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Abstract: This report presents a general scheme for the building of anatomical
atlases. We propose to use speci�c and stable features, the \crest lines" or ridge
lines which are automatically extracted from 3D images by di�erential geometry
operators. We have developed non-rigid registration technics and got encouraging
results for the building of a �rst atlas of the crest lines of the skull based on several
CT-Scan images of di�erent patients.
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Premiers pas vers la cr�eation automatique d'atlas

anatomiques

R�esum�e : Dans ce rapport, nous pr�esentons un cadre g�en�eral pour la cr�eation auto-
matique d'atlas anatomiques. Nous proposons d'utiliser des caract�eristiques stables,
les \lignes de crête" qui sont automatiquement extraites des images m�edicales tridi-
mensionnelles par des op�erateurs de g�eom�etrie di��erentielle. Nous avons d�evelopp�e
un algorithme de mise en correspondance non rigide et obtenu des premiers r�esultats
encourageants pour la construction d'un atlas des lignes de crête du crâne �a partir
d'images scanner de plusieurs patients.

Mots-cl�e : atlas anatomiques, images m�edicales tridimensionnelles, lignes de crête,
mise en correspondance non-rigide, transformations polynomiales
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1 Introduction

In order to improve the diagnosis and the therapy planning, the physician needs to
compare 3D medical images coming from Computed Tomography, Magnetic Reso-
nance Imagery or Nuclear Medicine [Aya93]. We will not discuss here the problem
of multimodality registration but we will still distinguish between three kinds of
comparisons:

� comparison of images of the same patient to study the evolution of a disease,

� comparison of images of di�erent patients to contrast a healthy and a patho-
logic person,

� registration of images with an anatomical atlas.

The aim of anatomical atlas books (for example, [Per83]) is to compile medical
observations and give a qualitative description convenient for a skilled physician.
In some cases, they can provide us with some quantitative information about the
variations among patients as, for instance, the atlas of the brain of Talairach &
Tournoux [TT88]. The next step is to use those variability parameters to detect
pathologies.

3D medical images are a tremendous opportunity to improve those atlases and
to broaden the scope of their applications. However, medical images can be huge
(for instance, a CT-Scan of the skull including 144 � 512 � 512 voxels is 18 Mo
large); we must therefore develop automatic tools to manage such quantity of data.
Furthermore, far better precision can be achieved with 3D image processing technics
than with manual ones.

A �rst attempt to achieve such an electronic atlas for the 3D visualization of
organs can be found in [SHP+93]. What we propose is to extend the use of those at-
lases to the automatic quanti�cation of the variations which could lead to automatic
diagnosis and surgical planning.

In this paper, we present our project of an automatical building and use of
a quantitative atlas from 3D medical images. After a presentation of the general
scheme, we detail the type of features used and also describe precisely a non-rigid
registration algorithm. At last, we show some very encouraging results of the auto-
matic building of an atlas of the crest lines extracted from 3D CT-Scan images of
skulls, including subgoals such as the automatic determination of the sagittal plane.
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4 G�erard Subsol, Jean-Philippe Thirion, Nicholas Ayache

2 General scheme

Our project may be decomposed into two parts (see �gure 1):

Average
Statistical Analysis

Registration

Data 1

Registration

Comparison

Atlas

Data 2

Diagnosis

3D Visualization

BUILDING

USE

Figure 1: General scheme

� the building: data 1 is a set of representative objects (for instance, sane pa-
tients) which are registered. By making comparisons between the data, the
registration algorithm seeks for some features that are shared by this reference
set (or a signi�cant subset). The features \average" will then compose the at-

Inria



First Steps Towards Automatic Building of Anatomical Atlases 5

las. A statistical analysis determines the \acceptable di�erence" in relation to
the atlas.

� the use: the registration algorithm permits to compare the second set of data,
data 2 (for instance, a pathological patient) and the atlas. The statistical
parameters give precious information about the level of \abnormality".

In a long-term period, such statistics could be sent to a diagnosis module that
could detect some pathologies. For now, we plan to integrate the 3D visualization
of the crest lines of the skull and the atlas in the craniofacial surgery simulation
testbed developed in the Epidaure project [DSCJ94], in order to help the physician
to plan operations.

