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Abst rac t .  In this paper, we present the cross-validation of three de- 
formable template superimposition techniques a,b and c, used to study 
3D CT images of the bony skull. Method (a) relies on the manual iden- 
tification by anatomists of anthropometric landmarks, method (b) on 
"crest lines", which have a pure geometric definition, and method (c) is 
based on 3D non-rigid intensity based matching. We propose to define 
and compute a distance between methods a, b, c, and also to compute 
three representations f~, f~, fc of an "average" skull model based super- 
imposition via these three methods. The overall aim is to determine if 
the three methods, all developed independently, give mutually coherent 
image superimposition results. 

1 I n t r o d u c t i o n  

The possibility of matching 3D medical images of different patients or of com- 
paring a new patient 's image to a diagnostic "normative" image is a challenging 
issue for the medical community (see [BK89], [CMV94], [CNPE94]). The appli- 
cations are numerous, ranging from computer-assisted building of 3D electronic 
atlases, to Computer Aided Surgery (see [CDB+95]) and diagnosis (see [STA95]). 
More studies such as three dimensional growth of organs (see [Sub95]) or human 
evolution (see IDea93]) can be foreseen. But developing useful deformable tem- 
plate-based superimposition techniques is extremely complex, far moreso than 
for the rigid case: the "ideal" rigid motion can exist, and can be retrieved, up to 
a residual error transformation (see [PT95]). For inter-patients matching, there 
can be as many different criteria for image matching as possible applications: the 
similarities between two patients arise from the sharing of a common phylogeny 
(i.e., development of the species), and the undergoing of a similar ontogeny (i.e., 
normal growth and development), both of which are extremely difficult to model. 
We propose to compare the results of three inter-patients matching techniques, 
each of them being developed independently and the result of several years of 
research. First we describe the methods, then we report on cross-validation ex- 
periment~ of both the matching processes and the computation of "average" 3D 
images. 



328 

2 T h r e e  s u p e r i m p o s i t i o n  t e c h n i q u e s  

Figure 1. Left, principal anatomical lines (after [BC88]), leading to method a. Right, 
crest lines extracted by Marching Lines (method b). 

R idge  Curve  t e m p l a t e  match ing  ( m e t h o d  a): it has been designed 
by anatomists, for cranio-facial surgical planning (see [BC88], [Cut91}, IDea93], 
[CDB+95]). There is a strong need, on one hand, to build an average surface 
representation of a "normal" patient and on the other hand, to match patients to 
this average, for diagnosis and simulation. A template of the salient lines of the 
skull called "ridge curves" (see figure 1, left), has been designed by anatomists. 
It contains homologous 3D anthropometric landmarks (points), linked by ridge 
and geodesic curves (see figure 2). The template is matched implicitly by the 
correspondance of the vertices given by the anatomist. The major advantage 
is that method a relies on homologous features, that is, points or lines which 
are anatomically invariant, but a new template has to be manually developed 
for each organ. The selection of landmarks and the final correction are time 
consuming processes and there can be inter- or intra-observer variabilities. 

Cres t  lines match ing  ( m e t h o d  b): "Crest lines" are mathematically de- 
fined by differential geometry, and coincide with the intuitive definition of "most 
salient" lines used in method a. The "Marching Lines" algorithm (see ITG95}) 
automatically extracts crest lines from volumetric images (see figure 1, right). 
The matching algorithm iteratively computes rigid, affine, and spline transfor- 
mations, and forms couples of points from the two sets of crest lines, based on 
their spatial distances after transformation (see [Sub95}). The whole process is 
fully automatic, leading to a large set of corresponding points within 10 to 20 
minutes CPU time (Dec Alpha workstation). The topology of crest lines can 
vary from patients to patients, the method needs high resolution 3D images and 
there are no a-priori anatomical information. Their use to build average model 
representation has been demonstrated in [STA95]. 
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I n t e n s l t y - b a s e d  m a t c h i n g  ( m e t h o d  c): This method has been presented 
in [Thi95], and [Thi96] and produces a point to point correspondance field be- 
tween the two 3D images. Its principle is based on an analogy with Maxwell's 
demons, and relies on polarity (inside/outside) information: the boundaries of 
the object in the scene image Is are considered to be hemi-permeable mem- 
branes, separating the inside of the object from the outside, and the voxels of 
the model image I,~ are considered to be particles, labeled "inside" or "outside" 
points. The deformable model I,~ is then "diffusing" into the scene image Is. 
The approach is entirely automatic and multi-scale. The whole set of voxels is 
taken into account within 10 to 20 minutes CPU time. No anatomical knowledge 
is used but the convergence depends on the initial positioning of the two objects, 
which have to be relatively close. 

