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ABSTRACT

The design of representative models of the human body is of great interest to medical doctors. Qualitative information
about the characteristics of the brain is widely available, but due to the volume of information that needs to be
analyzed and the complexity of its structure, rarely is there quantification according to a standard model. To
address this problem, we propose in this paper an automatic method to retrieve corresponding structures from a
database of medical images. This procedure being local and fast, will permit navigation through large databases in
a practical amount of time. We present as examples of applications the building of an average volume of interest
and preliminary results of classification according to morphology.

Keywords: image database, exploration, volume of interest (VOI), average patient, medical atlas, classification,
registration, magnetic resonance imaging (MRI)

1. INTRODUCTION

Neurological disorders like schizophrenia or MRI
Alzheimer’s disease have for long been the sub- ;.. .
ject of serious studies. It is believed that such
conditions could be coupled with abnormal con-
figurations of different brain structures, but

strong quantitative evidence has still to be re-

ported. Although anatomical brain atlases'™

provide information to analyze and compare Patient’s JESSEERS -_—
brain structures, their characteristics, such as MRI '
precise shape and variance among healthy sub-
jects, are not yet clearly defined. Moreover, pa-
per representations are not sufficient to answer
today’s problems in this field®®; such atlases
are two dimensional, static and based on one or
few studies. Computer guided diagnosis, multi-
media medical teaching or surgical simulation
robotics require more adaptable and complete
sources of information.

definition comparisons

Figure 1. Volume of interest extraction and comparison are the
principal ideas behind medical image database exploration.

Further author information —

A.G.(correspondence): Email: guimond@iro.umontreal.ca; WWW: http://www.iro.umontreal.ca/ guimond;
Telephone: (+514) 343-7107; Fax: (+514) 343-5834

G.S. Email: subsol@sophia.inria.fr;y WWW: http://www.inria.fr/epidaure/personnel /subsol/subsol.html;
Telephone: (+33) (0)4 93.65.76.60; Fax: (+33) (0)4 93.65.76.69;

J.M.: Email: meunier@iro.umontreal.ca; WWW: http://www.iro.umontreal.ca/ meunier;
Telephone: (+514) 343-7107; Fax: (+514) 343-5834

J.P.T. Email: thirion@sophia.inria.fr; WWW: http://www.inria.fr/epidaure/personnel/thirion/thirion.html;
Telephone: (+33) (0)4 93.65.76.60; Fax: (+33) (0)4 93.65.76.69;

SPIE Vol. 3034 e 0277-786X/97/$10.00 659



Over recent years, the use of magnetic resonance imaging (MRI) has produced huge medical brain image databases.
Study of these data could provide the information needed to build numerical atlases with quantification of brain
structure characteristics. This article addresses the problem of exploring such databases to retrieve information
about a specific part of the brain (see Figure 1). The idea is to provide tools for practitioners to define a volume
of interest (VOI) within a patient’s MRI and extract corresponding VOIs from the database. These VOIs can be
viewed as either control subjects or representative elements of different classes of pathology. In the first case, contrast
images would facilitate the identification of significant abnormalities in the patient’s VOI. In the second, comparisons
would reveal which pathologies the patient is most related to, with associated probabilities. For example, to study
temporal lobe epilepsy, we could use a database composed of representatives of a normal subject, of an epileptic with
an atrophied left hippocampus and of an epileptic with an atrophied right hippocampus. Following the extraction of
the hippocampus and comparisons, a diagnostic would be automatically produced putting forward affinities between
the patient and the database elements.

The heart of such an extraction procedure is a matching method that finds correspondences between the patient’s
brain and the database elements. Once the VOIs extracted, we can apply different kinds of processing: automatic
measure of features, shape extraction and comparison, factor analysis, statistical ordering, etc. .. Thus, we present a
new method to evaluate differences between VOIs and obtain quantitative information from the database.

The first part of this paper reports different techniques used to compare brains. The second part deals with brain
structure differences between individuals and the type of information they convey. We present our method in a third
section, and explain how to identify important differences between images depending on the kind of information that
we seek. The fourth part is an overview of possible applications including the construction of an average patient and
some preliminary results of classification according to morphology. We conclude the paper with a brief discussion of
future work.

2. MATCHING METHODS

Matching a model image I,, with a scene image I, using a transformation class T and a similarity measure S, can
be formalized as the process of finding the function M that minimizes S(M(I,,), I;). The application of this function
to the model image M (I,;,) will be called a mapping, or equivalently a warping, of I, onto I,.

