the atlas.

6. FEATURE AVERAGE

6.1. Introduction

In this stage we wish to find the average positions of the
features congtituting the atlas, i.e. to average the sets of 3-D
lines defining each common subset. We choose a common
line L; of one data set (e.g. .A). Thanks to the results of
the previous stage ‘ common feature identification’, we know
the corresponding line(s) in the other data sets which we call
Li(B)...Li(F). We can then compute the correspondences
between the points of L; and those of Li(B)...L;(F), per-
form the average of corresponding points and reconstruct an
average line. Nevertheless, in order to average the positions,
we heed to align all the data within the same frame.

6.2. Aligningthedatain areferenceframe

As areference frame, we can choose, for example, the frame
given by onedataset (e.g. .A). Withtheregistration algorithm,
we find the list of matched points between the reference data
set and the other data sets. Then, we can easily compute by
aleast-squares criterion the rigid transformations to align the
entire data set in the reference frame.

But, as emphasized by David and Laurin (1989), in onto-
genetic and evolutive shape transformation studies we should
not take into account differences of position, orientation and
size, since these cannot be considered as true morphological
differences. So, we compute by a least-squares criterion not
only the global rigid transformation but a similarity that is
the composition of a translation, a rotation and an isotropic
scaling. After applying the similarity transformations to
the data sets, all the subsets of common lines are in the
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Figure 21. Left, the origina data; right, data aligned in the frame
defined by A. After application of similitudes, there are no longer
global differences of position, orientation and scaling between the
data; only meaningful morphometric deformations remain.

same referenced frame and the residual deformations between
lines are really meaningful morphometric differences (see
Figure 21).

6.3. Finding the point correspondences between
common lines

With the regi stration algorithm, we can find thelist of matched

points between the common line L; of A and the correspond-

ing common lines L (A) ... Lj(F) which are now aligned in

the reference frame.

Nevertheless, some pointsof L; do not haveany correspon-
dent point on the corresponding lines. Thisis due to the line
constraints (injectivity and monotonicity) implemented in the
registration algorithms which discard some point matching.
We notice thisin Figure 22 where some points of the bottom
of themandiblearenot linked with pointsof L; (C). Inorder to
find the whole deformation of L;, we haveto find the missing
correspondences. For each unmatched point P of L;, we
compute the position of its potential correspondent point by
alinear interpolation given by

W=t W=t
—P>, _ d1P2P2+d2P1P1
d; +dy

where P; and P, are the two closest neighbours of P which
have correspondent points denoted as P; and P, and d; and
dy are the distances along L between P and P; and P and
P..

After interpolation of the missing correspondent points, we
obtain the deformation D; between L; and the correspond-
ing common lines which are the vectors field given by the
matched points (P, P) (see Figure 23).

Figure 22. By using the registration algorithm, we can find the
corresponding points between L; (ingrey) and L; (C) (in black). But
some points of L; remain without correspondent points because of
the line topological constraints of the algorithm.

Figure 23. After interpolation of the missing correspondent points,
we obtain the deformation D; between L; and L; (C). We can check
the result by applying D; to L; and comparing the obtained line (in
black) with L; (C) which is displayed in the previous figure.

6.4. Smoothing point correspondences

6.4.1. Presentation of the problem

The deformation D; may still be quite irregular if the corre-
sponding common lines L, L;(B) ... L;j(F) are not smooth.
This roughness is mainly due to the image discretization. If
we average the D; directly, we may obtain a very irregular
average deformation field Dayg. To avoid this problem, we
propose to filter the deformations D; by a low-pass filter,
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assuming that high-frequency oscillations are anatomically
meaningless. To implement this filter, we propose to use
modal analysis introduced in image processing in Pentland
and Sclaroff (1991) and developed by Nastar and Ayache
(1996).

