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Alignement automatique de coupes histologiques
pour la reconstruction et ’analyse
tridimensionnelles

Résumé : Dans ce rapport, nous présentons une nouvelle méthode d’aligne-
ment de coupes histologiques. Tout d’abord, nous calculons un champ de
déplacement entre deux images par une technique de mise en correspondance
par blocs. Puis, nous estimons une transformation rigide a ’aide de ce champ.
L’ensemble de cette méthode est intégré dans un processus multi-échelle. Nous
nous intéressons au probléme de la robustesse et nous montrons expérimenta-
lement que cette méthode permet d’atteindre une précision inférieure au voxel.
Nous présenterons enfin quelques résultats d’alignement de coupes de cerveau
de rat et d’'un adenocarcinome de ’endométre.

Mots-clés :  coupes histologiques, recalage, estimation robuste, mise en
correspondance par blocs
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1 Introduction

1.1 Presentation of the problem

Histological sections provide useful and additional information to 3D medical
images for the diagnosis or the study of pathology. To obtain histological
sections, the anatomical structure is first fixed using paraffin embedding or by
cryogenisation. Then it is trimmed into thin sections with a constant inter-
section gap. The sections are laid on a microscope cover-glass where they
can be stained according to the sub-structures we want to emphasize. The
microscopic images are then scanned using a digital camera.

The whole process is performed independently for each section. So, there is
no alignment between the different images as we can see in Figure 1. Whereas
we begin with a real 3D block of data, we obtain at the end a set of 2D data
that are no longer spatially correlated. In order to perform a 3D analysis of the
anatomical structure, we need to register the sections to recover the original
alignment.

Figure 1:  Three consecutive stained rat’s brain histological sections. We can
see how they are misaligned.

1.2 Difficulties of the problem

With average quality data which can be obtained in current laboratory, we
find different problems.

INRIA
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Figure 2: Left: a MRI slice of rat’s brain with a resolution of 72 x 65 pizels
(0.47 x 0.47mm), and an inter-section gap of lmm. Right: a histological
section of a rat’s brain with a resolution of 768 x 576 pizels (0.03 x 0.03mm,)
and an inter-section gap of 0.4mm.

First, in the following examples, the digitized images have a resolution
of 768 x 576 pixels, 7 times larger than a typical MR slice (see Figure 1).
Moreover, if they are in color with Red, Green, Blue components encoded in
1 byte, the section image is 21 (7 x 3) times larger.

When laying the sample on the cover-glass some spots can appear and the
edges of the cover-glass can be in the field of view of the camera (as in the
example of Figure 1). All this can create a lot of artifacts in the background.

The staining process is performed independently for each section. Thus,
the intensity contrast can be different. Moreover, a change of lighting can
occur during the digitalization of the sections. This leads to a difference of
global intensity from one section to an other.

During sectioning, the edges of the sections can be distorted or even torn
out. This can prevent the use of edges as reliable landmarks. More gener-
ally, during sectioning, the whole section can be deformed. Nevertheless, we
will assume in the following that the distortions remain small enough to as-
sume that the transformation between two consecutive sections is rigid, i.e.
the composition of a rotation (one angle parameter) and a translation (two
parameters).
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Two successive sections are all the more different as the inter-section gap
is large. In fact, the intrinsic problem of section registration remains the fact
that we have to find a rigid transformation whereas the two sections are not
exactly the same. Moreover, between two consecutive sections, we can have
very large translations and rotations that can reach half the field of view or 90
degrees.

From all these observations, we conclude that a section registration method
should be:

e Fast enough to deal with several tens of section registration in a reason-
able time in spite of the large quantity of information.

e Robust with respect to background artifacts. Most of them can
be deleted by a simple preprocessing, but some of them, like spots or
marks, could remain.

e Insensitive to inter-section variation of intensity. This is a very
important point in dealing with the stained sections that give a lot of
information.

e Robust with respect to the initial conditions, to be able to recover
large displacements.

e Not based on external edges. Often, with the histological sections,
edge features are unreliable or cannot deal with precise registration.
Moreover, the position of point features can also be shifted due to the
geometrical distortions.

e Accurate to be able to use the accuracy of the histological sections.
Nevertheless, it is very difficult to estimate the precision of the result.
Indeed, even with a perfect registration, 7.e. that corresponds to the
position before cutting, no criterion will be equal to zero since two con-
secutive sections are not identical.