2.1. Previous work

Many matching methods have been put forward to identify dif-
ferences between brain images (see Ref. 7 for a comprehensive
review). They can be divided in two main categories: feature Restrained -
based®!! and intensity based,'>!® the trade-off being between
the size of data to register and the complexity of the registration

procedure. -
The class of transformation T used is also of importance. Var- -
ious approaches exist. To name a few, registration methods have
been developed using linear,'¢'8 piecewise linear,!® quadratic?°
and free-form!?!3 classes (see Figure 2 for a rough classification).

A very common approach is to use the Talairach reference
space, also known as the three-dimensional proportional grid permissive -

system.! This system uses the intercommissural line and some

other anatomical landmarks to partition the brain into twelve Fjgure 2. Classification of different transforma-
subspaces and is an attempt to model non-linear differences be- tjon classes.

tween data sets.

We can generalize the idea of Talairach by finding more landmarks, which leads to additional subdivisions of
the brain volume and make the transformations more local. The difficulty lies in the automatic detection of the
landmarks. A promising solution relying on differential geometry criteria can be found in Ref. 21.
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2.2. Our matching method

The matching method we developed differs from previous work by confining itself to a VOI. This has several advan-
tages. It corresponds to doctors’ need of studying particular brain structures. It also reflects the assumption that
gross anatomical shape is only influenced by neighboring bodies. Finally, the database investigation must be fast.
Using sub-images will help us achieve this end.

We propose a new method to quantify differences between subjects in a localized volume of the brain using a
three step approach that progressively refines the matching:

1. A global matching between the entire data sets.
2. A regional matching between corresponding VOIs.

3. A local matching in a voxel’s neighborhood.

The matching procedure we use works as follows: given two images and a transformation class 7', the algorithm
delivers a mapping function M to warp a model image I, onto a scene image I,. In order to be less sensitive to
the intensity values, a global bias and gain between the intensities of the two images can also be estimated by the
algorithm. This gives us results qualitatively similar to Refs. 22,23 but with an implementation one or two orders of
magnitude faster. More details can be found in Refs. 12,24.

3. BRAIN STRUCTURE VARIATIONS

3.1. Types

Variations between corresponding structures of different subjects can be separated

in two categories: Morphometrical
differences

Morphological These are differences due to the presence or the absence of a

certain feature. For example, Figure 3 shows two different patients with
morphological variations. The subject on the left has two gyri and the one
on the right only one. These are non-trivial differences since they require
to deduce the location of absent features.

Morphometrical These are variations due to the different properties of existing
features. For example, the length of a gyri or the volume of the ventricles
(Figure 3 presents two patients with different ventricle volumes). For the
purpose of this article, morphometrical variations will be divided in three
categories:

Morphological
differences

Figure 3. Morphometrical and

Global Brain scale morphometrical variations. morphological differences.

Regional VOI scale morphometrical variations.
Local Voxel scale morphometrical variations.

3.2. Irrelevant variations

As previously mentioned, our interest lies in the study of particular brain structures. In that respect, it is generally
agreed that for the vast majority of subjects, global morphometrical differences, such as whole brain width or length,
are not really significant. Furthermore, this idea can hold for differences between sufficiently large VOIs. Our
registration method will reflect those assumptions by correcting for affine differences at global and regional scales.
This class of transformation will correct translation, rotation, scale and skew differences between VOIs.

Choosing this transformation class has some advantages over the Talairach alternative. The proportional grid
system is a reference space that is frequently used by medical doctors, which is an important asset since they are the
end-users. But it shows poor accuracy when matching structures away from the anterior and posterior commissures
and limits the extraction procedure to the brain.
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It is worth noting that correcting for affine differences between VOIs is in agreement with Talairach’s philosophy
of not considering structures away from the ones of concern. Since they are both based on linear transformations,
their differences can be estimated by looking at the number of free parameters they hold. A Talairach conversion is
defined by 1 3D point, 1 distance (from AC to PC), 1 rotation around each axis and 6 scaling factors for a total of
13 unknowns. An affine transformation accounts for 12 parameters: 1 3D translation and for each axis, 1 rotation,
1 skew and 1 scaling. So there is only 1 degree of freedom difference between them.

4. EXTRACTION OF VOl
4.1. Method

As mentioned earlier, our method is di-
vided into three steps: (1) global, (2) re- Global corrections:
gional and (3) local matching to evaluate Database
global, regional and local morphometrical entry
differences respectively. These steps are S
detailed below and displayed in Figure 4.