6.4.2. Afiltering method: modal analysis

Given a deformation field D;**Y composed of the n 3-D
vectors (D;*Y[0], D/*Y[1] ... D;*Y[n — 1]), modal analy-
Sis proposes to express the field in a modal basis using the
following formulae (Nastar and Ayache, 1996) (for the x
coordinate):

n-1
d*Y[Klx = > D[ plx - pplK]
p=0

where

n—1

-1/2
¢p[K] = cos(pr (2k+1)/2n) [ Z cos?(pr (2] +1)/2n)] .

i=0
Reciprocally, we have

n—1

D VIklx = ) & TPl - ¢plKI.

p=0

The n parameters d¥Y'[K]x (respectively d™*>[k], and
d*Y[K],) are the amplitudes (for the axes x, y and 2) cor-
responding to the fundamental deformations ¢[i], called the
modes. The set of all the amplitudesis called the spectrum of
the deformation. The mode 0 represents the translation

vk, golk] = %

1 n-1
avVo, = L ST pAVpgl.
[0] Jﬁp; V]

The other modes correspond to deformations of increas-
ing complexity that leave the centre of line mass fixed. In
Figure 24, we can see the effect of modes 1, 2 and 3 applied
successively to the same mandibular line of A. Thelarger the
mode number is, the more complex the deformation is.

6.4.3. Smoothing the deformation field

What is particularly interesting with modal analysis, as in
Fourier analysis, isthat we can approximate a deformation by
taking into account only the first modes. Truncating the spec-
trum allows one to discard high-frequency deformations. Of
course, the notion of frequency is only meaningful if the dis-
tance between points of thelinesisconstant, i.e. the pointsare

AN
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Figure 24. Application of mode 1 (top), 2 (middle) and 3 (bottom)
with a constant amplitude to the mandibular line A (in grey, the
origina line; in black, the deformed ling). The larger the mode
number, the more complex the deformation.

uniformly sampled along the lines. As crest lines extraction
does not verify this assumption, before modal analysis, we
move the points along all the data linesin order to make their
distances constant with a very simple algorithm described in
Subsol (1995). A more sophisticated method, based on an
approximation using spline curves, can be found in Guéziec
and Ayache (1994).

Aswe have noticed in Figure 24, the mode p introduces p
sinusoids (in fact, p sinusoids for each coordinate axis), and
so, can be associated with awavelength of n/ p points. In our
example, crest line segments are extracted in voxels of size
1.0x1.0x1.5mmq. Sowe can assumethat the segment length
isat most around 1 mm. If we want to study detailson ascale
of 1 cm, we have to take into account deformationsinvolving
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Figure 25. Left, the common lines corresponding to the left orbit
in their original positions. Right, the average left orbit is in black
among all the data aligned in the reference frame.

Figure 26. Some common lines of the six skulls and in black the
average common lines constituting the atlas.

Figure27. Theset of all averagecommon linesconstituting the atlas.
Noticetheir lateral symmetry.

up to 10 points, with awavelength of 10 points. Thisleadsto
the equation n/p = 10 or p = n/10. Thus, in the following,
we will keep the first 10% of the modes of the deformations
spectra.

6.4.4. Computing the average lines

For each deformation field DiA‘X , we compute the modal
spectrum §™** that we truncate to the first 10% of the modes.
Then we perform the average of the truncated spectra by
averaging each amplitude independently. We integrate in
this average the spectrum DiA’A that is null in order to take

into account the influence of A in the atlas building. Based
on the average spectrum S° we reconstruct the average
deformation D{*° that we apply to the line L; to find the
average common line L.

In Figure 25, we present the average of common lines cor-
responding to the left orbit. Left, we can see thelinesin their
origina positions. Right, we have discarded the differences
of position, orientation and size by aligning al the datain the
reference frame and we visualize the average line in black.

In Figure 26, we display some common lineswith their av-
eragein black. In Figure 27, we present the set of all average
common lines Lf“’g that constitute the geometry of the atlas.
Notice their lateral symmetry.

Nevertheless, we could believe that the choice of the refer-
ence frame (A4 in our example) may influence the result of the
averaging process. To study the effect, we have built an atlas
successively from the six reference sets A ... F. Then, we
have aligned al the atlases in the same frame (the A one) by
applying similitudes. In Figure 28, we notice how the six sets
of average common linesare very close, which provesthat the
choice of the reference set has very little effect.
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Figure 28. The six average models built from the six reference sets
arevery similar.

6.5. Obtaining an average surface

By registering the lines of the atlas and of the reference set
A, we obtain alist of matched points. We have seen that we
can compute a space spline transformation by aleast-squares
criterion that approximates these matched points (Declerck
et al., 1995). If we apply thistransformation to the surface of
the reference set .4, we obtain a surface representation of the
atlas, based on average lines, which is presented in Figure 29.