1.3 A brief survey on sections registration

We can classify existing sections registration methods into four kinds:

INRIA
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e Manual methods. The user aligns the sections interactively [DSCT93].
It is a non reproducible method because it is user-dependent and it is
based on the structure the user want to focus on. Moreover, it is a
tremendous task and it cannot be used with a large number of sections.

e Fiducial markers based methods. In general, fiducial markers consist
of holes which are created by the track of needles stuck in the structure
block before cutting [GTH'95]. We have seen that geometrical distor-
tions can shift these point landmarks and then blur the registration ac-
curacy. Moreover, creating fiducial markers can destroy a part of the
structure and then prevent any post-mortem diagnosis. Such a method
can be used for a 3D reconstruction of an anatomical structure but not
for any image processing which should lead to clinical conclusions.

e Feature based methods. This kind of method requires first the ex-
traction of some features (points, lines, regions) from the image. We
can first segment the section in two successive sections, compute the
principal axes of the segmented mask and align the axes. In [HHS8S|,
this alignment is considered sufficient for the histological sections. But
the precision remains very limited (see [SZ97]). It is also possible to
match either the contours of the section [ZYG93, Dum96, CYHNO9S8| or
the edges [KFM™95, KRBC96]. This can be done with methods based
on Chamfer distance [KRBC96|, disparity analysis [ZYG93|, B-spline de-
composition [CYHN9S8| or gray scale edge image correlation [KFM*95].
In [RCM*97], point features are extracted in autoradiographs and are
matched with Robust Point Matching method.

e Iconic method. There is no feature extraction as the matching algo-
rithm takes into account the intensities of the whole image. We can
cite the algorithms based on intensity correlation [ADAL92| or mutual
information [KBFM97].

1.4 Discussion and overview of the paper

One requirement for the method is not to use edges as they could be unreliable.
Nevertheless, global iconic methods that deal with the whole image are very
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sensitive to the contiguous section differences. We propose then to use a local
iconic method that determine a local displacement field based on intensity
similarity on small sub-blocks of the image. Then, we gather all this local
information to define a general rigid transformation of the image. One key-
point of the transformation computation is the robustness. So, we have first to
choose a similarity measure that takes into account the inter-section variation
in intensity. Secondly, to deal with the contiguous section differences and
the background artifacts, we have to introduce a robust estimation method
of the transformation. In order to accelerate the process, to deal with large
displacement and to obtain accurate results, we develop a multi-scale scheme.

In section 2, we present the new algorithm and we describe precisely all
its steps. In section 3, we analyze quantitatively the robustness with respect
to the relative displacement of the two sections. In section 4, we present
some applications. In particular, we point out how the 3D homogeneity allows
performance of a more precise segmentation of some structures. In the last
section, we propose several research tracks for future work.

2 Description of the algorithm

2.1 General presentation

The algorithm takes as its input two section images: reference image I; and a
floating image I that have the same size (X lines and Y columns. The result
will be the rigid transformation 7" and the image I = I, o T ! which is aligned
with I.

The algorithm follows an iterative scheme (see Figure 3) which computes
at each step a global vector field between the current floating image I and Iy
and estimates a rigid transformation S which is composed with the current
rigid transformation 7. Then a new current floating image I is obtained by
resampling I, with T". Notice that there is only one resampling to compute I,
which limits the loss of information. Depending on ¢ which characterizes the
« magnitude » of S, some parameters are modified and the process is iterated.

2.2 Computing a displacement field

INRIA
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Figure 3: The different steps of the algorithm.
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2.2.1 The Block Matching scheme

The Block Matching scheme has similarities with image compression methods
such as MPEG II [BK97]. Compression algorithms make a movement compen-
sation between two successive images by finding the displacement of luminance
blocks. The idea is to move a block B of the first image in its neighborhood and
to compare it to the blocks B’ that have similar positions in the second image.
The best corresponding block B’ allows the definition of a vector between the
centers of blocks B and B’ which determines a local displacement between the
two images (see Figure 4).

Figure 4:  The block B (in red) of first image is moved around its initial position
(green positions) and compared to the blocks B' that have similar position in
the second image. The best corresponding block B’ allows to define a vector
between the centers of blocks B and B’ that determine to a local displacement
between the two images.

