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Abstract: This paper describes a method to automatically generate the map-
ping between a completely labeled reference image and the 3D medical image of
a patient. To achieve this, we combined three techniques: the extraction of 3D
feature lines, their matching using 3D deformable line models, the extension
of the deformation to the whole image space using warping techniques.

We present experimental results for the segmentation of structures in Mag-
netic Resonance images of the brain of di�erent patients; the segmentation
of the cortical and ventricle structures. We emphasize the advantages of us-
ing crest lines deformable models prior to surface based models. This gives a
sparser representation of the data, easier to manipulate, and which makes the
convergence of the model much less sensitive to initial positionning.

In the future, we hope to use this method to generate anatomical atlases,
by the automatic interpretation of large sets of 3D medical images.
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D�etection Automatique de Structures

Anatomiques dans les Images M�edicales 3D

R�esum�e : Le pr�esent rapport d�ecrit une m�ethode pour identi�er automati-
quement des structures anatomiques dans une image 3D d'un patient �a partir
d'une image o�u ces mêmes structures sont compl�etement r�ef�erenc�ees. Pour ce
faire, nous avons combin�e trois techniques : l'extraction de lignes caract�eris-
tiques, leur mise en correspondance en utilisant des mod�eles d�eformables de
ces lignes, l'extension de la d�eformation ainsi obtenue �a l'image enti�ere grâce
�a des techniques de d�eformation d'images.

Nous pr�esentons des r�esultats exp�erimentaux sur des images par r�esonance
magn�etique de cerveaux de patients di��erents, en identi�ant plus pr�ecis�ement
les structures corticales et ventriculaires. Nous insistons sur les avantages d'uti-
liser des mod�eles d�eformables de lignes de crête plutôt que des mod�eles de
surfaces : en e�et, cette repr�esentation des donn�ees est plus concise et plus
facile �a manipuler. De plus, la convergence du mod�ele est moins sensible au
positionnement initial.

A l'avenir, nous esp�erons appliquer ce proc�ed�e pour g�en�erer des atlas ana-
tomiques �electroniques par l'interpr�etation automatique de grands ensembles
d'images m�edicales 3D.

Mots-cl�e : mod�eles d�eformables, atlas �electronique, ligne caract�eristique,
mise en correspondance non-rigide, d�eformation.
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1 Introduction

It becomes needless to emphasize the advantages of electronic atlases versus
conventional paper atlases. Many examples of such atlases are known, such as
the Voxel-Man ([28], [17], [24]), following the pioneering work of Bajcsy [2] and
Evans [21].

However, even if such atlases are available, and even if Computer Graphic
techniques are su�ciently developed to manipulate and display those atlases
in real time, there remains a crucial need for a theoretical framework and
automatic tools to :

� Generate atlases from large data sets,

� Average among features and models to create reference patients,

� Analyze the variability of features between patients,

� Find correspondences between the image of any patient and the atlases.

This paper presents one possible approach to achieve some of those goals,
usually referred to as a segmentation problem, for which a strong a-priori
knowledge of the human anatomy can be used.

As in many image processing problems, there are usually two dual and
complementary ways to explore, which are the region based and the feature
based techniques. The �rst kind of methods concentrates on the voxel values
inside the regions (see for example [10]), whereas the second one concentrates
on the boundaries of those regions (see for example [13] for 2D cases), such as
the interfaces between organs, or speci�c lines or points of those surfaces (see
[38], [36]).

In the present paper, we concentrate on a feature line based technique to
segment fully automatically the same organ in the images of di�erent patients.
We give �rst a global description of the method, which is then detailed into
feature lines extraction using di�erential geometry, registration of lines using
deformable models, and at last 3D space deformation using warping techniques.
Finally, we present a practical example, which is the automatic extraction of
the cortical and ventricle surfaces from the 3D Magnetic Resonance image of
a patient.

RR n�2485



4 J. Declerck, G. Subsol, J.-P. Thirion, N. Ayache

2 A global description of the method

We believe very much in bootstraping techniques for atlas building: from an ap-
proximate description of a patient anatomy, or from existing electronic atlases
or from a set of manually segmented 3D reference images, we hope to build
automatically better average representations of the studied organs, usable for
the re-interpretation of the reference images, or the analysis of a larger set of
images. The key point here is of course the automatic inter-patient registration.