Each method relies on a privileged set of points. Method a relies on the 
set A of homologous points (typically several tens of points, or one thousand 
if the linking curves are taken into account), method b relies on the crest lines 
(set B, several thousands of points) and method c takes all the voxels with 
high gradients into account (set C, millions of points). In fact, A,B and C are 
processes to extract  feature points from images and must be distinguished from 
the matching methods themselves. 

3 C r o s s  v a l i d a t i o n  s t u d y  

Our cross validation relies on two principles: the first is to study the effect 
of non-rigid deformation on sparse data, and the second is to deny a-priori 
preference to any of the three methods. The aim is not to determine the "best" 
of the three methods; that  is meaningless. Rather  we wish to determine if these 
three methods produce mutually consistent results. For that  purpose, we define 
a distance between the three methods and compute and compare "average" 
patients, generated from a reference database of skulls. 

3.1 Def in ing  a d i s t a n c e  b e t w e e n  m e t h o d s  

Let /1 a n d / 2  be the images of two specimens. To perform a fair comparison, 
we compute from the matching result of each technique a B-splines based warp 
T~,2, T~,2, and T~, 2 (see [DSTA95]), with exactly the same parameters (i.e., con- 
trol points and smoothness constraints). Our distance measurements between 
methods is close to traditional morphometric studies of skulls (see [ANDB90]) 
because it is using a sparse set of feature  points. It must be contrasted with val- 
idation methods based on manually segmented regions (see [GRB93]) or surface 
distances. We do this to prevent zero distances (between surfaces or regions) 
while having large local labeling "errors" (i.e. the tip of the nose sliding within 
the face surface to end up in the middle of the cheek). Our '~eatures of inter- 
est" are the points produced by the feature extraction processes A, B or C. 
We must note that  B1 = B(I1) is not equivalent to B2 = B(I2); in particular, 
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Tlb,2(B1) r B2. This is true also for c: (T~,2(C1) r C2). However, by defini~ 
tion of a, we have T1~,2(A1) = A2 up to the approximation due to warping. A1 
and A2 are two bijective sets, but  correspond to two different inferences of the 
anatomical features, subject to possible uncertainty and inter-observer variabil- 
ity. In order to compare the different matching methods, one major problem is 
to reduce the influence of such inferences, for example by considering different 
types of reference sets A1, B1, C1 in I1 in our experiments. 

D i s t a n c e  de f in i t i ons  For a couple of images (I1,/2), we can define a relative 
distance dz (x , y )  between two matching methods x and y, relative to set Z of 
nz  reference points in image I1. We choose to compute the average distance 
between the transformed points T~,2(Z ) and T~,2(Z): 

dz(x,y) = 1 IITF,2( ,)-T ,2(z)ll (1) 
rtZ1 zEZ1 

where T{, 2 (resp. T~,2) is the transformation between/1 an d /2  obtained with 
the method x (resp. y), I1" II is the Euclidean norm, and Z1 = Z(I1). It is easy 
to verify that  dz corresponds to the mathematical  definition of a distance. We 
can also compute the median distance, that  is, the distance m z ( x ,  y) for which 
50% of the matched points in Z have a distance IIT~(z) -TY(z) I  I less than mz,  
or the maximal distance: M z ( x ,  y) = max{]lTX(z) - TY(z)I [, z e Z}. 

To show visually how close the three methods are, we propose to represent 
them as the vertices of a triangle, the lengths of the edges representing the 
relative distances between methods (see figure 4). This can be extended to 
an arbi t rary number N of superimposition methods, and leads to a N-simplex 
representation. 

3.2 C o m p u t a t i o n  us ing  a 3D C T  skul l  i m a g e  d a t a b a s e  

As we have access to a large number of specimens, we can compute a more robust 
estimate of the distance dz between methods a, b, c, by averaging the results 
over the specimens. We select a particular image Ii, which is considered to be 
the reference: all the images Ij#~ are matched with Ii, and the average distance 
dz,~ is simply the average of the n - 1 distances dz obtained by comparing the 
n - 1 skull images Ij#~ with a reference skull Ii: 

(2) 

where, for example, T~(z)  is the transformation between the reference image 
Ii and image Ij,  using method x and applied to a 3D point z of Z~ = Z(I~). 
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4 V a l i d a t i o n  o f  a v e r a g e  p a t i e n t s  c o m p u t a t i o n  

Using methods a and b, we have previously computed "average" images from the 
same 3D CT skull database (see [CDB+95] for method a, [STA95] for method 
b). The resulting average images [a and [b, appeared quite similar on visual 
inspection. We are now giving quantitative evaluation by measuring the average 
distances between i~, fb, ft.  