Global morphometrical corrections
The global correction procedure
consists in estimating an affine
transformation to map the database
entry’s dimensions to the ones of [
the reference image. This step is Reference
necessary to extract roughly corre- mage .
sponding VOIs needed for regional regional corrections: £
comparisons in the second step. To
reduce computation, the matching
is done on sub-sampled images, a
justifiable approach since we are
only looking for a rough correspon-
dence.

Before registration, we apply to
each of the two images the following
transformations:

1. A transformation A to a stan-
dard axis view and voxel size.
In our case these are coronal
views and 1 x 1 x 1 mm? per
voxel. This transformation as-
sures images coming from dif-
ferent sources are comparable.

2. A resampling using the scale
parameter S, to the desired
resolution for global registra-
tion. In practice, this is a use-
ful parameter that influences
the precision of the transformation obtained and the computation time.

Figure 4. VOI extraction method using the reference image and a
database entry.

After matching, we obtain the global affine transformation G.

Regional morphometrical corrections This procedure is similar to the previous one. Two steps differ. The
first modification concerns the database entry for which we substitute the change of referential by the global

662



correction matrix G. As a second difference, the scaling factor for global registration S, is replaced by it’s
local equivalent S; and a transformation E accounting for the VOI extraction. This last transformation is a
cropping at identical locations for both images. In our work, it is implemented using a translation, to make it
representable using matrices, and a size specification. This matching provides the regional affine transformation

R.

Local morphometrical corrections Evaluation of local differences is done using the same procedure as before,
with a correction matrix R updated with regional information, and a matching allowing a transformation class
T of the free-form type.

Images after the regional correction are called corresponding volumes of interest. They differ only by morphological
and local morphometrical variations. Hence, when considering structures of the same morphology, those images can
be used to obtain information concerning morphometrical dissimilarities such as size differences.

Morphological variations can be obtained by applying the third step that corrects for local morphometrical
differences. From this, the detection of particular features could be obtained.

An interesting aspect of our work is the com-
bination of those transformations by way of 4 x4
matrices in homogeneous coordinates, and op-

tionally a displacement field derived from local Cro
variations, to end up with a single transforma- .
tion and therefore a single resampling of the raw Con . —
images .
It is also possible to completely eliminate the ©

. C ) .
first part of the procedure since, for a given ref- . . .-
erence image, these transformations do not de- "7 7Con*Cpo

pend on the VOI definition. They can be pre-

computed to save time. Moreover, when the  Figure 5. Matrix combination to change the reference image.
reference image changes, instead of recomput-

ing the whole set of global transformations, it is sufficient to combine them with the transformation that brings the
old reference image onto the new one (see Figure 5).

4.2. Data sets

The following results were obtained using a
database of 10 MR images of healthy subjects
provided by Dr. Ron Kikinis of Brigham and
Women’s Hospital (see Figure 6). Each image
contains 256 x 256 x 123 voxels each representing
1 x 1 x 1.5 mm® with a possibility of 256 gray
levels. A coronal slice of each of those images is
shown in Figure 6 in which the subject’s left side
corresponds to the left side of the image . The
images will be called I, ..., 1o, referring to the
corresponding image when counting from left to
right, top to bottom. All experiments were con-
ducted on a DEC AlphaStation 400 4/233.

Figure 6. Coronal slice of each image composing the database.
Images are numbered from 1 to 10 when counting from left to right,
top to bottom.

4.3. Results

We present the correction of morphometrical
differences for a VOI in the left temporal lobe of the brain. The reference image is I)o in which we define a
VOI of 64 x 64 x 20 voxels of 1 x 1 x 1 mm3.
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Figure 7 shows the evolution of the VOIs
throughout the correction procedure. The first
image, Figure 7(a), presents the VOIs taken
before any processing. It exhibits the differ-
ences due to intensity and positioning. After
the first step which consists of intensity correc-
tions and elimination of global morphometrical
differences, the VOIs seem much more similar
(see Figure 7(b)).

Although affine dissimilarities are small, it
is still possible to eliminate those variations by
matching only the VOI images instead of the
whole brain volume. Results of this second
phase are shown in Figure 7(c). They repre-
sent corresponding VOIs and their differences
are due only to morphology and local morphom-
etry.

The third step is to eliminate those local
morphometrical differences. After this (see Fig-
ure 7(d)), we believe that only morphological
differences are present.

5. APPLICATIONS

Applications resulting from the correction of
morphometrical differences could be divided in
two categories: (1) studies of local morphomet-
rical differences or (2) studies of morphological
variations.

5.1. Morphometrical measures

This class of application relies on measures of
brain structures. For example, the comparisons
of the basal ganglia’s components volumes with
a standard model to identify schizophrenia.2’
The construction of such a model relies on mea-
sures taken from a population of normal sub-
jects. We have implemented this last idea.