To simplify, let us start with a single reference image Ir, with an associated
fully labeled image Mr, called map (�gure 1): each voxel value of the map Mr

speci�es the type of a corresponding structure in the reference image Ir. We
call structure a set of connected voxels of Mr having the same label. Ip is the
image of a new patient to process.

We will suppose also that images Ir and Ip have been acquired with the
same modality and parameter settings: their intensities are very similar.

To �nd the correspondence between Ip and the reference map Mr, we pro-
pose to �nd �rst the correspondence between Ip and Ir and then to deform the
reference map Mr into a new map Mp, exactly superimposable to Ip.

2.1 The general scheme

More precisely, what we propose is:

� to automatically �nd and label crest lines in Ir, corresponding to the
structures of Mr,

� to �nd automatically the corresponding lines in Ip,

� to �nd the correspondence Dp;r between those sets of lines,

� to either deform individual structures, or the global map Mr into new
structures or into a new map Mp, which is exactly superimposable to Ip.
This step is achieved by applying a warping technique to Mr using the
found correspondences (see [6], [14]).

INRIA
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IrIp

th

Matching 3D lines

WarpingDp,r

Lp,im
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Figure 1: Crest lines Lr;map are extracted from the reference map and used to
�nd the corresponding lines Lr;im in the reference image Ir. The crest lines
Lp;im are extracted from the new image Ip, using Lr;im. This gives a set of
correspondence and warping is applied to obtain the �nal deformation Dp;r

RR n�2485
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2.2 The automatic labeling of crest lines

It is achieved structure by structure, fully automatically, in the following way
(see also �gure 1):

� Select one structure Sr of Mr (for example the ventricles of the brain).

� Extract the crest lines Lmap
r of Sr (see [38]).

� Find the threshold th in Ir representative of the interface between Sr

and the other structures, for example by computing the average value of
the voxels of Ir in a region de�ned by the subtraction of the dilated and
eroded versions of Sr (see [30]) for the de�nitions of those words).

� Extract the crest lines Lim
r in Ir imbedded in the iso-surface th.

� Register the two sets of crest lines Lim
r and Lmap

r (see [18], [32]), to �lter
out from Lim

r the lines which have no correspondence in Lmap
r .

The set of crest lines Lim
r is labeled with the name of the structure Sr.

2.3 The automatic retrieval of corresponding lines

We now search the corresponding lines Lim
p in the new image Ip:

� Extract the crest lines Lim
p of Ip within the iso-surface th (the hypothesis

of similar dynamic of images is used here).

� Register Lim
p and Lim

r , and �lter out from Lim
p the lines which have no

correspondence in Lim
r .

At this point, we can compute a 3D B-spline approximation of a deforma-
tion Dp;r between the two image spaces Ip and Ir. This can be achieved on one
hand for each individual structure Sr, using the corresponding points between
Lim
p and Lim

r . Dp;r is then applied to Sr to obtain the structure Sp which is
superimposable to Ip. On the other hand, this can be applied to the global
map Mr, using simultaneously all structures, to deform Mr into Mp, the new
map of image Ip.

INRIA
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3 Feature based non-rigid registration

This part describes the automatic extraction and deformable registration of
crest lines.

3.1 The feature type

Raw medical images are stored in a discrete 3D matrix I = f(x; y; z). By
thresholding I, isosurfaces of organs are computed (for instance, the surface of
the skull for CT-Scan, of the brain or the face for MRI). The problem, then,
is to compute speci�c features of these surfaces. Several methods have been
proposed to achieve this:

� surface features : the mean and Gaussian curvatures are used to segment
the isosurface into patches of some fundamental types. Such a decompo-
sition permits to study the deformations of the left ventricle [16] or to
describe the faces [9].

� line features : Hosaka [20] reports a wide range of characteristic lines
based on di�erential geometry. The 3D Medial Axis Transform gives also
sets of lines, charting for instance the gyral anatomy [33].

� point features : the \extremal points" [37], based on geometric invariants
are used to perform 3D rigid registration.