4.1 C o m p u t i n g  average  p a t i e n t s  

To measure the average model of n skull's images, using a method x we: 

- 1. compute the n - 1 deformations T~. from a reference image Ii toward the 
other n - 1 skull images Ij#i. 

- 2. subtract the similarity transforms S~j (that is, rotation, translation and 
scaling) from each of these deformations, to get only anatomically meaningful 
deformations T~. 

- 3. compute the average transformation: f~ = nl Ej T~j-x (including T~ i-2 = 
Identity). 

- 4. apply the average transformation T~ to Ii (or to Zi C Ii) to get the 
average image [~ = T~(/~) (or the set of average features 2~ = T~(Z(I~))). 

4.2 C o m p a r i n g  t h e  ave rag ing  t e c h n i q u e s  

We can then measure the distance between methods, dz#(x,y), using the av- 
eraged deformations T~ and T[. The distance dz,~(x,y) is equivalent to the 
average of the distances between the averaged features of the different patients: 

1 - 
y )  = 

i i 

(3) 

The average deformation T~ can be computed from the set of deformations 
T~ in several ways. If it is done from point to point correspondences, that is, 

T~(z) =_ ~1 ~ j  ~b~(z), z 6 Z~, then it is easy to demonstrate with the triangular 

inequality that dz,i(x, y) < dz,i(x,y), where d is the average distance between 
methods already described. Although each method has a dedicated way to 
compute average patients, we have verified this inequality experimentally: the 
distances d(a, b), d(b, c), d(a, c) between the average patients [a, [b, ic are lesser 
than the averaged distances d(a, b), d(b, c), d(a, c) between methods. As we can 
see measures obtained with average patients are more robust, which justifies, at 
least computationally, the production of average skull images (Many researchers 
have produced atlases of ideal patients, see [TT88], [ANDB90], [CDB+95]) 
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4.3 In f luence  o f  t h e  r e f e r ence  p a t i e n t  

Our averaging methods arbitrarily adopts the frame of a reference image I~. We 
can eliminate this partially from the computation of dz, for example by consid- 
ering the deformations in a circular permutation of the skulls (I0 ~ / 1 , / 1  ~ / 2  
�9 .. In --* I0). However, the result must still be expressed with the same given set 
of '~eatures of interest", for example A0 C I0. Unfortunately, in the case of "av- 
erage" patients, we cannot perform this circular permutation. We are obliged to 
compute, for a method x, the average image [~ (or the average model Z~ C [~). 
A matching T~ is still performed with respect to the same reference specimen I~. 
Ideally, we would compute the average of [~ for each images being the reference 
I~,i E [1,n], but this is too expensive computationally (n2). Our experiments 
verify that  in method c, the choice of the reference specimen I~ has a negligible 
influence on the computation of i t .  

5 E x p e r i m e n t s  

Figure 2. The templates A2, A3, A4 projected on the template A1 of the reference 
specimen, using method c (demons)�9 It also illustrates visually d(a, c) 

We have also checked visualy the coherence of methods a, b and c, by pro- 
jecting in the space of a reference image/1 all the templates obtained with A: 
T]i(Aj),j E [1,4] (see figure 2). The four templates are visually very close one 
to another. They are for the salient lines of the skull, but can differ significantly 
in smooth areas, ignored by the ridge curve template. 

5.1 Cros s -va l ida t ion  

The voxel sizes of our skull images are 1 • 1 • 1.5 mm (175 • 200 • 140 voxels). To 
compare the influence of the features of interest (see figure 4, we have measured 



333 

Figure 3. Illustrates visually distances d: superimposed average templates ~a, ~b  
~c  obtained independently by methods a,b~c. 

the average distances between methods using: B1 = B(I1), the set of crest lines 
in image/1;  B fl ,  the set B1 where only the crest lines with high curvatures are 
kept; A1 the template in image/1 defined by an anatomist. The template or crest 
lines of the occipital and parietal parts of the skull are much less "welt' defined 
than the face (i.e. no salient lines). This is illustrated by the good performances 
obtained using the filtered crest lines (B f ) ,  which range from 3ram to 6ram. 
Figure 4 is a pictorial representation of the average distances, which emphasize 
this. We can also see that  no method is inconsistent with respect to the two 
other ones. 

C 

7 C 

3.7 

a 7.27 b a 4.92 b a 6.42 b 

Figure 4. Simplex representation of the average distances between methods a (tem- 
plate), b (crests) and c (demons), in millimeters, for three types of features: B (crest 
lines), B f  (filtered crest lines), and A (anatomical template). 