More precisely, in our application, the first image is the current floating
image I and the second image is the reference image I,. Let By; (resp. Bj;) a
block of N x N dimension of image I (resp. I1), where (i, j) are the coordinates
of the left up corner of this block.

e for (i=0;i<X—-N;i=i+4)

e for (j=0;<Y-N;j=75+14)

INRIA
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e For the block B;; of image I;:

—for (k=i—-N;k<i+N;k=Fk+Ay)
—for(l=j—N;I<j+N;l=10+Ay)

— Compute the value Cf;?l of a similarity measure between B;; and Bj,.

o Let B, = argmafo]?l the block that maximizes the value of the similarity
measure. It defines the displacement vector between (i + N/2,j + N/2) and
(m+N/2,n+ N/2).

The list of displacement vectors define a displacement field D;_.;, that
approximates the transformation between I and I;. Notice that the number
of vectors of D;_.;, depends on the block step A; that must be lower than the
block size N to take into account all the image pixels. Thus, A; defines the
displacement field resolution.

With a block size of N, we can find a maximal displacement vector of N
pixels (more precisely, v/2N in the corner as we choose a squared neighbor-
hood). So N can be considered as a transformation scale parameter.

N’
The number of comparison tests to find the best similar block is: <A_> .
2
Thus, A, is an indicator of the accuracy of the matching process.

2.2.2 An intensity similarity measure: the correlation coefficient

Many similarity measures have been proposed for image registration [PWL*98|
(sum of squared differences, correlation, mutual information [MCV*97, Vio97],
correlation ratio [RMPA98]...). Choosing a particular measure must depend on
the kind of relation which can be assumed between intensities of the registered
images.

If we assume that the blocks to be registered are affinely correlated, there
exist two local constants o and 3 such that I(i,j) &~ o I1(i+m, j+n)+ [ where
I(i,7) and I (i +m,j + n) denote the intensity of the pixels with coordinates
(,7) in image I and (i + m,j + n) in image I;, respectively. This relation
is considered valid only if the blocks are registered (i.e. if m and n are the
correct translational parameters), and if the pixel coordinates are taken inside
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the blocks. Therefore, this model allows us to take into account an inter-section
bias which is locally affine.

It has been proved by several authors (see [Bro92|) that a similarity measure
adapted to affine models is the correlation coefficient (sometimes also called
normalized cross correlation). We recall now its definition.

Let T(Q’b) and Tl(u,v) be the means of I on block B,, and I; on block
B.,,, respectively, and let o;(a,b) and oy, (u,v) be the corresponding standard
deviations. Then, the correlation coefficient between the blocks By, and B;,, is
given by :

ClB B = L NZINZI [t ib+5) = Tap] [Llutiv+i) = Tiuw]
o ; or(a,b)or, (u,v)

(1)

It is important to emphasize that C has a low cost calculation with respect
to other measures such as mutual information. This is critical in our algorithm
because each block correspondent is found through an exhaustive research in
the block neighborhood. Thus, numerous evaluations of the similarity measure
are needed, which can be done with reasonable computing time using the
correlation coefficient.

However, as shown in [LM95]|, C is not reliable in the presence of occlusions
(e.g. background artifacts). This is to say that the matching between two
blocks may be bad if one of them surrounds an occlusion. This is why we have
to introduce a robust approach for estimating the rigid transformation based
on the displacement field.

2.3 Computing a robust estimation of the rigid transfor-
mation

The block matching step described in section 2.2.1 provides a list of corre-
sponding 2D points, z;, and y, denoting the centers of the matched blocks.
We can interpret the data-points (zy,yr — xx) as an approximate sampling
of the actual rigid displacement field which maps I to I;. The problem we
address now is to estimate the 3 parameters of this rigid transformation, that
is find a rotation angle # (or, equivalently, a two-by-two rotation matrix R)
and a translation vector ¢ = (t, t5).

INRIA
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Given arbitrary R and ¢, let us define the residuals as the 2D vectors
Tk:yk—Rl‘k—t.

The problem can then be formulated as minimizing some cost function of the
residuals with respect to R and t. A classical choice is the sum of the Euclidean
norm of the squared residuals, yielding a least square (LS) estimator :

. 2
min zk: R 2)

The LS approach has several advantages. Notably, its solution is unique
and explicit (several closed forms and algorithms are discussed in [ELF97]).
However, it is well-known that LS is not robust in the sense that outlying
displacements may strongly perturbate the result. In our case, due to the
numerous image artifacts, it may happen that some blocks in I have bad
correspondences in I (in our experiments, typically 20% of the blocks).