A �rst example of clinical application can be found in Cutting et al. [12],
where line and point features are both used to compute \an average" skull. In
that study, however, the features are manually extracted.

3.2 The crest lines

As explained before, we choose to use only line features: the crest lines intro-
duced in [22]. They are de�ned as the successive loci of a surface for which
the largest principal curvature is locally maximal in the principal direction
(see �gure 2). Let k1 be the principal curvature with maximal curvature in

RR n�2485
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t 1

t 2

k1
"maximal"
curvature

n

direction
principal

normal

crest line

P

Figure 2: Di�erential characteristics of a surface and the crest line.

absolute value and
�!
t1 the associated principal direction, each point of a crest

line veri�es:
�!
r k1:

�!
t1 = 0.

These lines are automatically extracted from an isosurface by the \marching
lines" algorithm [38].

As we can see in the �gure 5, crest lines are anatomically meaningful: on
the skull, the crest lines represent the salient lines (the orbits, the nose, the
mandible or the temples) as emphasized in [7]; on the brain, the crest lines
follow the convolutions, the sulci and the gyri patterns described in Ono et al.
[25].

3.3 The 3D registration algorithm

The 3D curves registration algorithm is a key point in our scheme: given two
sets A and A0 composed of the crest lines Li and L0

j extracted from images
of two di�erent patients, we want to �nd which lines Li of A (or portions
Pi;k) correspond to which lines L0

j (or portions Pj;l) of A
0 (see �gure 3). Two

di�culties arise: the number of lines of each set is quite large (several hundreds,

INRIA
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sometimes more than a thousand) and the registration between A and A0 is
not rigid.
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Figure 3: The registration algorithm has to �nd the portions P
j;l
i;k and P

0i;k
j;l ,

respectively the kth portion of Li which corresponds to the lth portion of Lj and
vice versa.

In [3] and [29], 3D curves matching enables to recognize rigid synthetic
objects. First, boundary curves are smoothed and then matched with prestored
models but the registration is only rigid. In [18], the algorithm smoothes curves
by using non-uniform B-splines. Then the two sets of curves are matched with
a hashing table indexed by euclidean di�erential invariants. Results are very
good [1] especially with sets of crest lines but the method only succeeds in
�nding a rigid displacement and cannot be generalized easily to the non-rigid
case. Zhang in [39] and independently Besl [4] introduced an \iterative closest
points" matching method (also generalized in [34]). It consists in three steps:
for each point Mi of A, �nd the closest point M 0

i of A
0. Then, compute the

global rigid displacement between the two sets of matched points (M1 : : :Mn)
and (M 0

1 : : :M
0

n) by a least-squares technique. Apply this motion to A and
iterate until the motion is \small". Both authors use the algorithm to register
free-form curves but once again for the rigid case. Nevertheless, we can improve
and generalize this method to our problem.

Our algorithm follows the steps of the \iterative closest point" method.

RR n�2485
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3.3.1 Points matching

Each point of A is linked with its closest neighbour in A0 according to the eucli-
dean distance. We plan also to use in the distance computation the di�erential
curve parameters as the tangent, normal, curvature and torsion [18] or surface
parameters as the normal, the principal directions and principal curvatures as
described in [15]. This gives two lists of registered points, C1.

But as we have curves, i.e. an ordered list of points, we can apply some
topological constraints in order to remove no-consistent couples of linked points
and to avoid the con�gurations of the �gure 4 top where the line L1 belongs
to A and L2 to A

0.
With these couples of points C2, two coe�cients are computed: pji and p

0i
j

which are the proportion of the curve i of A matched with the curve j of A0 and
vice versa. Thus, by thresholding, pji � thr and p

0i
j � thr, we can determine

the curves \registered" at thr percent. For instance, curves can be considered
completely registered when p

j
i � 0:5 and p

0i
j � 0:5.