5.2 Ave r a ge  p a t i e n t s  

We have computed the average patients with the three methods (see figure 3), 
and also the distances between average patients, using different features (see 
figure~ The three methods give very close results, and the templates are much 
smoother than those of each individual skulls. Ag~n,  results are more stable 
around anatomically salient lines. The distances d between average patients 
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are much smaller than the average distances d between methods.  This result 
support  the production of average patients from a computat ional  viewpoint. It 
should also be noted that  the features of interest have only small influence on 
the results, which suggests that  the average is stable in all portions of the skull. 

methods dB C1Bf glA m B  rnB/  m A  M B  M B /  M A  

d(a,b) 2.92 2.59 3.37 2.58 2.45 2.98 11.3 8.58 11.5 
d(a,c) 3.96 3.78 3.61 3.65 3.77 3.12 11.3 8.86 12.7 
d(b,c) 3.33 3.34 3.09 3.18 3.19 2.83 8.87 8.87 8.31 

Figure  5. Distances between average features, obtained with method a (templates), 
b (crests) and c (demons) in millimeters, with three types of features of interest B, Bf  
and A, and three distances: d: average distance, m median, M maximal distance. 

5.3 S e n s i t i v i t y  to  t h e  c h o i c e  o f  t h e  r e f e r e n c e  s p e c i m e n  

We also tested the sensitivity of the choice of the reference specimen with method 
c (see [Sub95] for similar results with method b). We must be very careful on 
the choice of the set of features of interest Z. We compute:  

- -~1, using image /1 as the reference, and A1 as features, where A1 is the 
template,  semi-automatical ly defined by the anatomist  in image /1 .  

- As, using image /2 as the reference, and A2 as features. By definition for 
method a, A2 = T~s(A1) (this is not true for methods b and c). Hence we 
can compare directly A1 and ,4s 

- T~s(A1)2, using image /2 as reference, and where T~s(A1 ) is the template 
A1, projected onto image I~ by method c. 

We compute the distance d = d~eA1 (-41,-42) = dzeA1 (A1,T~s(A1)2), which 
is the average distance between two estimates of average features, using two dif- 
ferent reference specimens/1  and /2 .  We also compute  d' = d~eA1 (A1, T~s(A1)2) 
and the results are presented in Figure 6. 

dA ?Tt, A M A  

d 4.83 4.09 22.9 
d' 1.25 1.13 4.47 

Figure  6. Distances between average skulls obtained with two different reference 
images, d: with two manuM template selections A and one application of method c. 
d': with a single template selection A and two times the application of c. 

It  should be noticed that  d represents the differences in using two distinct 
reference specimens I1 and I2, but also two independent inferences A1 and A2 
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of the segmented anatomical features. This is equivalent to the concatenation of 
the "errors" of two manual selections, A1 and A2, and of one non-rigid matching 
with c. On the other hand, for d', only method c is used (twice). A1 is used 
solely as a list of "features of interest" to produce an average distance. Hence 
d ~ is more representative of the perturbation introduced by the choice of the 
reference specimen alone than distance d. We note that this error (1.3mm) is 
of the same order as the image resolution, which shows that the choice of the 
reference specimen has very little influence on the result of averaging. 

Our personal interpretation of the results are the following: the three meth- 
ods give mutually coherent results, with an average difference for feature location 
of 3mm to 4mm where the skull is highly curved. In smoother places, this av- 
erage precision is reduced to 6mm to 9mm, but for specific points (outliers) 
the distance grows to 3cm or 4cm. The computation of "average patients" gives 
more robust and coherent results, everywhere on the skull surface, with an "av- 
erage" difference of 3mm to 4mm and up to lcm for outliers. The computation 
of the average patient does not depend too much on the choice of the reference 
specimen. 

6 Conclusion 

The comparison of three image superimposition methods on a set of four 3D 
CT-scans of different dry skulls was performed, in order to verify that three 
methods, all developed independently, give mutually coherent results. To our 
opinion, the answer is yes. We have established quantitative measurements, such 
as distances between the individual features produced by these three methods 
and average features computed by superimposition, which could be used to com- 
pare other non-rigid techniques. We intend to use these methods, independently 
or combined, to classify groups or sub-groups of patients, and possibly to auto- 
matically diagnose pathologies. 