Various studies, carried out in analogous rigid estimation problems [ZDFL94,
SB97], have shown that M-estimators techniques can provide solutions which
are robust to such bad locations. As explained in [RL87]|, M-estimators gener-
alize LS by replacing the squared residuals ||r¢]|? in equation (2) with another

function, yielding
min %:p(llmll),

where p is a symmetric, positive-definite function with a unique minimum at
zero'. The basic idea is to reduce the influence of outliers by choosing a slowly
increasing function p.

Several forms have been proposed for p, but many of them depend on
a tuning parameter c, often called the cut-off distance. Roughly speaking, c
represents the threshold beside which a residual is discarded. Tuning c suitably
is critical since it rules the trade-off between robustness (discard outlying data)
and accuracy (take into account as much good data as possible). Therefore, ¢
has itself to be estimated in a robust way, which requires in practice a good
initialization of R and t.

n fact, this definition of M-estimators is restrictive in the multidimensional case [RL87]

RR n’ 3595
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Some non-parametric M-estimators are robust while reasonably accurate.
This is the case of the so-called L; estimator given by the following minimiza-

tion [RL87]| :
min (|| (3)
’ k

Unlike the case of LS estimation, only a numerical solution to equation (3)
can be performed. To do so, implementing a gradient descent is difficult since
the criterion in equation (3) has a singularity for null residuals. Instead, we can
use the Powell’s algorithm [PFTV92|, which does not manipulate the criterion
derivatives. It proved itself to be very efficient in our case. For a displacement
field containing 5000 displacement vectors (the maximum size we deal with for
aligning histological slices), the computation time required is of the order of
one second on a workstation Dec PWS 500au. It is linearly dependent on the
field size.

Our experiments have borne out that the L; estimator handles outlying
displacements much better than LS. However, the outliers still have an influ-
ence on the result, even if it is much reduced. This observation encouraged us
to improve the L; estimator.

At this point, we may notice that the LS and L; estimators do not depend
on the coordinate system in which the data vectors (zy,yx) are given (pro-
vided it is orthonormal). This arises from the fact that the criteria minimized
in equation (2) and equation (3) depend on the residuals’ Euclidean norms,
||rk||. Although this “isotropy” property seems natural, our displacement fields
are computed in a way that makes the images axes play a preferential role
(see 2.2.1). Hence, there is actually no reason for using an isotropic estimator.

In our case, the authorized displacements between two blocks follow the
image pixel grid since they are translations discretised along the image axes
(each translation equals to an integer number of pixels). Suppose that two
matched blocks are distant from m pixels along the first axis, and n pixels
along the second one : if we draw a path following the image grid from one
block to the other, it cannot have a length lower than |m| + |n|, i.e. the 1-
norm of the vector with coordinates (m,n) (see Figure 5). This non-Euclidean
distance is known as the Manhattan distance.

Based on this intuitive argument, we propose a non-isotropic adaptation of
the Ly estimator, which consists of replacing the residuals’ Euclidean norm in

INRIA
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Figure 5: Manhattan distance. |m| + |n| is the minimal length of a path
following the grid from point A to point B. Thus, it defines the grid distance
between A and B : dg.q(A, B) = |m| + |n|.

equation (3) with their 1-norm, yielding :

min S lirelly, with [l = real + [reel, (4)
’ k

where (ry.1,712) are the coordinates of the i'" residual. In the following, we
will denote this estimator Lj.

Table 1: Summary of the estimators presented in section 2.3.

‘ Acronym ‘ Minimization criterion ‘

LS Dohet Tit T T
Ly D ik \/7“12@,1 + T}%,Q
L PO I R T

The implementation of L} using Powell’s algorithm yields the same com-
putation times as for L;. However, we have noted experimentally a sensible
improvement in the estimation accuracy.

We do not see a rigorous argument to account for the superiority of Lj
on L; in our case. For the time being, we believe that the 1-norm may be

RR n’ 3595
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better-adapted to the motion discretization provided by the block matching
algorithm, whereas the Euclidean distance should be more adapted to contin-
uous displacements.