3.3.2 Least-squares transformation

We register A and A0 with polynomial transformations. The 0th-order is a
rigid transformation and 1st-order an a�ne transformation but they are not
su�cient for satisfying non-rigid registration. So, we use 2nd-order polynomial
transformations de�ned by:

8><
>:
x0 = a1x

2 +a2y
2 +a3z

2 +a4xy +a5yz +a6xz +a7x +a8y +a9z +a10
y0 = b1x

2 +b2y
2 +b3z

2 +b4xy +b5yz +b6xz +b7x +b8y +b9z +b10
z0 = c1x

2 +c2y
2 +c3z

2 +c4xy +c5yz +c6xz +c7x +c8y +c9z +c10

As these polynomials are linear in their coe�cients, we can use the least-
squares method [26], [5] to compute ai, bi and ci.

Higher order polynomials may create large unexpected undulations as em-
phasized in [8]. 2nd-order polynomial transformations give accurate registra-
tion but we are not able to decompose them into intuitive physical meaning
transformations such as rotation, translation or scaling. Notice that, at each
iteration, we compose the transformation with a 2nd-order polynomial and so,
we obtain after n iterations, a 2n-order polynomial transformation. However,

INRIA
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Figure 4: The topological constraints help to remove inconsistent couples of
linked points: left, some points have too many correspondents, right, a part of
L1 have a erroneous correspondent on L2.

such a iterative composition does not create the undulations [8] emphasizes:
it seems that those undulations do not appear for such a class of polynomial
transformations.

Such transformations are also used by Greitz et al. in [17] to model natural
deformations as brain bending called scoliosis.

RR n�2485
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3.3.3 Updating

The transformation is applied, then the algorithm iterates again or stop ac-
cording to several criteria (mean value of the distance distribution between
matched points, stability of the registration coe�cients pji and p

0i
j , threshold

on the matrix norm jjT �Idjj where T is the transformation and Id the identity
matrix).

3.3.4 Parameters adaptation

By incrementing the threshold value thr at each iteration, for instance, from
0 to 0.5 by step of 0.025 and by taking only into account the matched point
couples (M;M 0) belonging to \registered" curves at thr percent, the algorithm
tends to improve the registration of already matched curves and to discard
isolated ones. Moreover, we can begin to apply rigid transformations to align
the two sets of lines, then a�ne transformations to scale them and, at last,
quadratic transformations to re�ne the registration.

At the end, we obtain a good registration between the two sets of lines and
a point to point correpondence between lines; however, the transform is global,
we need then to use a B-spline based warping technique to obtain a more local
and a better approximation of the deformation.

4 Warping with B-splines

This section describes the method that has been developed to get a full su-
perposition of two images (Ir and Ip), having a sparse set of corresponding
points.

4.1 The problem

The process detailed in the previous section gives a set of pairs of points, each
pair contains two matched points in both images. The aim of the following
technique is to establish a matching on the whole images. Let us consider F
as the matching function, this means a geometric transformation that, taking

INRIA
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a point in Ir, gives an anatomically equivalent point in Ip:

F : Ir �! Ip
Pr 7�! Pp

This function has obvious regularity properties.
A pair of points obtained with the above algorithm is hence an estimation

of the pair (Pr; F (Pr)). Given the set of such pairs of landmarks, we have a
partial knowledge of F , which will help us to de�ne an estimation � of it on
the whole image. Having �, it will be possible to warp the �rst image on the
second.

4.2 Calculation of the warping function

A similar study has been proposed by Bookstein and Green ([6]), they calculate
� as a thin-plate spline interpolating function. We adopted a similar approach,
but de�ning � as an approximation of F rather than an interpolation.

4.2.1 The B-spline approximation

Let us consider (u; v; w) the coordinate functions of �. We de�ne them as a
three-dimensional tensor product of B-spline basis functions:

u(x; y; z) =
nx�1X
i=0

ny�1X
j=0

nz�1X
k=0

�ijk B
x
i;K(x) B

y
j;K(y) B

z
k;K(z)

v(x; y; z) =
nx�1X
i=0

ny�1X
j=0

nz�1X
k=0

�ijk B
x
i;K(x) B

y
j;K(y) B

z
k;K(z)

w(x; y; z) =
nx�1X
i=0

ny�1X
j=0

nz�1X
k=0

ijk B
x
i;K(x) B

y
j;K(y) B

z
k;K(z)

with the following notations (for the x coordinate, for instance):

� nx : the number of control points in the x direction. It controls the
accuracy of the approximation.