5.1.1. Construction method

The idea behind the construction procedure is
derived from Refs. 8,26,27,16 and consists of ex-
tracting from the database the volumes corre-
sponding to a VOI defined on a reference image,
and applying to the average of those VOIs the
average of the local morphometrical differences.
This process is depicted in Figure 8.

Using the procedure described in section 4.1.

(a) VOIs without correction.

(b) VOIs after global correction.

(c) VOIs after regional correction.

(d) VOIs after all morphometrical corrections.

Figure 7. VOI Extraction

on all the entries of the database, we can eliminate global and regional morphometrical differences to extract
corresponding VOIs of our database. For each of those entries, we can compute the displacement field that maps
the entry VOI onto the reference VOI (forward) and the reference VOI onto the entry VOI (backward). These

displacements account for local morphometrical differences.
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field produces images with the same morphometry as the reference VOI but with different intensities. Arithmetic
averaging of corresponding voxel’s intensities between VOIs produces a mean intensity image with the morphometry
of the reference image. Furthermore, by applying the average backward displacement field to this last image, we
create a mean intensity and morphometry representation of our database, or the “average” VOI.

5.1.2. Resulting “average” patients

Figure 9 shows different kinds of “average” VOISs of the right tem-

poral lobe. The first image is the reference VOI and is shown forward mean
only for comparison purposes. To its right is a simple average deformation
of the VOIs taken from each subject previous to any warping,
putting forward the different patient positions during the acqui-
sition. The third image presents the average of corresponding
volumes of the database. Structures which are morphologically
stable appear well contrasted while unstable ones are fuzzy. The
first image of the second line is the average of the VOI intensities Figure 8. Procedure to build an average VOI
after elimination of morphometrical differences. Deforming this from a set of images.

image with the average backward displacement field creates an

image that represents the mean intensity and morphometry of the database, or the average VOI. It has the remark-
able property of being an average image while not suffering from severe smoothing. Finally, we present the variance
of the backward deformation fields’ amplitude obtained from our database as a simple display of the variability of
the different structures positions.

An advantage of our technique is that the average images it
produces are of quality similar to the MR images of the database.
Hence the same inter-patient matching method can be applied
to compare a new patient to the average, which is an alternative
to whole database exploration.

We have applied the same scheme to extract from the
database the volumes that contain the ventricles. Averages have
been built using the method previously explained and are shown
in Figure 10(a). The careful observer will notice that, although
they were obtained using different methods, the average VOI
(last image of the second row) resembles a smoothed version of
the average VOI after affine correction (last image of the first
row). This is especially true for the ventricles and strengthens
the theory behind our method.

In this case, we have also applied to the segmented ventricles,
the displacement field corresponding to the average local mor-
phometrical differences. This permitted to construct ventricles
that represent the average morphometry of our database. They
are shown in Figure 10(b). To the left, the original ventricles and
to it’s right, a display of their average morphometry. An obvious
difference is the back-end of the ventricles which are thinner for
the average patient than for the original ventricles.

Figure 9. Different types of “average” patients.
First line: Original reference VOI; average of the
10 VOIs before any processing; average VOI after
exclusion of global and regional morphometrical
differences. Second line: average VOI without
morphometrical differences (mean intensity); aver-
age backward deformation applied to the average
VOI without morphometrical differences (mean in-
tensity and morphometry); variance of the average
5.2. Morphological measures backward deformation. See the text for explica-

tions.
This class of applications is concerned with the presence or ab-

sence of features. Following this, we have just begun experiments to classify similar patients according to their
morphology. This work requires methods related to sorting subjects, or more generally, the development of similarity
criteria. Their is a large literature on this topic?®?° but our goal here is neither to find the best measure nor to
analyze its relationship with our registration procedure. We wish to show practical applications of VOI extraction
and evaluate qualitatively different similarity criteria. Hence, the following experiments are to be considered as a
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(a) Average VOI obtained from free-form registration (see (b) Left: original ventricles. Right: morphometrical average ventri-

Figure 9 for explanations. The positions of the second and cles of the database.
third images of the second line have been interchanged for
comparison purposes.).

Figure 10.

first step of a feasibility study. Furthermore, the images at our disposal are of normal subjects. Consequently, we

are not trying to evaluate pathologies or find anomalies.

Among available choices, we have chosen two: (1) the stochastic sign-change (SSC),
which is based on zero-crossings, and (2) correlation. The method consists of extracting
morphometrically corresponding VOIs automatically from the database using the method
previously described. We then define a working space in which comparisons are done (see
Figure 11). We present the criteria used and show preliminary results of VOI classification
according to their resemblance with Io.