Acknowledgement: Many thanks to Dr. Bruce Latimer, Curator of 
Physical Anthropology, Cleveland Museum of Natural History, for the access to the 
Hamann-Todd collection and also to Dr. Jon Haaga, Chair and Professor, and Eliza- 
beth Russel, Technician, Department of Radiology, Case Western Reserve University, 
for providing CT-scans of these specimens. 

References 

ANDB90. A. H. Abbot, D. J. Netherway, D. J. David, and T. Brown. Application and 
Comparison of Techniques for Three-Dimensional Analysis of Craniofacial 
Anomalies. Journal of Craniofacial Surgery, 1(3):119-134, July 1990. 

BC88. F . L .  Bookstein and C. B. Cutting. A proposal for the apprehension of 
curving cranofacial form in three dimensions. In K. Vig and A. Burdi, 
editors, Cranofacial Morphogenesis and Dysmorphogenesis, pages 127-140. 
1988. 



336 

BK89. 

CDB+95. 

CMV94. 

CNPE94. 

Cut91. 

Dea93. 

DSTA95. 

GRB93. 

PT95. 

STA95. 

Sub95. 

TG95. 

Thi95. 

Thi96. 

TT88. 

R. Bajcsy and S. Kova~i~. Multiresolution Elastic Matching. Computer 
Vision, Graphics and Image Processing, (46):1-21, 1989. 
C. Cutting, D. Dean, F .L. Bookstein, B. Haddad, D. Khorramabadi, F. Z. 
Zonneveld, and J.G. Mc Carthy. A Three-dimensional Smooth Surface Anal- 
ysis of Untreated Crouzon's Disease in the Adult. Journal of Craniofacial 
Surgery, 6:1-10, 1995. 
G. E. Christensen, M. I. Miller, and M. Vannier. A 3D Deformable Mag- 
netic Resonance Textbook Based on Elasticity. In Applications of Computer 
Vision in Medical Image Processing, pages 153-156, Stanford University 
(USA), March 1994. 
D.L. Collins, P. Neelin, T.M. Peters, and A.C. Evans. Automatic 3d inter- 
subject registration of mr volumetric data in standarized talairach space. J. 
of Computer Assisted Tomography, 18(2):192-205, March 1994. 
C. B. Cutting. Applications of computer graphics to the evaluation and 
treatment of major craniofacial malformations. In J. K. Udupa and Her- 
man G. T., editors, 3D Imaging in Medicine, chapter 6, pages 163-189. 
CRC Press, 1991. 
D. Dean. The Middle Pleistocene Homo erectus/Homo sapiens Transition: 
New Evidence from Space Curve Statistics. PhD thesis, The City University 
of New York, 1993. 
J. Declerck, G. Subsol, J.Ph. Thirion, and N. Ayache. Automatic re- 
trieval of anatomical structures in 3D medical images. In N. Ayache, ed- 
itor, CVRMed'95, volume 905 of Lecture Notes in Computer Science, pages 
153-162, Nice (France), April 1995. Springer Verlag. 
J. C. Gee, M. Reivich, and R. Bajcsy. Elastically Deforming 3D Atlas to 
Match Anatomical Brain Images. Journal of Computer Assisted Tomogra- 
phy, 17(2):225-236, March 1993. 
X. Pennec and J.Ph. Thirion. Validation of 3-D Registration Methods based 
on Points and Frames. In Proceedings of the 5th Int. Conf on Comp. Vision 
(ICCV95), pages 557-562, Cambridge, (USA), June 1995. 
G. Subsol, J.Ph. Thirion, and N. Ayache. A General Scheme for Automati- 
cally Building 3D Morphometric Anatomical Atlases: application to a Skull 
Atlas. In Medical Robotics and Computer Assisted Surgery, pages 226-233, 
Baltimore, Maryland (USA), November 1995. 
G. Subsol. Construction automatique d'atlas anatomiques morphomdtriques 
d partir d'images m~dicales tridimensionnelles. PhD thesis, Ecole Centrale 
Paris, December 1995. 
J-P Thirion and A Gourdon. Computing the differential characteris- 
tics of isointensity surfaces. Computer Vision and Image Understanding, 
61(2):190-202, March 1995. 
J-P. Thirion. Fast Non-Rigid Matching of 3D Medical Images. In edieal 
Robotics and Computer Aided Surgery (MRCAS'95), pages 47-54, Baltimore 
(USA), November 1995. 
J-P. Thirion. Non-Rigid Matching Using Demons. In Computer Vision 
and Pattern Recognition (CVPR'96), San Francisco (USA), June 1996. (to 
appear). 
J. Talairach and P. Tournoux. Co-Planar Stereotaxic Atlas of the Human 
Brain. Georg Thieme Verlag, 1988. 