3 The atlas structure

3.1 The features

Raw medical images are stored in a discrete 3D matrix I = f(x; y; z). By threshol-
ding I , isosurfaces of organs are computed (for instance, the surface of the skull for
CT-Scan, of the brain or the face for MRI). The problem is then to compute speci�c
features of these surfaces. Several methods have been proposed to achieve this:

� surface features: the mean and Gaussian curvatures are used to segment the
isosurface into patches of some fundamental types. Such a decomposition per-
mits to study the deformations of the left ventricle [FMPA92] or to describe
the faces [BCR93].

� line features: Hosaka [Hos92] reports a wide range of characteristic lines based
on di�erential geometry. The 3D Medial Axis Transform gives also sets of lines,
charting for instance the gyral anatomy in [SBK+92].

� point features: the \extremal points" [Thi93], based on geometric invariants
are used to perform 3D rigid registration.

A �rst example of a clinical application can be found in Cutting et al. [CBH+93]
where line and point features are used in order to compute \an average" skull. In
that study however, only semi-automatically extracted features are used.

RR n�2216



6 G�erard Subsol, Jean-Philippe Thirion, Nicholas Ayache

3.2 The crest lines

We decided �rst to use only line features: the \crest lines" introduced in [TG93].
They are de�ned as the successive loci of a surface whose largest principal curvature
in absolute value is locally maximal in the direction of its principal direction (see
�gure 2). Let k1 be the principal curvature whose curvature is maximal in absolute

value and
�!
t1 the associated principal direction, each point of a crest line veri�es:

�!
r k1:

�!
t1 = 0

t 1

t 2
n

k 1

maximal
curvature

direction
principal

normal

crest line

Figure 2: Di�erential characteristics of a surface and the crest line.

These lines are automatically extracted from an isosurface by the \marching
lines" algorithm [TG93].

Furthermore, crest lines are anatomically meaningful as emphasized in [BC88].
For instance, in the �gure 4, crest lines represent the salient lines of the skull (the
orbits, the nose, the mandible, the temples or the cheekbones) and on the brain, the
crest lines go along the convolutions.

Inria



First Steps Towards Automatic Building of Anatomical Atlases 7

4 The registration algorithm

4.1 Previous work

The 3D curves registration algorithm is a key point of our scheme: given two sets S
and S0 composed of the crest lines Ci and C0

j extracted from images of two di�erent
patients, we want to �nd which lines Ci of S (or portions Pi;k) correspond to which
lines C0

j (or portions Pj;l) of S0 (see �gure 3).
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Figure 3: The registration algorithm has to �nd the portions P j;l
i;k and P

0i;k
j;l , respecti-

vely the kth portion of Ci which correspond to the lth portion of Cj and vice versa.

Two di�culties arise: the number of lines of each set is quite important (from se-
veral tens up to several hundreds) and the registration between S and S0 is de�nitely
not rigid.

� in [BSSS86] and [SM87], 3D curves matching permits to recognize rigid syn-
thetic objects. First, boundary curves are smoothed and then matched with
prestored models but the registration is only rigid.

� in [GA92], the algorithm smoothes curves by using non-uniform B-Splines.
Then the two sets of curves are matched with an hashing table indexed by eu-
clidean di�erential invariants. Results are very good [AGT+93] especially with
sets of crest lines but the method only succeeds in �nding a rigid displacement
and cannot be generalized easily to the non-rigid case.

� Zhang in [Zha92a] and [Zha92b] and independently Besl [BM92] introduced
an \iterative closest point" matching method. It consists in three steps:

RR n�2216



8 G�erard Subsol, Jean-Philippe Thirion, Nicholas Ayache

{ for each point Mi of S, �nd the closest point M 0

i of S
0.

{ compute the rigid displacement between the two sets of matched points
(M1 : : :Mn) and (M 0

1 : : :M
0

n) by a least-squares technique.

{ apply this motion to S and iterate until the motion is \small".

Both authors use this algorithm to register free-form curves but once again for the
rigid case. Nevertheless, we can improve and generalize the method to our problem
and our algorithm follows the steps of the \iterative closest point" method.

4.2 Points matching

Each point of S is linked with its closest neighbour in S0 according to the euclidean
distance. We plan also to include in the distance computation di�erential parameters
such as curve tangent, normal, curvature and torsion [GA92] or surface normal,
principal directions and principal curvatures as described in [FA94].