RR n�2485
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� � : the 3D matrix of the control points abscissae. This is what we are
looking for.

� Bx
i;K : the ith B-spline basis function. Its order is K. These Bx

i;K generate
the vectorial space of piecewise K th degree polynomials. (see [27]). u is
then a piecewise K th degree polynomial in each variable x, y and z.

We choose cubic B-splines in our examples (K = 3), for their regularity
properties. For the knots, we took the classic regular mesh:

tx0 = ::: = txK = minx

txi = minx + (maxx �minx)
i�K
nx �K

for K < i < nx

txnx = ::: = txnx+K = maxx

where minx and maxx are the boundaries of the de�nition domain (the
image domain). The knots values can be optimized to get an accurate
approximation, but the data are not that precise.

4.2.2 The constraints

We try to determine the best �, with respect to our data. We then de�ne three
criteria Jx, Jy and Jz, one for each coordinate. For instance, for u, Jx splits
in two parts:

� position term. For each data point, u taken on the point in the �rst image
must be as close as possible to the abscissa of the corresponding point
in the second image. We choose a least square criterion:

Jx
position(u) =

NX
l=1

�
u(xl1; y

l
1; z

l
1)� xl2

�2

which is developed as:

Jx
position(u) =

NX
l=1

0
@nx�1X

i=0

ny�1X
j=0

nz�1X
k=0

�ijk B
x
i;K(x

l
1) B

y
j;K(y

l
1) B

z
k;K(z

l
1) � xl2

1
A
2

�ijk is the 3D matrix of the control points abscissae, xl1 the abscissa of
the lth data point of the �rst image, etc...

INRIA
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� smoothing term. B-splines have intrinsic rigidity properties, but it is so-
metimes not enough. We choose a second order Tichonov stabilizer: it
measures how far from an a�ne transformation the deformation is.

Jx
smooth(u) = �smooth

Z Z Z
IR3

"
@2u

@x2

2

+
@2u

@y2

2

+
@2u

@z2

2

+
@2u

@x@y

2

+
@2u

@x@z

2

+
@2u

@y@z

2
#

where �smooth is a balance coe�cient. It is manually de�ned, some solu-
tions to choose it automatically is currently studied. The integrals are
calculated with the Gauss-Legendre algorithm, which gives exacts results
for polynomials with very few evaluations of the integrand.

The criterion to minimize is the sum of those two:

Jx(u) = Jx
position(u) + Jx

smooth(u)

4.2.3 The linear systems

J is a positive quadratic function of the �ijk variables. To �nd the coe�cients
that minimizes Jx, we derive its expression with respect to all the �ijk: it gives
nx.ny.nz linear equations which are written, for 0 � a < nx, 0 � b < ny and
0 � c < nz:

X
i;j;k

�ijk[
NX
l=1

Bx
a (x

l
1) B

y
b (y

l
1) B

z
c (z

l
1) B

x
i (x

l
1) B

y
j (y

l
1) B

z
k(z

l
1)

+ �smooth

�
Ixxabc;ijk + I

yy
abc;ijk + Izzabc;ijk + 2 Ixyabc;ijk + 2 Ixzabc;ijk + 2 Iyzabc;ijk

�
]

=
NX
l=1

Bx
a (x

l
1) B

y
b (y

l
1) B

z
b (z

l
1) x

l
2

with shortening notations for the smoothing term:

Ixxabc;ijk =
Z Z Z

IR3

B00x

a B
y
b B

z
c B

00x

i B
y
j B

z
k

I
xy
abc;ijk =

Z Z Z
IR3

B0x

a B
0y

b B
z
c B

0x

i B
0y

j B
z
k

: : :

Each integral is separable in a product of 3 simple integrals, they are hence
easy to compute.

RR n�2485
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4.2.4 The resolution of the systems

The assembling of the matrix of the linear system is easy because this matrix
is sparse: when all Bx

i;K are evaluated for a given x, a maximum of K functions
are non-zero (and then a minimum of nx �K is equal to zero). Moreover, the
matrix is symmetric and positive, because the criterion is positive.

We use then a conjugate gradient method to solve our three systems (one
for each coordinate).