We notice three things:

e Theatlasissymmetric, whereasthe averaging processis
independent for each subset of common lines. Thus, it
shows that the algorithm is consistent.

e Whereas the reference set A was very dolichocephalic
(longer than wider head with a narrow face), the five
other skulls are more brachycephalic (rounder heads).
The atlas is more brachycephalic, proving that the aver-
aging process has correctly taken into account the data of
the other skulls.

e Our atlas is visually very similar to the one presented
in Cutting et al. (1993), which was created under the
supervision of an anatomist.

-
S

Figure29. The skull atlas obtained by the general scheme described

in this paper.

Description of stage 3:

e Register A with respectively B,C, D, £ and F.

e Thanksto theregistration result, align the data 5,
C, D,
and remove similarity transformations.

e For each common lineof the L; of A:

& and F in thereference frame defined by A

Register the line L; with the corresponding
common linesof B...F.

Compute the  modal spectra  of
DLi-Li®B)  pLiLi®)

Compute the average modal spectrum and
truncate it in order to smooth the resulting
aver age defor mation Dayg.

Apply the deformation D, to the reference
lineL; in order toobtain theaverageline L.

o All the L™ constitute the geometry of the atlas.
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7. FEATURE DEFORMATION ANALYSIS

7.1. Somepreviouswork

In the previous stage, we have computed the average position
of each common feature. We now have to estimate the vari-
abilities of their shape.

Shape analysis was first based on the study of relative
parameters such as the distance between two points or the
angles between three points (Abbot et al., 1990). Thena‘new
morphometry’ appeared a decade ago. According to Rohlf
and Marcus (1993), it can be defined by the introduction of a
tridimensional function fitting point relations that allows one
to find the most meaningful parametersto analyse a shape and
to build a taxonomy. The most famous method is based on
thin-plate splines and is described in Bookstein (1989, 1997).

In our case, the differences between lines are modelled as
the deformation fields D;**Y. We have to decompose them
into meaningful principal deformations or modes. Martin
et al. (1994) propose three main categories of decomposition:

e Predetermined modes. They are defined by the user
as shearing, bending, tapering or pinching introduced in
Barr (1984). These modes have a concrete significance
but they arelimited and can only describe arather smple
deformation for simple structures. As anatomical struc-
ture deformationsare very complex, we cannot use them.

e Mathematical modes. Their formulae are only based on
the geometry and the topology of the structure. We find
in this category, Fourier decomposition (Renaud et al.,
1996), the thin-plate splines method and the modal anal-
ysis we have previously used. The problem is that the
modes have no anatomical or experimental significance.
So they can be quiteinappropriatefor defining biological
shapes with afew parameters. Moreover, when we trun-
cate modal spectra, we discard high-frequency deforma-
tions that could be very important anatomically.

e Experimental modes. In contrast to mathematical
modes, their definition is based on the set of al the
deformations D;**Y, which gives them an experimental
validity. In particular, the principal components analysis
used in Hill et al. (1993), Cootes et al. (1994), Martin
(1995) and Székely et al. (1996) allows one to find a
basis of modes, the importance of which can be perfectly
guantified and sorted. Nevertheless, this method needs a
very important training set (several tens of elements) in
order to obtain a number of modes (for N elements, we
can compute N — 1 modes) that allows one to describe
precisely adeformation that does not belong to thetrain-
ing set.

In our case, we have at the moment, only a few samples
in the database, so we have preferred to use mathematical

modes and we choose modal analysisin consistency with the
previous stage. Moreover, moda analysis has aready been
used to study anatomical structures such asthe mitral valvein
Nastar and Ayache (1996). So, we have defined avery simple
shape distance based on modal amplitudes.

7.2. A simpleshapedistance

We replace A by the lines of the atlas that we will call ATLAS
in the following and we apply the same procedure as in the
previous stage: we register the common lines L; of the at-
las and those of the data in order to align all of them in the
frame of ATLAS and to find the deformation fields D™-AS4,
DATHASE | DATHAST \We then deduce the spectra of these
deformations and for each mode j, we compute the mean
amplitude for the three axes, d;[j]x, di[j]y, di[j], (which are
very near to zero dueto the averaging stage) and the associated
standard deviations, oi[ j]x, oi[j]y and ai[j]..