2.4 Multi-scale implementation

To obtain the most precise displacement field D;_.;,, we should choose low
values for A; and A,y. The complexity C to compute the displacement field is
the number of tested blocks in I multiplied by the number of compared blocks
in I; multiplied by the complexity of the similarity measure which is in N?:

X Y IN\ >
o - N2
CO((AIXA1>X<A2>X

So to reduce the complexity, we must choose a low value for N and large
ones for A; and A,. We propose a multi-resolution method to determine
automatically the values of these parameters that lead to accurate the result
in a reasonable time. For a high level, we will have a large value for N, A,
and A,. And for a low level, we will decrease N, A; and A,. In this manner,
we find large displacements in the higher levels with a low precision and we
refine the solution in the lower levels.

How do we initialize the scale?

We set the multi-scale parameters according to the size of the image. Let
Ny be the initial block size, AY and AY be the initial parameters:

XY N,
Nozmin< ’ > A[l’:—o A) =4
8 4

How do we change the scale?
Let £ be the multi-scale level. We propose to change the multi-scale pa-
rameters:

N, AY A
Nk:max(2—:,4> A’fzmax(z—kl,1> A’;:max<2—;,1>

When do we decide to change the scale?

INRIA
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At each step of multi-scale, we compute a variation measure § between the
new transformation S o T and the old transformation T (see Figure 3). Let
P;(0,0), P,(X,0), P3(0,Y), Py(X,Y) be the four corners of the floating image:

5=1 YIS T(R) - T(R)|? )

If § is inferior to a bound €, we decrease the scale level k. Otherwise

N,
we reiterate with the same scale. We set ¢, = % o be consistent with the

scale of the transformation. In this manner, the multi-scale scheme is entirely
automatic.

What is the new complexity ?

We can now evaluate the complexity of one step at the scale level k de-
pending of the value of A%:

X Y 2N\ 2
oo (g ap) < () <
{Ck o« 4XYN? for k<2
N2

C. o 64XY2—2(I)€ for k>2

So, when we change the scale level to improve the accuracy, the computa-
tion time remains stable or decreases.

3 Robustness and accuracy analysis

The aim of this section is to characterize the performances of the algorithm
and to determine the robustness of the results with respect to the algorithm
parameters. As a ground truth, we use the data of one rat brain from the
UCLA rat brain atlas [TSHA95|. In this dataset, the cryoplaned block-face
was consistently positioned during sections acquisition to avoid serial image
registration. Thus, the “ground truth” registration between consecutive sec-
tions is the identity. To test for the performance of the algorithm, we take two
consecutive sections and resample one of the section with a known rigid trans-
formation (see Figure 6). Then, we study the error 66 = |# — 6| on the rotation
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angle and the error 6t = ||t — Ryt|| on translation component [PT97]. In the
following, experiments are performed on 3 couples of contiguous sections. To
speed-up the statistics (we performed more than 1600 registrations...), we ex-
tracted a corresponding sub-image of size 256 x 256 in the 1024 x 1024 images.
The correlation window size at the higher level is 32 = 256/8.

Sensitivity to rotation A first experiment with a translation that lower
to 40 voxels shows that the algorithm is almost completely insensitive to this
kind of translations. Thus, we can focus in a first step on the parameter 0
alone.

Figure 6: Left and center: two consecutive slices shifted by a rotation of 20
degrees. Right: the second slice is registered to the first one.

In Figure 7, we show the rotation error dt with respect to the rotation
angle . Each point on the graph is the average value for 50 registrations
with random translations. On the large scale graph, we clearly see that the
algorithm always converge for rotations of angle less than 6., = 28 deg. For
higher values, the algorithm occasionally diverges (or diverges constantly for
high values of ). The second observation (on the small scale graph) is that the
mean error (or the accuracy) of the translation is statistically constant when
the algorithm converges (here, a RMS of 0.75 voxels). We observed exactly the
same type of graphs for the error on the rotation angle, with the same cutting
angle value and a mean accuracy of 0.2 degrees.

INRIA
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Figure 7: Accuracy of the estimated translation with respect to the angle of
rotation.

Sensitivity to translation To study the robustness with respect to the
translation norm, we repeated the same experiment as above, but keeping ro-
tations under 15 degrees with a translation range from 0 to 100 voxels. We
obtain very similar results: a statistically constant accuracy of the transforma-
tion for translations less than a threshold (same mean values as above), and
sporadic to continual divergence above this threshold.