5.2.1. The stochastic sign-change criterion

This criterion was introduced by Venot et al.3° for the comparison of scintigraphic images.
It is a measure of similitude between two images and is based on zero-crossings (see
Figure 12).

Let I; and I, be similar images that contain noise and S = I — I;. Originally, I
and I, are identical. Then, S is not zero but contains sign fluctuations because of noise.
However, if the two images differ from one another in some region R of S, R will contain
either mostly positive or mostly negative values and the number of sign changes in S is
reduced. This shows that a high SSC count in S is a good indication of resemblance
between two images.

Working space

Volume of interest (VOI)

Figure 11. A slice
of the VOI and working
space. Only the work-
ing space is considered
for comparisons.

To count the number of sign changes, we go through the subtraction image three times. Once comparing values
in the X direction, once in the Y direction and a last time for the Z direction. This criterion can be normalized by
considering the maximal value of SSC in the working space. Hence, values close to 1 shows good similitudes, and

those close to 0, poor correspondence.

5.2.2. Correlation

The correlation between two working spaces X and Y each containing N voxels is computed using the following

formula:
Cov(X,Y)

/Var(X)Var(Y)

Corr(X,Y) =
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where

Cov(X,Y)

i=1
Var(X) = Cov(X,X)
Var(Y) = Cov(Y,Y)

5.2.3. Results

The SSC values and correlation coefficients are shown sorted
in Table 1. We also present, using this ordering, the working
spaces used for computations in Figures 13(a) and 13(b). Each
of these figures contains two non-adjacent slices of the VOIs to
get a better understanding of the tridimensional structure. They
show the importance of our three dimensional approach since one
would probably change this ordering by only looking at one slice.

The ordering obtained with the SSC criterion and with cor-
relation are similar up to minor permutations. The only large
difference has to do with I; which is identified as having the
most different morphology using the SSC criterion and is place
fifth using correlation. By looking at both slices of this VOI, we
can see that it is quite similar to I;¢. Hence, preliminary results
seem to indicate that correlation would be more appropriate to
evaluate morphological differences than the SSC criterion. In
light of those results, comparisons based on mutual information
techniques are expected to give good classifications.

Although in this case we used an elastic registration proce-
dure before classification, when assuming negligible morpholog-
ical variations, this classification method can be used on cor-

1 &
TV-ZX‘Y"—

1 N N
wa XD Y

i=1 i=1

Image 1

: Noisy image

Image 2

Substraction

Figure 12. The stochastic sign-change criterion.

responding VOIs thus using only affine transformation for registration purposes. In this case, an order on local

morphometrical differences would be obtained.

| Image || SSC value (normalized) |
1.000
0.325
0.315
0.305
0.285
0.284
0.282
0.279
0.271
0.268

~|oo|po| ol en| 0| <[5

Table 1. Classification using the SSC criterion (left) and correlation (right).

| Image || Correlation |

10

1.000

0.917

0.906

0.906

0.888

0.879

0.858

0.845

0.844

DO 00| O U | | Q| O v

0.836
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5.3. Discussion

The main benefit of this method is that it is
fast and fairly robust. The time to obtain the
corresponding VOIs varies between 5 and 10 sec-
onds, and local warping doubles this time. This
opens a new door on medical image database
exploration. It is now possible to retrieve a
large amount of corresponding volumes in a rea-
sonable amount of time. Once those volumes
extracted, further processing like classification
and similarity matches can be operated to re-
sult into extrapolation of information contained
in the database to other images. For example,
this technology is presently being used for the
study morphometrical hippocampal variations
in epileptic patients. We have only started to
explore this field but preliminary results are en-
couraging.

6. CONCLUSION

We have presented a new method to obtain cor-
responding volumes of interest from medical im-
age databases. This procedure has the advan-
tage of restraining itself to local volumes of the
brain and thus is not influenced by misleading
information from other regions. It has been ap-
plied to the quantification of morphometrical
and morphological variations. We believe that
better results could be obtained by dividing sub-
jects into subclasses of normal patients based on
morphological similarities. This would facilitate
the analysis of only morphometrical differences,
to provide a better understanding of dissimilar-
ities between a patient and the group of normal
subjects with corresponding morphology.

Future applications and research on classi-
fication and extraction of similar patients for
epidemiology statistics or computer aided diag-
nosis are envisioned. Such applications are a
first step toward the extrapolation of informa-
tion from an image database to other images.
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