These dtatistical parameters allow us to define a dis
tance between the shapes of two lines. Given a set of
lines, X, we align it according to the frame of ATLAS
by registering the lines and by computing with the least-
squares criterion a similitude that superimposes the best one.
In this frame we then obtain the deformation D/™AS¥,
We compute the modal spectrum that gives the amplitudes
d/ TS0, dATAS Y1) .. dATAS YN — 1] for theiith line.
For each mode, we can compare the amplitudes of the de-
formation towards X" with respect to the amplitudes of those
towards the different data by the amplitude distance defined
(for the x-axis):

dist (D_ATLASX)[J-]X _ diATLAsx[j]x —dllx
- alilx

Large values of distany(D™*5%)[j]« alow us to find

which modes characterize ‘abnormal’ deformations. If we
assume that the distribution of the amplitude is a Gaussian
law, we can associate the amplitude distance to a normal-
ized centred Gaussian law. A valueof distamp (DTS, X)[ 1«
larger than 2.0 then indicates an *abnormality’ probability of
95%. This assumes that the modes are uncorrelated and can
be studied independently. In fact, anatomical deformations
are very complex and must be modelled by the combination
of several modes, mixing the three axes. Nevertheless, we
content ourselves with using this very simple amplitude dis-
tance that gives encouraging preliminary results.

Of course, we usethisdistance only for the 10% first modes
of the deformation which are the only meaningful ones after
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Figure 30. The skull S with a significant maxillary hypoplasia

the smoothing applied in the previous stage. In practice, we
limit the study to the very first modes (4 or 5).

Description of stage 4:

o Register ATLASwith respectively A, B,C, D, € and
F.

e Thankstotheregistration result, align the data A,
B, C, D, £ and F in the reference frame defined
ATLAS and remove similarity transformations.

e For each common line of the L; of A:

— Register theline L™ with the corresponding
common linesof A...F.

— Compute the modal spectra of DATASA
DATLASB  ATLASF

: ... Dy

— For each mode j, compute the mean value
di[j] and the standard deviation o;[j] of the
amplitudes. These statistical parameterswill
define an amplitude distance on the modes,
diStamp.

8. A CRANIOFACIAL APPLICATION: STUDY OF
MAXILLARY DEFORMATION

In this section, we use the atlas in order to study a skull? S
affected by asignificant maxillary hypoplasia (see Figure 30).

8.1. Automatic labelling

By registering the crest lines of the atlas with those of S, we
are ableto label the latter, identifying the mandibular line. By
taking points of the surface which are close to these lines, we
automatically extract the mandible of S (see Figure 31).

8.2. Normalized registration
With the pairs of matched points found by the registration
between theatlasand S, we compute therigid and homothetic

@Data from the Naturhistorisches Museum in Vienna.

Figure 31. The mandible of S automatically labelled and extracted
by registration with the atlas (in black, the mandibular crest lines).

Figure 32. Rigid and scale registration of the atlas (solid) with S
(transparent) emphasizing the deformations of the mandible.

Table2. Amplitude distancesfor thefirst five modes of the mandible
deformation between S and the atlas. According to the high values
of these distances, thefirst and second x-mode and the fourth z-mode
are considered ‘abnormal’.

Mode0 Model

Mode2 Mode3 Mode4d

x 0124 2442 2476 0.745 0.353
y  0.906 0.759 1.601 1734 0.920
z 1806 0.896 1.062 1017 2.267

transformations which best superimpose (in a least-squares
sense) the two skulls. In this way, we are able to contrast S
and the atlas and emphasi ze the def ormations of the mandible
which appears lateraly ‘too wide' and vertically *stretched'.
One could imagine the potential use of such adual display to
plan asurgical procedure.

8.3. Quantitative shape analysis

Let us now analyse quantitatively the deformations of the
mandible. With the method described in the previous section,
we compute the first five modes of the S mandible defor-
mations according to the average position given by the atlas.
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Figure 33. The three ‘abnormal’ basic deformations of the S
mandible. Left, the first x-mode which quantifies the breadth of the
mandible; middle, the second x-mode which represents the twist of
themandible; right, thefourth z-mode which characterizesthelateral
curvature.

Figure 34. The automatic comparison between S and the atlas al-
lows usto reposition the mandiblein order to obtain amore ‘ normal’
shape. We notice that a rotation and translation make the jaw less
curved (left, the moved mandible isin mesh representation; middle,
the original skull; right, after the proposed repositioning.