Two coe�cients are computed with these couples of points: pji and p
0i
j which

are the proportion of the curve i of S matched with the curve j of S0 and vice
versa. Thus, by thresholding, p

j
i � thr and p

0i
j � thr, we can determine the curves

\registered" at thr percent; for instance, the curve i is considered to be de�nitively
registered with the curve j when p

j
i � 0:5 or p

0i
j � 0:5.

4.3 Least-squares transformation

As the registration is not rigid and even not a�ne, we try to register S and S0 with
a 2-order polynomial transformation as in [MNR+91] and [Gos88]:

8<
:
x0 = a1x

2 +a2y
2 +a3z

2 +a4xy +a5yz +a6xz +a7x +a8y +a9z +a10
y0 = b1x

2 +b2y
2 +b3z

2 +b4xy +b5yz +b6xz +b7x +b8y +b9z +b10
z0 = c1x

2 +c2y
2 +c3z

2 +c4xy +c5yz +c6xz +c7x +c8y +c9z +c10

As these polynomials are linear in their coe�cients, we can use the least-squares
method [PFTV88], [Bj�o91] to compute ai, bi and ci.

We tried to use higher order polynomials but large unexpected undulations then
occur as emphasized in [Bro92]. 2-order polynomial transformations give accurate
registration but we are not able to decompose them into such intuitive physical
meaning transformations as rotation, translation or scaling. Notice that at each
iteration, we compose the transformation with a 2-order polynomial and so, we
obtain after n iterations a 2n-order polynomial transformation.

Inria



First Steps Towards Automatic Building of Anatomical Atlases 9

4.4 Updating

The transformation is applied, then the algorithm iterates again or stop according
to several criteria:

� point criterion: some statistics are computed about the distance distribution
between matched points. According for example to the mean value or its va-
riation, we may decide to iterate or to stop. Nevertheless, this criterion is only
local and geometric; it is not representative of the real registration between
curves.

� curve criterion: we can compare the evolution of the registration coe�cients
p
j
i and p

0i
j and stop the iterations when they are stable: the curves registration

is then in a local minimum.

� transform criterion: we compute the matrix norm jjjT � Idjjj where T is the
transformation and Id the identity matrix. This parameter evaluates the dy-
namics of the iteration process.

Furthermore, by incrementing the threshold value thr at each iteration, for ins-
tance, from 0 to 0.5 by step of 0.025 and by taking only in account the matched
point couples (M;M 0) belonging to registered curves at thr percent, the algorithm
tends to improve the registration of already matched curves and to discard isolated
ones.

4.5 Results

First, we applied this algorithm to two sets of the longest crest lines automatically
extracted from 3D images of the skulls of two di�erent patients. We initialized the
non rigid registration by scaling the two skulls at the same height and by aligning
their centroids. We can notice in �gure 5 (left) that the number of lines of the two
sets (45 and 32 lines) and their shape (notice, in particular, the nose) are di�erent
and that the two skulls are quite shifted.

One set of lines S is then deformed to be registered with the second S0. To
evaluate the result, we display in �gure 5 (right) the registered lines of the set S0

and of the set S after deformation. The matched points are linked by segments. The
registration takes less than three minutes on a DEC-Alpha workstation.

The algorithm detects and matches similar lines (15 lines) as the orbits, the
mandible, the temples and the foramen occipitale.

RR n�2216



10 G�erard Subsol, Jean-Philippe Thirion, Nicholas Ayache

In �gure 6, we show (left) the registered lines of the set S0 and of the set S not
transformed in order to check the accuracy of the algorithm. We display (right) the
deformation applied to a regular mesh.

Then, we applied this deformation to the whole set S of crest lines (543 lines)
and we run again the algorithm with the whole set S0 (543 lines). The result is quite
impressive (see �gure 7): new similar lines appear as the cheekbones, the top of the
mandible. The points matching is also acceptable.

5 Some remarks

5.1 Initialization

This algorithm is iterative and converges towards a local minimum. So, it depends
on the initial position and, in particular, is very sensitive to rotations. A solution
as proposed by both Besl and Zhang is to test the matching with a set of initial
positions of the shape and to take the best.

We can also use the inertia moments to do a �rst coarse registration: we compute
the inertia matrix of the two sets of curves, then diagonalize it to �nd the principal
axis. As we have only directions, we obtain several basis. Then we register all the
basis of the two sets and we choose the matching which minimizes the distances
between points. This method is however still sensitive to severe occlusions.