4.3 Advantages of this warping method

The main advantages to compute B-splines are threefold:

� the B-splines functions are easy to evaluate with the Casteljau algorithm.
The assembly of the matrices and the evaluation of the � are then fast.

� the intrinsic rigidity properties of B-splines gives a regular function.

� a data point has a local inuence : to evaluate an image of a point, we
need only (K + 1)3 control points (to be compared with the nx.ny.nz
that have been calculated), those which are controlling the area around
this point. Hence, the inuence of outliers is very local.

5 Results and discussion

The data are presented on �gures 6 and 7. On top, the reference brain extracted
from Ir. Bottom, the patient brain extracted from Ip. Notice the di�erences of
shapes and orientations; the patient brain is more compact than the reference
brain, and it is rotated by a few degrees. The �gure 7 shows the crest lines of
the surfaces of the brains. The thin lines are those of the brain, the thick ones
are those of the ventricle of each brain. Notice how di�erent they are. These
crest lines were the lines used in the registration algorithm.

On �gure 8, the top line is the reference image Ir with the reference cortical
surface Sr. The middle line is the image of the new patient Ip with the reference
cortical surface Sr before deformation. The bottom line is the image Ip with
the result Sp of the found deformation applied on Sr: see how it follows the

INRIA
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convolutions. The next �gure shows a similar sequence with the surface of the
ventricle.

The �gure 10 helps to have on overall view of the deformation : it shows
di�erent 3D views of the reference brain (left) and the same brain after warping
(right). The brains have been cut so that we can see the ventricles (the dark-
grey structure) in their respective position.

The results are very good on that speci�c example, and they are encoura-
ging in the perspective of a completely automatic registration process, given
reference and patient images.

6 Conclusion and perspectives

The proposed method allows us to build fully automatically the maps associa-
ted to the 3D images of new patients, from manually designed maps of reference
patients. It can be used to e�ciently initialize 3D surface snakes if a more pre-
cise �nal segmentation of the organs is needed (see [11], [35]). The advantage
of using crest lines prior to surface models is to have a much more compact
representation, more easy to manipulate, that allows us to explore more nu-
merous deformation hypotheses. Also, �nding point to point correspondences
between 3D lines is less ambiguous than between 3D surfaces, because lines
are much sparser, and often correspond to anatomical landmarks. By having a
very good starting point, and 3D structures whose topology is inferred directly
from the reference maps, 3D surface snakes are more likely to converge toward
the desired solution.

We are currently studying the integration of such 3D surface snakes into our
method ([11]), in order to improve the quality of the automatically generated
maps, and we develop also tools for averaging between patient features, and
measuring variability (see [23], [32]). In the long run, we shall validate more
thoroughly this study with a larger number of cases, and we plan to build tools
for the automatic generation of anatomical atlases, using bootstraping.

RR n�2485



18 J. Declerck, G. Subsol, J.-P. Thirion, N. Ayache

7 Acknowledgements

We especially thank Dr Ron Kikinis from the Brigham and Woman's hospital,
Harvard Medical School, Boston, for having provided the segmented image
of the brain, and the MR images to analyse. We also thank Digital Equip-
ment Corporation who partially supported this research (External Research
Contract).

INRIA



Automatic Retrieval of Anatomical Structures in 3D Medical Images 19

Figure 5: Crest lines of a skull and of a brain.
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Figure 6: The data : top, the reference brain (the one which is warped), bottom,
the patient brain. Notice the di�erences in shapes and orientations.
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Figure 7: The crest lines automatically extracted and labeled from the reference
brain (top) and from the patient brain (bottom). The thick lines are those of
the ventricle and of the medulla of each brain.
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Figure 8: Top line, the reference image Ir with the cortical surface Sr. Middle
line, the patient image Ip with Sr before deformation. Bottom line, Ip with the
result Sp of the found deformation applied on Sr.
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Figure 9: Top line, the reference image Ir with the ventricle surface Sr. Middle
line, the patient image Ip with Sr before deformation. Bottom line, Ip with the
result Sp of the found deformation applied on Sr.
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Figure 10: Di�erent 3D views of the brains with their ventricle: left, the refe-
rence image, right, after warping.
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Unité de recherche INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93, 06902 SOPHIA-ANTIPOLIS Cedex
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