Then, for each of them, we compute the amplitude distance
which arelisted in Table 2. When the value is larger than 2.0
that corresponds to a variation of more than two standard de-
viations around the average value, the mode is considered as
‘abnormal’. Thisisthe case for the first and second x-mode,
and the fourth z-mode. These corresponding deformations
could be considered as typical of the mandibular abnormality
(see Figure 32).

8.4. Application to computer-aided diagnosis

In order to visualize these abnormal basic deformations, we
deform the atlas mandible according to these three modes
(with an amplitude multiplied by 3 to exaggerate the corre-
sponding deformations). A qualitative analysis of Figure 33
shows:

e the first Xx-mode can be associated to the breadth of the
mandible.

o the effect of the second x-mode is not symmetrical. In
fact, the mandible appears dlightly skew and this mode
can be associated to vertical twist.

o the fourth z-mode can be associated to lateral curvature
of the mandible.

So, with only three automatically detected parameters, we
could define and estimate the severity of the 3-D deformation
of the mandible.

By registering the mandible crest line of S and the atlas,
we are able to move the S mandible towards a more ‘nor-
mal’ postion. In this way, we could simulate the craniofacial
surgery procedure of cutting some pieces of bone (Marchac
and Renier, 1990) in order to reposition them (see Figure 34).

9. CONCLUSION

In this paper we have described a scheme for building auto-
matically a morphometric anatomical atlas from 3-D medical
images. We have shown how such an atlas could be used by
presenting a number of preliminary experiments on a skull
affected by a severe mandible deformation.

Wewould liketo stressthefact that the described schemeis
general and can be applied to other anatomical structures. We
have already created an atlas of crest lines of the brain based
on 10 different patient MR imagesand wehave used it to make
a specific study of the deformations of the cerebral ventricles
Subsol et al. (1996a, 1997).

In future work, we plan to improve each stage of the
scheme:

e Feature extraction. The extraction of crest lines could
be made more robust and precise by using a multi-scale
algorithm (Fidrich, 1997). We have also begun to use
3-D skeleton lines extracted by mathematical morphol-
ogy operatorsin order to characterize the sulci in abrain
atlas. Moreover, we could mix line and point features as
proposed in Thirion (1996b) to integrate accurate point
features with robust line features.

e Common feature identification. At present, the com-
mon features are entire lines. We plan to detect common
portions of lines. Moreover, we do not use al the infor-
mation given by the matching graph that would allow us
to obtain more robust common features. For example,
two subgraphs of common features which contain many
lines and which arejoined by only onelink could be con-
sidered distinct, the link being assumed to be an artefact.

e Average position. We plan to compare our average
method with one devel oped by morphometricians (Dean,
1993). Moreover, we wish to compare the filtering re-
sults of modal and Fourier analysis.
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e Variability analysis. Thisissurely theweakest stagebe-
cause it is based on the assumption of non-correlation of
modes. We could use multivariate hypothesis testing in
order to take into account the correlations. We aso plan
to use principa component analysis to decompose line
correspondences into uncorrelated basic deformations,
the importance of which will be completely quantified.

In parallel, we started to test the anatomical validity of the
scheme by testing it on larger databases and by validating the
results with specialistsin skull and brain anatomy.

Finally, we are developing new applications for the skull
atlas: achild skull growth study (Subsol et al., 1996b), skull
evolution between prehistoric and contemporary man (Sub-
sol, 1995), facial reconstruction (Quatrehomme et al., 1997)
and sex assessment from the skull.

DESCRIPTION OF THE VIDEO

The accompanying video demonstrates the building of the
atlas and its use for the study of a patient. The video runs for
1min50s.

1. Automatically building of a 3-D skull atlas (50 s).

Non-rigid registration of crest lines extracted on two
skulls (Section 4 of the paper).

Common crest lineidentification and labelling (Section 5
of the paper).

Average crest lines and surface of the skull (Section 6 of
the paper).

2. Study of apatient (1 min) (Section 8 of the paper).

Presentation of a skull affected by a maxillary
deformation.

Extraction of crest lines.

Registration with the atlas (Subsection 8.2 of the paper)
for a qualitative study.

Morphometric comparison of crest lines of the mandible
(in red, the atlas; in blue the patient) by modal analysis
(Subsection 8.3 of the paper).
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