We can also use the natural symmetry of organic objects as the skull. We develop
a method to �nd automatically the symmetry planes:

� apply a symmetry S to the object (for example, x0 = �x),

� register the object and its symmetric with the algorithm at the order 0 (then,
it is very close of the ICP method) and �nd the rigid transformation T .

� from T and S, deduce the symmetry plane. In �gure 8, we show how the
sagittal plan (the vertical symmetry plan) of the skull is automatically found.

By aligning the symmetry planes of the two objects and minimizing the distance
between the two centroids, we obtain a quite good initialization.

5.2 The order of the 3D transformation

We have studied the accuracy of the transformation according to the order. In the
graph 1, we show the distribution function of the distance between matched points

Inria
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Order Min Max Mean Standard Deviation Median

0 (Rigid) 0.003395 0.212321 0.056587 0.038605 0.043657

1 (A�ne) 0.003121 0.200469 0.044875 0.026226 0.038163

2 0.002219 0.139956 0.031291 0.021781 0.022436

Table 1: Distance between the matched points according to the order.

according to the order 0 (rigid case), 1 (a�ne case) and 2. The abscissa x represents
the distance between two matched points (the coordinates of the two skulls are
comprised between -1 and 1). The ordinate y is the percentage of pairs of matched
points whose distance is inferior to x.

The order 2 is far better than the others with this respect. This is con�rmed by
the �gures of the table 1. The mean value is then 43% lower for the order 2 than
order 1 and 81% than the rigid case. The standard deviation is respectively 20% and
77% lower than the order 1 and 0.

5.3 Sampling robustness

We made experiments to test the robustness of our algorithm according to the
di�erence of sampling. We sample the curves of S0 by taking at random 1=5th and
1=10th of points. We apply then the registration algorithm. We see in the �gure 9
that the registration remains coherent in spite of the non-regular decimation.

6 Application: Automatic Labelling

Given n sets of lines, we can register all the sets two by two. Then, we construct a
\similarity graph":

� the nodes are the lines Lj
i where i is the number of the set and j the index of

the line in the set Si,

� the vertices represent the relation \is registered with".

Now, we search for the connected parts of this graph sharing at least a line of
each set. Hence, we determine the subsets of similar lines that compose the \atlas".

We have experienced this method with three sets of crest lines extracted from
three CT-Scan images of the skull of di�erent patients. We found 72 subsets of

RR n�2216



12 G�erard Subsol, Jean-Philippe Thirion, Nicholas Ayache

similar lines and as we labelled some lines of one set, we can estimate the relevance
of the subsets in �gure 10. Notice that a subset may be composed of several lines of
the same set (for example, three lines make up the right temple of the �rst skull).

7 Conclusion

In this paper, we have presented some very encouraging results about the automa-
tically building and use of an anatomical atlas. Now, we are studying the averaging
algorithm in order to produce a �rst atlas of the crest lines of the skull with a larger
database of sane and pathological patients. We want also to develop a statistical
analysis of the variations as in [CHTH93]. The next step is the integration of this
atlas into the craniofacial surgery simulation testbed of our project. We plan also
to use the whole scheme to build an atlas of the convolutions of the brain and to
compare it with the atlas book [OKA90].
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Figure 4: Crest lines of a skull and of a brain.
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Figure 5: Left: The longest crest lines of the two skulls superimposed. Right: Regis-
tration of similar lines after the deformation.

Figure 6: Left: Registration of similar lines in their original position. Right: The
registration deformation applied to a regular mesh.
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18 G�erard Subsol, Jean-Philippe Thirion, Nicholas Ayache

Figure 7: Registration of two whole sets of crest lines after deformation. Notice the
nice registration of the nose, the orbits, the mandible, the temples and the cheekbones.
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Figure 8: The sagittal plan of the skull is automatically detected: the plan is displayed
as a rectangle in bottom and front views.
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Graph 1: Distribution function of the distance between matched points
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Figure 9: Registration of two sets of curves di�erently sampled (1=5th of points sam-
pled at random, up and 1=10th of points sampled at random, bottom). The registered
curves remain the same and the matched points are coherent.
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Figure 10: Automatic labelling of three di�erent skulls: LO=Left Orbit, RO=Right
Orbit, LT=Left Temple, RT=Right Temple, LMB & LMT=Left Part of the man-
dible (Bottom & Up), RMB & RMT=Right Part of the mandible (Bottom & Up),
LCB=Left Cheekbone, RCB=Right Cheekbone, F=Foramen Occipitale, N=Nose.
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