Here, the value of the cutting value 0.t = 52 voxels is explainable: it
corresponds approximately to 1.5 times the size of the correlation window at
the higher level (here N = 32 voxels). Since the block matching is optimized
with a maximal displacements of N, 1.5 times this size means that at least
50 % of the corresponding block should be in the research area, which is in
accordance with what we expected. Hence, the size of the convergence basin
for translations is directly linked to the window size N and can be extended
by taking larger windows.
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4 Presentation of the results

Rat’s brain

In a first experiment, we have registered 20 sections of rat’s brain with a
resolution of 768 x 576 pixels (0.03x0.03mm) and an inter-section gap of 0.4mm
(data from Sanofi-Research, Montpellier - France). In Figure 8, we compare the
result with the original data and with a classical method based on the principal
axes |[HH88|. We have a good spatially correlation between the sections as
we can see how inner anatomical structures appear. The registration of two
sections takes around 2 minutes on a current workstation.

In a second experiment, we were faced to the problem of segmenting an
ischemia area that appears lighter in an other set of 26 sections of rat’s brain
(data from Sanofi-Research, Montpellier - France). A simple thresholding gave
a lot of different parts and it was impossible to correlate the parts from one
section to another. After the registration, we were able to use 3D digital
topology techniques to find the largest connected component corresponding to
the ischemia area. Moreover, it is then possible to obtain a 3D reconstruction
of the ischemia area as well as the cortical surface and to compute precisely
their volumes (see Figure 9). We can compare the result with other 3D rat
brain reconstructions (see Figure 10) from UCLA [TSHA95] and from MR data
(images from Sanofi-Research, Montpellier - France). Even if in our data, the
inter-section was very large and we did not have all the rat’s brain, our result
appears visually consistent.

Endometrical adenocarcinoma

We have registered 26 sections of an endometrial adenocarcinoma with a reso-
lution of 768 x 576 pixels (2.5 x 2.5um) and an inter-section gap of 8um (data
from Dr. Christophe Sattonnet, Anatomo-pathology Laboratory, Cagnes-sur-
Mer - France). The study of the 3D reconstruction (see Figure 11) allows to
show its large complexity and the alternation of the papillar, tubular pattern
and solid zones. It also makes possible to evaluate the ratio between the pro-
liferating tissue mass and the adaptive stroma or the conjonctive tissue. This
could lead to define quantitative measures useful for the prognosis.
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| @

Figure 8: Median perpendicular view of the section set: left, initial data; mid-
dle, after registration with principal axes method and right, after registration
with the proposed method.

Figure 9: 3D reconstruction with ischemia area segmentation.
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Figure 10: Up: 3D  reconstruction with histological sections.
Left: 3D reconstruction with the rat’s brain data block available on

http://www.loni.ucla.edu/data/index.html. Right: 3D reconstruction from MR
1mages.

Isosurface 3D dicesYZ

dices XY

Figure 11: Right: After registration of histological section. Left: 3D reconstr-
cution of the endometrical adenocarcinoma.
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5 Future work

In this report, we have presented a new method to align histological sections.
We have carefully studied the problem of robustness and we have proposed
several ideas to deal with inter-section intensity differences and background
artifacts. We have demonstrated experimentally that we can reach a sub-voxel
accuracy.

The 3D reconstruction from serial sections may lead to numerous applica-
tions both to the microscopic and the macroscopic levels.

At the microscopic level, that corresponds to a magnification larger than
100, the 3D reconstruction study will allow to define new and more accurate
histological and cytological parameters as the tumoral angiogenis in oncology,
the fibrosis development in hepatitis, the cellular distortions in prion diseases
and, more generally to quantify many physiological and pathological phenom-
ena.

At the macroscopic level, the 3D reconstruction study will allow to study
objects that are too small to be accurately dissected and too large to be an-
alyzed only based on the 2D slices. In particular, this will make possible to
analyze the cardiopathies in foetal-pathological medicine.

In the future, we plan to test the method on other histological data sets
containing more sections and with more complex anatomical structures. We
also plan to achieve non-rigid registration in order to compensate for geomet-
rical distortions. This algorithm will be tested within the European Research
Project QAMRIC to study the Creutzfeldt-Jakob disease
(http:/ /www.inria.fr/epidaure/Collaborations/QAMRIC/qamric.html).
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